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Edge Sequences, Ribbon Tableaux, and an Action of Affine Permutations

MARC A. A. VAN LEEUWEN

An overview is provided of some of the basic facts concerning rim hook lattices and ribbon tableaux,
using a representation of partitions by their edge sequences. An action is defined for the affine Coxeter
group of typeÃr−1 on ther -rim hook lattice, and thereby on the sets of standard and semistandard
r -ribbon tableaux, and this action is related to the concept of chains inr -ribbon tableaux.
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1. INTRODUCTION

Rim hook lattices are defined by endowing the setP of all partitions of natural numbers
with a partial ordering ‘≤r ’ for somer > 0; this partial ordering is generated by the removal
of the so-called rim hooks of lengthr (also calledr -ribbons) from Young diagrams. Saturated
chains in such a lattice correspond to combinatorial objects known as ribbon tableaux. In this
paper we study the basic properties of ribbon tableaux, using a particular way to represent
partitions, namely by their edge sequences; this leads in a very easy way to a structure theorem
for rim hook lattices (Section 2), and thereby to decomposition theorems for ribbon tableaux
(Section 3). Neither these theorems nor the concept of edge sequences are new, but it appears
that the systematic use of edge sequences to study rim hook lattices and ribbon tableaux is.
From our description we obtain in a natural way an action of the groupS̃r , which is an affine
Coxeter group of typeÃr−1, by automorphisms on ther -rim hook lattice, and thereby on
r -ribbon tableaux (Section 4). A detailed study of this action leads to the concept of chains of
ribbons inr -ribbon tableaux, which has been considered previously only for domino tableaux
(r = 2); we derive some basic combinatorial properties of chains and of the operation of
moving them in the ribbon tableau.

The purpose of this paper is twofold. In the first place we wish to provide a self-contained
introduction to the theory of ribbon tableaux, giving simple proofs of all the basic facts. In the
second place this paper is a preliminary to a forthcoming paper [16] on domino tableaux: we
collect here all definitions and results needed there for domino tableaux that are valid in the
more general setting ofr -ribbon tableaux.

Elements ofN×N will be called squares, and correspondingly displayed, using the matrix
convention that the first index increases downwards, and the second index to the right. The term
inward will be used throughout to mean ‘to the left and/or upwards’, and similarlyoutward
means ‘to the right and/or downwards’; a typical use is to discriminate between inward and
outward slides forjeu de taquin.

We shall denote the set of all partitions of natural numbers byP. Depending on the context,
a partitionλ ∈ P will be either considered to be a weakly decreasing sequence(λ0, λ1, . . .)

of natural numbers, or will be identified with the corresponding Young diagram{(i, j ) ∈
N×N | j < λi } (a set of squares); the latter always applies when set theoretic notation such as
(i, j ) ∈ λ is used. The empty partition(0,0, . . .)will be denoted by∅, the cardinality

∑
i λi

of the Young diagramλ by |λ|, and its transpose byλtr. Forλ,µ ∈ P the use of the notation
λ/µ will imply that µ ⊆ λ, but otherwise it is just a formal symbol; it is related to the skew
diagramλ \ µ (set theoretic difference of Young diagrams), but that set alone might fail to
determineλ andµ.
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2. EDGE SEQUENCES

We associate toλ ∈ P a doubly infinite wordδ(λ) over the alphabet{0,1}, called itsedge
sequence. It describes the shape of the boundary of the (connected) region occupied by the set
of squaresN×N\λ, as a sequence of vertical and horizontal line segments (of length 1) going
from bottom-left to top-right, where 1 represents a vertical segment and each 0 a horizontal
segment. For instance, forλ = (3,3,1) the part of the boundary near the origin looks like
this:

We therefore haveδ(λ) = (. . .1 1 1 0 1 0|0 1 1 0 0 0. . .), where the ‘|’ is a reference mark
indicating the point where the boundary crosses the main diagonal. The individual terms of
an edge sequence will be referred to as itsbits. Formally,δ(λ) is a mapZ→ {0,1}defined by

δ(λ)(d) =
{

1 if d ∈ {λi − i − 1 | i ∈ N},
0 if d ∈ { j − λtr

j | j ∈ N}, (1)

(the two conditions are easily seen to be complementary); the ‘|’ mark separates the indices
d < 0 from the indicesd ≥ 0. We shall denote the edge seqenceδ(∅) = (. . .1 1 1|0 0 0. . .)
of the empty partition byδ0, so that

δ0(d) =
{

1 if d ∈ Z \ N,
0 if d ∈ N.

(2)

We define

FD = { f :Z→ {0,1} | f (d) = δ0(d) for all but finitely manyd} (3)

(the sequences at finite Hamming distance fromδ0); thenδ is an injectionP → FD. Moreover,
for anyλ ∈ P, the differences betweenδ(λ) andδ0 are evenly distributed between both sides
of the ‘|’ mark: there are|{i ∈ N | (i, i ) ∈ λ}| differences on either side. In fact, if we define
for f ∈ FD its ‘displacement’ as

d( f ) =
∑
i∈Z

f (i )− δ0(i ) = |{d ≥ 0 | f (d) = 1}| − |{d < 0 | f (d) = 0}|,

then the imageδ(P) of P in FD is precisely{ f ∈ FD | d( f ) = 0}. There is an action
of Z on FD by translations, given bytn( f )(i ) = f (i − n); informally speaking,tn( f ) is the
same sequence asf , but with the reference mark ‘|’ shifted n places to the left. One has
d(tn( f )) = d( f ) + n, soδ(P) is a set of representatives of the orbits of this action, which
means that if a sequence without a reference mark is given, there is a unique way of inserting
it to obtain a sequenceδ(λ) for someλ ∈ P. Abusing the notation somewhat, we shall write
δ−1( f ) = λ for any f ∈ FD in the orbit ofδ(λ), i.e., in applyingδ−1 we allow relocation of
the reference mark if necessary.

REMARK. Clearly δ(λ) records information about the Young diagramλ ‘by diagonals’
rather than by rows or columns. Individual edges, however, do not lie on diagonals ofλ, but
in between two successive ones. As the diagonal of a square(i, j ) is naturally labelled by the
integer j − i , the most natural indexing set for the bits ofδ(λ) would seem to beZ+ 1

2 rather
thanZ. On the other hand, it is convenient to have the structure ofZ available, such as the
mapsZ → Z/n. The natural order-reversing involution ofZ in this context isi 7→ −1− i ,
which interchangesN andZ \ N, rather thani 7→ −i .
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2.1. Other concepts related to edge sequences.One finds in the literature various concepts
that are more or less equivalent to edge sequences, in the sense that they are in bijection by means
of a straightforward translation withFD, or with some subset or its set of translation orbits. For
the convenience of those acquainted with these concepts, we shall mention some of them, and
detail the pertinent bijections. We shall start with various concepts mentioned in [12], some
of which also occur in [8, 2.7], see also [13]. First, one associates to a partitionλ of lengthl
(i.e.,l = λtr

0) the set of its ‘first column hook lengths’Xλ = {λi + l − i −1 | i = 0, . . . , l −1},
which equals(δ(λ)−1(1)+ l ) ∩ N (note that the shiftl is such that 0 is the smallest integer
absent fromδ(λ)−1(1)+ l ). For r ≥ 0 the setX+r

λ = {x + r | x ∈ Xλ} ∪ {0, . . . ,r − 1}
is defined, which is simply(δ(λ)−1(1)+ l + r ) ∩ N. Each of these sets is a so-calledβ-set
(a finite subset ofN), and from anyβ-setX one recoversλ asδ−1( f ), where f ∈ FD is the
characteristic function of the setX ∪ (Z \ N). The concept of ‘partition sequences’ (which
are doubly infinite words over{0,1}) is almost equivalent to our edge sequences, with two
differences: the rôles of 0 and 1 are interchanged, and, as no formal definition of (equality of)
doubly infinite words is given in [12], partition sequences seem to correspond to translation
orbits in FD. Olsson [12] also defines partition sequences with a ‘cut’, which is similar to
our reference mark ‘|’, but is used for a rather different purpose (namely to define Frobenius
symbols).

The ‘Maya diagrams’ of [3, Section 4] are introduced as sequences, indexed byZ, of
black and white squares, such that all squares at sufficiently negative indices are black, and
those at sufficiently positive indices are white; this is exactly equivalent to our definition
of FD. The objects formally representing Maya diagrams are not mapsZ→ {0,1} however,
but permutationsm of Z that have no descent except possibly between−1 and 0: one has
m(i ) > m(i − 1) for all i 6= 0. Any f ∈ FD uniquely determines such a permutation, whose
respective restrictions are the order-preserving bijectionsZ \N→ f −1(1) andN→ f −1(0);
conversely one recoversf from m by f = δ0 ◦ m−1. The ‘charge’ ofm is defined as
lim i→±∞m(i )− i , which is equal tod( f ). Each Maya diagram determines an ‘infinite Young
diagram’ (a subset ofZ×N), which encodes a finite Young diagram together with the charge of
the Maya diagram; this corresponds to the fact thatf ∈ FD is determined byδ−1( f ) andd( f ).

2.2. Removal of hooks.The basic attributes of the Young diagramλ can be read fromf =
δ(λ); the main concept used to do this is that of thehook. There is a hookh associated to each
square(i, j ) ∈ λ, namely the seth = {(i, j ′) ∈ λ | j ′ ≥ j }∪ {(i ′, j ) ∈ λ | i ′ ≥ i }; the number
|h| is called its length. The segments of the boundary ofλ that cross the ends of columnj and
of row i , respectively, correspond to the bits ofδ(λ) at indicesk = j − λtr

j andl = λi − i − 1;
we havek < l (in fact l − k = |h|), δ(λ)(k) = 0, andδ(λ)(l ) = 1. Moreover, any such pair
(k, l ) comes from a unique hookh of λ. Therefore we define a hook off ∈ FD to be a pair
(k, l ) with k < l , f (k) = 0, and f (l ) = 1, and calll − k the length of this hook. We also
define| f | to be the number of hooks off , so that|δ(λ)| = |λ|.

Given a hook(k, l ) of f ∈ FD, we define another sequencef ′ ∈ FD by interchanging the
bits at indicesk andl : f ′(k) = 1, f ′(l ) = 0, and f ′(i ) = f (i ) for i 6∈ {k, l }; f ′ is said to be
obtained by removing the hook(k, l ) from f . One hasd( f ′) = d( f ) and| f ′| = | f |− (l − k)
(for k < i < l , either(k, i ) or (i, l ) is a hook of f , but not of f ′). If f = δ(λ) andh is the
hook ofλ corresponding to(k, l ), thenλ′ ∈ P with δ(λ′) = f ′ can be obtained by removingh
fromλ, and then shifting the subset{(i ′, j ′) ∈ λ | i ′ > i ∧ j ′ > j } of the remainder one square
up and to the left. The difference setλ \ λ′ is a connected sequence of squares along the outer
rim of λ, with the same number of elements and the same end points ash; it is called therim
hookof λ corresponding toh, andλ′ is said to be obtained fromλ by removing this rim hook.
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If |h| = 1, then the square ofh is called acornerof λ, and acocornerof λ′.

hook (.1100100|1001010100.) (.1100110|1001000100.) rim hook

For r > 0 we define a partial ordering ‘≤r ’ on FD, which is generated by relations
f ′ ≤r f wheneverf ′ is obtained fromf by removing a hook of lengthr . Clearly f ′ ≤r f
impliesd( f ′) = d( f ), and each translationtn is an isomorphism of the poset(FD,≤r ). The
corresponding partial ordering onP is also denoted by ‘≤r ’, and is generated byλ′ ≤r λ

wheneverλ′ is obtained fromλ by removing a rim hook of lengthr ; the poset(P,≤r ) is called
the r -rim hook lattice. The ordering ‘≤1’ on P coincides with the ordering ‘⊆’ defined by
inclusion of Young diagrams, so the 1-rim hook lattice is just the Young lattice(P,⊆). Whereas
(P,⊆) has a unique minimal element∅, any translatetd(δ0) of δ(∅) is minimal in(FD,≤1),
and for any f ∈ FD one hastd(δ0) ≤1 f with d = d( f ). Hence the connected components
of (FD,≤1) are the fibres of the surjectiond:FD → Z, each of which is isomorphic to the
Young lattice(P,⊆).

Returning to the case of arbitraryr > 0, defineSr :FD→ FDr by splitting up the bits of a
sequencef ∈ FD into r subsequences, according to the congruence class modulor of their
indices:

Sr ( f ) = (c0,r ( f ), c1,r ( f ), . . . , cr−1,r ( f )), whereci,r ( f )(n) = f (nr + i ).

If f ′ is obtained fromf by removing a hook of lengthr , then Sr ( f ′) differs from Sr ( f )
only in one componentci,r ( f ′), and there the difference is the interchange of two adjacent
bits, i.e., removal of a hook of length 1. It follows thatSr is an isomorphism of posets
(FD,≤r )→ (FD,≤1)

r . Therefore, the connected components of(FD,≤r ) are the fibres of
the surjectiondr :FD→ Zr defined by

dr ( f ) = (d(c0,r ( f )), . . . ,d(cr−1,r ( f ))),

each of which is isomorphic to(P,⊆)r . In the fibre above(d0, . . . ,dr−1) ∈ Zr , the minimal
element isS−1

r (td0(δ0), . . . , tdr−1(δ0)). It follows easily from the definition ofd that the sum
of ther components ofdr ( f ) equalsd( f ) for any f ∈ FD; therefore,δ is a poset isomorphism
from(P,≤r ) to the subposet of(FD,≤r ) formed by the fibres ofdr above points(d0, . . . ,dr−1)

with
∑r−1

i=0 di = 0. Denoting the set of minimal elements of(P,≤r ) by Cr , whose elements
are calledr -cores, we have

(P,≤r ) ∼=
∐
γ∈Cr

(P,⊆)r . (4)

The r -coreγ in the connected component of someλ ∈ (P,≤r ) can be found as as follows.
First compute(d0, . . . ,dr−1) = dr (δ(λ)), thenγ = δ−1(S−1

r (td0(δ0), . . . , tdr−1(δ0))). In
terms of the edge sequencef = δ(λ) this amounts to sorting the bits in each subsequence
ci,r ( f ) separately, removing all its hooks, so as to arrive atδ(γ ) in which no hooks are left
within any such subsequence. In the component labelled byγ at the right-hand side of (4),
λ corresponds to anr -tuple(λ(0), . . . , λ(r−1)) ∈ Pr called itsr -quotient. Its components are
given byλ(i ) = δ−1(ci,r (δ(λ))) for i = 0, . . . ,r − 1, where the convention mentioned above
comes into play — thatδ−1 will first translate its argument intoδ(P). It can be seen that
these methods of computing ther -core andr -quotient ofλ are simplified forms of the abacus
construction in [8, 7.2]; different (though equivalent) methods given in [4] (for the caseγ = ∅
only) and in [2].
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There is an alternative way to compute the mapdr ◦ δ:P → Zr . For λ ∈ P define the
Laurent polynomial diag(λ)= ∑

(i, j )∈λ x j−i , which counts the squares ofλ by diagonals
(the sequence of its coefficients is called a ‘fairy sequence’fλ in [4]). Thendr (δ(λ)) will be
the sequence of coefficients of the image of(1− x−1) diag(λ) in Z[x]/(1− xr ) (this follows
either by an easy induction on|λ|, or directly by considering the contribution of two successive
diagonals numberedi , i + 1 to the coefficient ofxi modr ). In particular, ther -core ofλ is
determined by the image of diag(λ)in Z[x]/(1− xr ) (i.e., by counting the squares of|λ| by
diagonals modulor ), cf. [8, 2.7.41].

An example may illuminate our constructions. Consider the caser = 3 andλ = (8,6,6,6,
5,4,1). We draw the Young diagram ofλ, determine the edge sequencef = δ(λ), the three
sequencesc0,3( f ), c1,3( f ), c2,3( f ) constitutingS3( f ), and the values ofd applied to them:

λ:
δ(λ): 1 1 1 0 1 0 0 0 1 01 0 1 1 1 0 0 1 0 0 0 d

c0,3(δ(λ)): 1 1 0 1 1 0 0 +1
c1,3(δ(λ)): 1 0 1 0 1 1 0 +1
c2,3(δ(λ)): 1 0 0 0 1 0 0 −2

From this we see thatd3(δ(λ)) = (1,1,−2), and it follows that the 3-coreγ correspond-
ing to λ is δ−1(. . .1 1 0 1 1 0|1 1 0 0. . .) = (2,2,1,1). The components of the 3-quotient
(λ(0), λ(1), λ(2)) of λ are computed from the subsequencesci,3(δ(λ)) in the table: λ(0) =
δ−1(. . .1 1 0 1 1 0 0. . .) = (1,1), λ(1) = δ−1(. . .1 0 1 0 1 1 0. . .) = (2,2,1), andλ(2) =
δ−1(. . .1 0 0 0 1 0 0. . .) = (3). Graphically we have

γ : , λ \ γ : , λ(0): , λ(1): , λ(2): .

If one tries repeatedly to remove rim hooks of length 3 fromλ in any order, then one will indeed
find that it is eventually reduced toγ , which has no further rim hooks of length 3; the rim hooks
that were removed form a tiling ofλ\γ . Using the alternative method of findingd3(δ(λ)), one
would first compute diag(λ)= x−6+x−5+2x−4+3x−3+4x−2+4x−1+5+4x+4x2+3x3+
2x4+x5+x6+x7, multiply by 1−x−1 to obtain−x−7−x−5−x−4−x−3−x−1+1+x2+x3+
x4+ x7 (the relation of this polynomial toδ(λ) = (. . .1 1 1 0 1 0 0 0 1 0|1 0 1 1 1 0 0 1 0 0 0. . .)
is easy to perceive), and determine its image 1+ x − 2x2 in Z[x]/(1− x3) is, which indeed
givesd3(δ(λ)) = (1,1,−2).

2.3. Distribution of r-core sizes.In the isomorphism (4), adding a hook of lengthr toλ (the
left-hand side) corresponds to adding just a single corner from one of the partitionsλ(i ) of its
r -quotient (the right-hand side); therefore|λ| = |γ | + r

∑
i |λ(i )|. We have indicated above

how ther -coreγ can be found, but|γ | can be expressed directly in terms of the parameters
(d0, . . . ,dr−1) = dr (δ(λ)). We have seen thatδ(γ ) is formed by splicing togetherr copies
of δ0, with copy i translated overdi ; therefore,|γ | = |δ(γ )| can be computed by counting
hooks in this sequence. We obtain

|γ | =
∑

0≤i< j<r

(
di − dj

2

)
, (5)

the summand counts the hooks(k, l ) of δ(γ ) with eitherk ≡ j andl ≡ i (in casedi > dj ), or
with k ≡ i andl ≡ j modulor (in casedi ≤ dj ; note that

(di−dj
2

) = (1−di+dj
2

)
). Sinceδ(γ )
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has no hooks of length divisible byr , all hooks are counted. Using the fact that
∑

i di = 0,
the formula simplifies to

|γ | = r

2

( r−1∑
i=0

d2
i

)
+

r−1∑
i=0

idi (6)

(cf. [7, Bijection 2]). Forr = 2 there is only one parameter, so we may writed0 = −d1 = d,
and get|γ | = (2d

2

) = 2d2−d. Since
(−2d

2

) = (2d+1
2

)
, we see that all triangular numbers occur

exactly once as the size of a 2-core; indeed the 2-cores are precisely the ‘staircase’ partitions
of the form(k, k− 1, . . . ,1) for k ≥ 0.

3. STANDARD AND SEMISTANDARD RIBBON TABLEAUX

3.1. Standard ribbon tableaux.As is well known, saturated chains in(P,⊆) correspond to
standard tableaux (see, for instance, [15]). The corresponding concept for(P,≤r ) is that of
r -ribbon tableaux.

DEFINITION 3.1.1. Let r ≥ 1 andλ,µ ∈ P; a standardr -ribbon tableauS of shapeλ/µ
is a saturated chainµ = λ0 <r λ

1 <r · · · <r λ
k = λ in (P,≤r ), together with ak-element

totally ordered setA. The set of skew diagrams{λi+1 \ λi | 0≤ i < k} is denoted by Rib(S),
and its elements are called ribbons ofS. The symbolS is also used to denote the unique
bijection Rib(S)→ A with S(λi+1 \ λi ) < S(λ j+1 \ λ j ) wheneveri < j , andS(ξ) is called
the entry ofξ in S, for ξ ∈ Rib(S).

Ribbon tableaux are sometimes called rim hook tableaux, but note thatξ ∈ Rib(S) need not
be a rim hook ofλ, only of someλi . By itself a ribbon of any standardr -ribbon tableau is
called anr -ribbon, or in caser = 2 alternatively a domino; 2-ribbon tableaux are also called
domino tableaux.

NOTE. Although the same symbol is used, we do not identifySwith the bijection Rib(S)→
A, which determinesλ\µ but not necessarilyλ andµ themselves. The distinction is necessary
because we shall perform constructions that require explicit knowledge ofλ andµ. The price
we pay is that our tableaux cannot be translated in the plane, or involve squares outsideN×N.

We shall display a ribbon tableaux by drawing each ribbon with its entry placed in it. Unless
the shapeλ/µ is explicitly given, this leaves some ambiguity (even about the location of the
origin), but in such cases we shall assume thatµ has the smallest possible value. Here, for
instance, is a standard 3-ribbon tableau of the shapeλ/γ in the example given earlier, and with
set of entriesA = {0,1, . . . ,9}.

S:

0
1

2

3
4

5 6

7

8
9

We now introduce some terminology related to individual ribbons. Letξ = ν \ ν′ be an
r -ribbon, thenδ(ν ′) is obtained fromδ(ν) by removing some hook(k, l ) of lengthl − k = r ;
we writel = pos(ξ), and call it thepositionof ξ . We have

pos(ξ)= max{j − i | (i, j ) ∈ ξ},
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the number of the rightmost diagonal meetingξ ; in particular forr = 1, the position of a
square is just the number of the diagonal on which it lies. We also define theform of ξ to
consist of the bits ofδ(ν) (or equivalently ofδ(ν′)) at the indices betweenk andl :

form(ξ)= (δ(ν)(k+ 1), . . . , δ(ν)(l − 1)) ∈ {0,1}r−1.

The bits of form(ξ) describe for each pair of successive squares ofξ whether they are hori-
zontally or vertically adjacent. Forr = 2 we call the two possible forms of dominoes simply
horizontal (form(ξ)= (0)) and vertical (form(ξ) = (1)). Finally, we define theheightof ξ ,
written ‘ht(ξ)’, as the sum of the bits of form(ξ), in other words the number of vertical
adjacencies among the squares inξ , or one less than the number of rows that meetξ .

PROPOSITION 3.1.2. Let r > 0, λ,µ ∈ P withµ ≤r λ, and A a totally ordered set with
|λ\µ| = r |A|; let (λ(0), . . . , λ(r−1)) and(µ(0), . . . , µ(r−1)) be the r-quotients ofλ andµ, and
let dr (δ(λ)) = dr (δ(µ)) = (d0, . . . ,dr−1). There is a bijection between the set of standard
r-ribbon tableaux S of shapeλ/µ with entries in A, and the set of r-tuples(S0, . . . , Sr−1)

of ordinary standard tableaux, where Si has shapeλ(i )/µ(i ), and the sets of entries of the Si

are mutually disjoint, and unite to A. If x is a square ofλ(i ) \ µ(i ), then Si (x) = S(ξ) for a
ξ ∈ Rib(S) with pos(ξ)= r (pos(x)+ di )+ i .

PROOF. The existence of the bijection is immediate from (4): each(S0, . . . , Sr−1) corre-
sponds to a saturated chain in(P,⊆)r from (µ(0), . . . , µ(r−1)) to (λ(0), . . . , λ(r−1)). Since
ci,r (δ(λ)) = tdi (δ(λ

(i ))) by the explicit description of the isomorphism (4), a bitδ(λ(i ))(l ) is
equal toci,r (δ(λ))(l + di ), which in turn equalsδ(λ)(r (l + di ) + i ); from this the relation
between pos(x) and pos(ξ)follows. 2

For the case of an emptyr -core (i.e.,di = 0 for all i ) our bijection coincides with the map
5 of [14, Corollary 23]. As an example, consider the tableauS depicted above; we have
λ/µ = (8,6,6,6,5,4,1)/(2,2,1,1) so thatλ(0) = (1,1), λ(1) = (2,2,1), andλ(2) = (3),
all µ(i ) are∅ (sinceµ is a 3-core), andd3(δ(λ)) = (1,1,−2). The successive ribbons have
positions 3,4,1,−2,0,−4,−1,7,2,4, so that entries 0 and 4 will end up inS0 with positions
0 and−1, entries 1, 2, 3, 7, and 9 inS1 with positions 0,−1,−2, 1, and 0, and entries 5, 6,
and 8 inS2 with positions 0, 1, and 2; we find

S0: 0
4
, S1:

1 7
2 9
3

, S2: 5 6 8 .

3.2. Semistandard ribbon tableaux.In analogy of the situation for ordinary tableaux, we
define, in addition to standard domino tableaux, semistandardr -ribbon tableaux, in which
multiple occurrences of the same entry are allowed. They will allow a decomposition similar to
Proposition 3.1.2, but without the condition of disjointness of the sets or entries. In combination
with the fact that the generating function of all ordinary semistandard tableaux of given shape
and range of entries, weighted by the multiset of their entries, is a Schur function, this will
imply that semistandardr -ribbon tableaux satisfy a similar generating function identity.

In view of the desired decomposition, we shall base our definition of semistandardr -ribbon
tableaux on theirstandardization, rather than on (weak and strict) monotonicity conditions
for rows and columns, as is usually done for ordinary semistandard tableaux (forr = 2 such
a definition is still possible (however, see [2]) and it is equivalent to the one we shall give).
Loosely speaking, the standardization of a semistandard tableau is a standard tableau obtained
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from it by renumbering its entries such that the relative order of distinct entries is preserved,
and equal entries are made increasing from left to right. A condition is needed to ensure that
there is a well defined left to right ordering among ribbons with equal entries: we require such
ribbons to have distinct positions, and ordering them by increasing position should give a valid
standard tableau. For ordinary tableau this is equivalent to requiring weak increase of entries
along rows, and strict increase down columns.

DEFINITION 3.2.1. Let a standardr -ribbon tableauS of shapeλ/µ with entries{i ∈ N
| i < k} be given, and a sequenceω = (m0,m1, . . .) with all mi ∈ N and

∑
mi = k. These

define a semistandardr -ribbon tableauT of shapeλ/µ, with for eachξ ∈ Rib(T) the entryT(ξ)
defined as the uniquej ∈ N such that

∑
i< j mi ≤ S(ξ) <

∑
i≤ j mi , provided that for all

ξ, ξ ′ ∈ Rib(T) with T(ξ) = T(ξ ′) andS(ξ) < S(ξ ′), one has pos(ξ) < pos(ξ′). In this case
S is called the standardization ofT , andω its weight wt(T), and we define Rib(T) = Rib(S).

In the literature the weight is also called content or evaluation. Our definition is equivalent
to the one in [9, Section 4]. We shall write Tabr (λ/µ) for the set of semistandardr -ribbon
tableaux of shapeλ/µ, and Tabr (λ/µ; A) for its subset of tableaux whose entries lie inA ⊆ N.
Also, for any weightω = (m0,m1, . . .)we shall writexω =∏i xmi

i , where{xi | i ∈ N} is a set
of commuting indeterminates. Here is an example, giving a semistandard 4-ribbon tableauT
of shape(7,7,7,7,7,5)/(4)with xwt(T) = x4

1x3
2x2

5:

S=
0

1
2

3

4
5

6

7 8
, ω = (0,4,3,0,0,2), T =

1
1

1

1

2
2

2

5 5
.

PROPOSITION 3.2.2. Let r > 0, andλ,µ ∈ P with µ ≤r λ; let (λ(0), . . . , λ(r−1)) and
(µ(0), . . . , µ(r−1)) be the r-quotients ofλ andµ. There is a natural bijection between the set
of semistandard r-ribbon tableaux T of shapeλ/µ, and the set of r-tuples(T0, . . . , Tr−1) of
ordinary semistandard tableaux, with Ti of shapeλ(i )/µ(i ), and

∑r−1
i=0 wt(Ti ) = wt(T). If

S is the standardization of T , so that T(ξ) = f (S(ξ)) for an appropriate weakly monotonic
map f , and S corresponds under the bijection of Proposition 3.1.2 to(S0, . . . , Sr−1), then
Ti (x) = f (Si (x)) for each square x∈ λ(i )/µ(i ).

PROOF. The final sentence completely determines eachTi , so it will suffice to show that these
Ti are semistandard tableaux, and that the correspondence is invertible. Letx, y ∈ λ(i )/µ(i )
be such thatTi (x) = Ti (y) and Si (x) < Si (y), and defineξ, ξ ′ ∈ Rib(S) = Rib(T) by
S(ξ) = Si (x) and S(ξ ′) = Si (y). ThenT(ξ) = T(ξ ′), so that pos(ξ) < pos(ξ′), while
pos(ξ)≡ pos(ξ′) ≡ i modulor ; therefore by Proposition 3.1.2 we have pos(x) < pos(y), and
Ti is semistandard. For invertibility we need to order all the occurrences of the same entry in
any of the tableauxTi , in order to determine theSi ; Proposition 3.1.2 makes clear that these
occurrencesTi (x) should be ordered by increasing value ofr (pos(x)+ di )+ i . 2

As an example, the semistandard 4-ribbon tableauT displayed above corresponds to

T0: 1 5 , T1: 1 1 , T2: 1 2
2 5

, T3: 2
.
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COROLLARY 3.2.3. Let r > 0, let λ,µ ∈ P with µ ≤r λ and respective r-quotients
(λ(0), . . . , λ(r−1)) and(µ(0), . . . , µ(r−1)), and let A be a finite initial subset ofN. One has

∑
T∈Tabr (λ/µ;A)

xwt(T) =
r−1∏
i=0

sλ(i )/µ(i ) (xA),

where sλ/µ(xA) denotes the skew Schur function forλ/µ in the indeterminates{xi | i ∈ A}.
PROOF. Proposition 3.2.2 reduces the general case to the well-known caser = 1 ([10,

I (5.12)]). 2

3.3. Signs and spins.Propositions 3.1.2 and 3.2.2 translate many properties of ribbon tab-
leaux in a trivial way to those of ordinary tableaux. However, the values form(ξ) and ht(ξ)for
ξ ∈ Rib(T)cannot be easily expressed in terms of the tableauxT0, . . . , Tr−1 thatT decomposes
into and, in particular, the quantity

∑
ξ∈Rib(T) ht(ξ) provides an interesting statistic.

PROPOSITION 3.3.1. The parity of
∑
ξ∈Rib(T) ht(ξ) is constant on each setTabr (λ/µ).

PROOF. Fix r , and definingV(λ) = δ(λ)−1(1) = {λi − i − 1 | i ∈ N}, let fλ/µ:V(µ)→
V(λ) be defined by the condition that for each congruence classC modulor , the restriction
of fλ/µ to V(µ)∩C is an order-preserving bijection ontoV(λ)∩C. It is clear that for any chain
µ = λ0 <r λ

1 <r · · · <r λ
k = λ in (P,≤r ) one hasfλ/µ = fλk/λk−1 ◦ · · · ◦ fλ2/λ1 ◦ fλ1/λ0,

and that ifλ \µ is anr -ribbonξ , then the number of inversions offλ/µ (i.e., pairsi < j with
fλ/µ(i ) > fλ/µ( j )) is ht(ξ). Since for composition of bijections between totally ordered sets,
the parity of the number of inversions is additive, the proposition follows. 2

DEFINITION 3.3.2. For µ ≤r λ and T ∈ Tabr (λ/µ), the spin ofT is Spin(T) =
1
2

∑
ξ∈Rib(T) ht(ξ), and ther -sign ofλ/µ is εr (λ/µ) = (−1)2 Spin(T), which is independent

of T by Proposition 3.3.1.

This spin statistic generalizes the one defined for domino tableaux in [2, Section 3]; a
discussion ofr -signs can also be found in [11, Section 2]. Spin(T) lies in N or in N + 1

2
according asεr (λ/µ) is+1 or−1, and a lower bound for it is half the number of inversions
of the mapfλ/µ in the proof above.

4. AFFINE PERMUTATIONS AND CHAINS IN RIBBON TABLEAUX

4.1. Action of the affine Coxeter group of typeÃr−1. From this point on we shall assume
r ≥ 2, and all congruences mentioned will be modulor . From the isomorphism (4) it follows
that the poset(P,≤r ) has very many automorphisms, in fact continuously many. We shall
consider here a subgroup of automorphisms that is of particular interest.

DEFINITION 4.1.1. S̃r is the group of permutationsσ ofZwhich preserve, for any systemS
of representatives ofZ/r , the sum of its values:

∑
S=∑ σ(S).

By replacing one representative by another, we see thatσ(i + r ) = σ(i )+ r for all i ∈ Z,
so thatσ maps congruence classes to congruence classes, andS̃r is indeed a group; moreover,
its action onZ induces an action onZ/r . Every bijectionσ̄ :S→ S′ between two systems
of representatives ofZ/r with

∑
S = ∑

S′ can be extended to a uniqueσ ∈ S̃r by using
σ(i + r ) = σ(i ) + r . The groupS̃r is isomorphic to the affine Coxeter group of typeÃr−1,
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see [1]. This is the group with generatorss0, s1, . . . ,sr−1, subject to the relationss2
i = e for

all i , si sj = sj si for j 6≡ i ± 1, and ifr 6= 2 alsosi sj si = sj si sj for j ≡ i ± 1. In a slight
deviation from [1], we take forsi the element of̃Sr that interchangesi − 1 andi , and fixes all
other congruence classes; the Coxeter relations are verified immediately.

PROPOSITION 4.1.2. The groupS̃r acts on(FD,≤r ) by automorphisms; the action is by
permutation of the bits:(σ ( f ))(i ) = f (σ−1(i )) for σ ∈ S̃r , f ∈ FD and i ∈ Z. One has
d(σ ( f )) = d( f ) for all σ ∈ S̃r and f ∈ FD, so the restriction toδ(P) induces and action
of S̃r on (P,≤r ) by automorphisms.

PROOF. We haveσ( f ) ∈ FD because|σ(i )− i | is bounded for anyσ ∈ S̃r ; to see that the
action ofσ is an automorphism of(FD,≤r ), it suffices to check that iff ′ is obtained fromf
by removal of a hook(i, i + r ), thenσ( f ′) is obtained fromσ( f ) by removal of the hook
(σ (i ), σ (i + r )) = (σ (i ), σ (i )+ r ). The fact thatd is an invariant of the action is shown by
verification for each of the generatorssi . 2

Let us describe the action of a generatorsj on P more explicitly. For anyi ≡ j , the
interchange of the bits ofδ(λ) at indicesi − 1 andi has no effect unless these bits differ, i.e.,
unlessλ has either a corner or a cocorner in diagonali ; if so, the effect is to remove the corner,
respectively, to add the cocorner. Nowsj performs this operation for all diagonals congruent
to j at once, sosj (λ) is obtained fromλ by removing those of its cornersc, and adding those
of its cocornersc, that have pos(c) ≡ j .

PROPOSITION 4.1.3. If σ ∈ S̃r , andλ ∈ P has r-coreγ and r-quotient(λ(0), . . . , λ(r−1)),
then σ(λ) has r-coreσ(γ ) and r-quotient(λ(σ

−1(0)), . . . , λ(σ
−1(r−1))), interpreting super-

scripts toλ as elements ofZ/r .

PROOF. This follows immediately from (the explicit description of) the isomorphism (4).2

The action ofS̃r onP can be restricted toCr ; the generators act as follows in terms of the
parametrization provided bydr ◦ δ : Cr → Zr . Let γ ∈ Cr have parameters(d0, . . . ,dr−1),
thensj (γ ) has parameters(d0, . . . ,dj , dj−1, . . . ,dr−1) if j 6= 0, whiles0(γ ) has parameters
(dr−1+1,d1, . . . ,dr−2, d0−1). Therefore this action of̃Sr onCr corresponds precisely to the
standard action of̃Sr by affine transformations of the root lattice of the Weyl group of typeAr−1.
In particular, the action is transitive, and since the stabilizer of∅ ∈ Cr is 〈s1, . . . , sr−1〉 ∼= Sr , it
gives a bijection betweenCr andS̃r /Sr . It is shown in [1, Theorem 6.3] that partial ordering ‘⊆’
on Cr corresponds to the Bruhat order onS̃r /Sr (the ‘unit increase monotonic function’ϕ
corresponding toγ is given byϕ( j ) = |{i ∈ Z | i < j − 1∧ δ(γ )(i ) = 0}|).

PROPOSITION 4.1.4. The action of̃Sr on (P,≤r ) induces an action on standard r-ribbon
tableaux, such thatσ ∈ S̃r sends standard r-ribbon tableaux of shapeλ/µ to standard r-
ribbon tableaux of shapeσ(λ)/σ (µ), with the same set of entries; if the chain in(P,≤r )

of a standard r-ribbon tableau S isλ0 <r · · · <r λ
k in (P,≤r ), thenσ(S) has the chain

σ(λ0) <r · · · <r σ(λ
k). Using Proposition 3.1.2, if S corresponds to(S0, . . . , Sr−1) by

the bijection forλ/µ, thenσ(S) corresponds to(Sσ−1(0), . . . , Sσ−1(r−1)) (with the subscripts
interpreted inZ/r ) by the bijection forσ(λ)/σ (µ).

Since the ribbonξ = λi+1 \ λi ∈ Rib(S) corresponds to the ribbonξ ′ = σ(λi+1) \ σ(λi ) ∈
Rib(σ (S)), it seems thatσ acts independently on each individual ribbon. However, this is not
true, since ribbons are just skew diagrams, and soξ does not uniquely determineλi andλi+1;
for other pairs of partitionsν, ν′ with ξ = ν \ ν′ one may haveσ(ν) \ σ(ν′) 6= ξ ′.
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To better understand the situation, consider the case thatσ is a generatorsj . From the
description of the action ofsj onP it follows that for any squarex with pos(x) 6≡ j , one has
x ∈ λ if and only if x ∈ sj (λ), and therefore,x ∈ ξ if and only if x ∈ ξ ′; we shall call such
squaresfixed for sj . All but one of the squares ofξ are fixed, soξ ′ can only differ fromξ
by the replacement of its non-fixed square by another one. Now pos(ξ ′) = sj (pos(ξ)), which
differs from pos(ξ)if either pos(ξ)≡ j − 1 or pos(ξ) ≡ j , so if this non-fixed square lies at
one of the ends of the ribbonξ , it will be replaced by a square at the other end; otherwise the
only possible change is the replacement of a square by another one on the same diagonal. In
the latter case form(ξ ′) is, in fact, obtained from form(ξ)by interchanging two adjacent bits,
and the indicated change happens whenever these two bits differ; in particularξ ′ is determined
by ξ alone. In the cases where pos(ξ′) 6= pos(ξ), the bits of form(ξ′) are those of form(ξ)
shifted one place left or right, with a bit disappearing at the side of the non-fixed square ofξ ,
and an unrelated bit appearing at the other end. This new bit is what makesξ ′ depend on
λi+1/λi in this case, rather than just onξ .

The new bit that enters into form(ξ ′) is a bit ofδ(λi+1), just outside the hook(k, l ) whose
removal leads toδ(λi ) (sol = pos(ξ)andk = l − r ): it is δ(λi+1)(l +1) if pos(ξ)≡ j −1, or
δ(λi+1)(k− 1) if pos(ξ)≡ j (this bit is unaffected by the hook removal, so one may replace
λi+1 by λi in these expressions). In this situation we define thefixed-end squareof ξ to be
the square at the opposite end ofξ as its non-fixed square, and thediscriminant squareof ξ
to be the next square in the same anti-diagonal in the direction away fromξ , i.e., one place
above and to the right of the fixed-end square if pos(ξ)≡ j − 1, or one place below and to the
left of it if pos(ξ) ≡ j ; like the fixed-end square, the discriminant square is fixed forsj . The
value of the new bit ofξ ′ is determined by whether or not the discriminant squarex of ξ lies in
N×N \ λi . If x ∈ ξ0 for someξ0 ∈ Rib(S), then this question is equivalent toS(ξ0) > S(ξ);
otherwisex 6∈ λ \ µ, and the question is equivalent tox ∈ N × N \ λ (here the shapeλ/µ
of S is explicitly used). If in the former case the ribbonsξ andξ0 are adjacent along at least
one edge, then this adjacency already determines whetherS(ξ0) > S(ξ), so a comparison of
entries ofS is needed only ifξ andξ0 are non-adjacent; in that case, the discriminant square
of ξ is also the fixed-end square ofξ0 andvice versa.

As an example we take the 3-ribbon tableauSshown before, andj = 0. For eachξ ∈ Rib(S)
with ξ ′ 6= ξ , we draw an arrow either from the non-fixed square ofξ (if pos(ξ′) = pos(ξ)), or
from the fixed-end square ofξ (otherwise), to the square inξ ′ \ ξ . We have similarly drawn
arrows ins0(S) for the reverse transformation.

S:

0
← 1

↖
2

3
↖ 4
←

5 → 6

↑

7

8

↑
9 s0←→

0
→1↘

2
3↘

4
→

5↓
6
←

7

8

↓
9

Of the ribbonsξ ∈ Rib(S) with pos(ξ)≡ 1, the straight ones (with entries 2, 7 and 9) are
unchanged, while for the bent ones (1 and 3) the middle square moves within its diagonal. The
ribbons 5, 6 and 8 with pos(ξ) ≡ 2 move one place to the top right; the ribbons 0 and 4 with
pos(ξ)≡ 0 move to the bottom left. The discriminant squares of the ribbons with entries 0, 4,
5, 6, 8 lie in the ribbons with entries 2, 5, 4, 8, 9, respectively; the ribbons whose entries are
compared are non-adjacent only for the entries 4 and 5. Ins0(S) the ribbons with entries 0, 5,
and 6 have a discriminant square that does not lie in any ribbon; for the ribbon with entry 5,
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the effect of applyings0 cannot be determined from the display of the tableau alone (without
indication of the origin or of the shapeλ/µ of the tableau).

4.2. Open and closed chains of ribbons.From the discussion above it can be seen that it may
be possible to obtain a valid ribbon tableau fromS by replacing only a subset of its ribbons
by their corresponding ribbons insj (S); the minimal non-empty subsets of Rib(S) with this
property are essentially what we shall call thechainsin S for sj (not to be confused with the
chain in(P,≤r ) of S). In the tableauS above, the chains are the sets of ribbons with entries
{8,1,0}, {5,6,4,3}, and the singletons{2}, {7}, {9} for ribbons that do not move. There is, in
fact, more structure to a chain than just that of a set of ribbons: if for a ribbonξ0 ∈ Rib(S)
its corresponding ribbonξ ′0 ∈ Rib(sj (S)) has one square in common withξ1 ∈ Rib(S), then
ξ1 can be considered to be the successor ofξ0 in its chain inS for sj ; therefore, chains will be
formally defined in a slightly different way. Forr = 2, the partition of Rib(S) into chains has
been described elsewhere: chains coincide with the cycles in a domino tableau in [5, (1.5.18)],
and with the connected components in the labyrinth of a domino tableau in [2, Section 8].
While our definitions are more general, the caser = 2 remains of particular interest, and has
special properties not valid forr > 2.

Denote byD j (λ/µ) the set of squaresx with pos(x) ≡ j that either lie inλ \ µ or are
a cocorner ofλ or a corner ofµ. Let a bipartite graphG j (S) on Rib(S) ∪ D j (λ/µ) de
defined as follows: for a ribbonξ = λi+1 \ λi ∈ Rib(S) with corresponding ribbonξ ′ =
sj (λ

i+1) \ sj (λ
i ) ∈ Rib(sj (S)), there is an edge labelled 0 betweenξ and x ∈ D j (λ/µ)

wheneverx ∈ ξ , and an edge labelled 1 wheneverx ∈ ξ ′. Then the chains inS for sj are
defined as connected components ofG j (S). The valency inG j (S) of any vertex in Rib(S)
is 2: it has one edge labelled 0 and one labelled 1. For a vertexx ∈ D j (λ/µ) the valency
is at most 2 (at most one edge with either label), which value is assumed if and only if
x ∈ (λ \ µ) ∩ (sj (λ) \ sj (µ)). If for x ∈ D j (λ/µ) there is an edge labelled 1 toξ , and an
edge labelled 0 toξ ′, with ξ ′ 6= ξ , thenξ ′ is called thesuccessorof ξ for sj . The subset of
vertices inD j (λ/µ)with no edge labelled 1 will be denoted byd−, which is the disjoint union
of d−o = λ \ sj (λ) andd−i = sj (µ) \ µ, and the subset of vertices inD j (λ/µ) with no edge
labelled 0 byd+, which is the disjoint union ofd+o = sj (λ) \ λ andd+i = µ \ sj (µ).

A chain will be calledopenif it has some vertex with valency less than two, andclosed
otherwise. Of the vertices with valency less than two in an open chain there is one ind−,
called the starting square of the chain, and one ind+, called the ending square of the chain;
when these coincide the chain contains no ribbons, and is calledempty. A closed chain either
consists of a ribbon and a square linked by two edges, in which case the chain is calledtrivial,
or of a single cycle containing at least two ribbons.

For any chainC in S for sj , a new tableauS′ can be formed by moving the chainC. It is
obtained by modifying each partitionλi of the saturated chainλ0 <r · · · <r λ

k in (P,≤r )

of S as follows: each square that occurs as a vertex ofC and is a corner or cocorner ofλi is
removed from, respectively added to,λi . This means that a ribbonξ ∈ Rib(S) changes if and
only if it occurs inC, in which case it is replaced by the corresponding ribbonξ ′ ∈ Rib(sj (S)),
i.e., the square joined inC to ξ by an edge labelled 0 is removed from it, and the square joined
to it by an edge labelled 1 is added. It is easily verified thatS′ is indeed a standardr -ribbon
tableau. In the cases whereC is an empty or a trivial chain, the ribbons ofS′ and their entries
are the same as forS; however,S′ = Sholds only ifC is a trivial chain, since for empty chains
the shapeλ/µ is replaced by another shape, although the skew diagramλ \ µ containing the
ribbons does not change. Because distinct chains inS for sj are disjoint, the operations of
moving them commute mutually, and moving all of them givessj (S). After moving a chain
in S for sj , its modified ribbons again form a chain forsj , and moving that chain gives backS.
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We have seen above how chains can be located by finding for each ribbon the square connected
to it in G j (S) by an edge labelled 1; one may also work in the opposite direction, and find for
each squarex ∈ G j (S) \ d− the ribbon connected to it by an edge labelled 1. Excluding the
easy case thatx is part of a trivial chain, the choice is either between the ribbons containing
the two neighbouring squares ofx in the outward direction, or those in the inward direction:
if x ∈ d+ only one direction is possible, and otherwisex ∈ ξ for someξ ∈ Rib(S), and
the direction that contains another square ofξ is not considered. The choice between the
neighbours ofx in the proper direction is given by a rule very similar to that ofjeu de taquin:
if there is only one candidate ribbon, it wins, and if there are two candidates, the one with the
smallest entry wins in case of outward neighbours, and the one with the largest entry in case of
inward neighbours. Like the rule forjeu de taquin, this rule just reflects the requirement that
the change preserves the tableau condition. Note that here the shapeλ/µ of S is used only to
determine the set of squaresx to consider in the first place, not in finding the indicated ribbon
for givenx.

4.3. Chains in semistandard r-ribbon tableaux.

PROPOSITION 4.3.1. Let T be a semistandard r-ribbon tableau, C a chain in its standard-
ization S for sj , and S′ the standard r-ribbon tableau obtained by moving C in S. There is
another semistandard r-ribbon tableau T′ with standardization S′ andwt(T ′) = wt(T), said
to be obtained by moving C in T , unless C is a closed chain with exactly two ribbonsξ, η,
with T(ξ) = T(η).

PROOF. Assume thatS′ and wt(T)do not define a semistandardr -ribbon tableau; this means
that there areξ, η ∈ Rib(S)with S(η) = S(ξ)+1 andT(ξ) = T(η), so that pos(ξ) <pos(η),
while the corresponding dominoesξ ′, η′ ∈ Rib(S′) have pos(ξ′) ≥ pos(η′). Because the
positions of ribbons change by at most one when moving a chain, and consecutive ribbons
cannot have equal positions, we must have that bothξ and η occur in C, and pos(η)=
pos(ξ)+ 1= pos(ξ′) while pos(η′) = pos(ξ′)− 1. Therefore,ξ ∪ η = ξ ′ ∪ η′, soC is indeed
a closed chain with{ξ, η} as its set of ribbons. 2

We define the chains forsj in a semistandardr -ribbon tableau to be those in its standardiza-
tion, but the ones excluded in Proposition 4.3.1 will be calledforbidden chains. The proposition
shows that no action of̃Sr on semistandardr -ribbon tableaux can be defined that commutes
with taking the standardization. However, the second part of Proposition 4.1.4 provides a way
to define an action of̃Sr on semistandardr -ribbon tableaux, if one uses the bijections of Propo-
sition 3.2.2 instead of Proposition 3.1.2. This action can also be described as follows, using the
fact that a semistandardr -ribbon tableauT is completely determined by specifying its shape
λ/µ and for each entryi the set posi (T) = {pos(ξ) | ξ ∈ Rib(T) ∧ T(ξ) = i }. Forσ ∈ S̃r

the shape ofσ(T) is σ(λ)/σ (µ) and one has posi (σ (T)) = {σ(p) | p ∈ posi (T)}. The effect
of the generatorssj of S̃r can be understood in terms of moving chains: one can obtainsj (T)
from T by moving all its chains forsj except the forbidden ones. To see this, consider the
list of integers pos(ξ), for allξ ∈ Rib(T) in order of increasing entries in the standardization
of T ; this is just a concatenation of all posi (T) for increasingi , with the elements within each
posi (T) arranged in increasing order. Now the analogous list forsj (T) can be obtained by
applyingsj to each of the the numbers in the original list, except that the elements within each
posi (T)may need to be reordered to keep them increasing. Since|sj (i )− i | ≤ 1 for all i , this
is only needed when posi (T) contains two consecutive numbers that are interchanged bysj ,
and reordering will return this pair of numbers to their original state (beforesj was applied).
Such pairs correspond precisely to forbidden chains inT for sj , and the specialization ofsj (T)
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differs from the result of applyingsj to the specialization ofT only in the fact that the ribbons
of such chains have remained in their original positions inT . We summarize our findings as
follows.

PROPOSITION 4.3.2. There is a weight-preserving action ofS̃r on the set of semistandard
r-ribbon tableaux, such that sj (T) is obtained from T by moving all its chains for sj except
the forbidden ones. Forσ ∈ S̃r we have, using Proposition 3.2.2, that if T corresponds to
(T0, . . . , Tr−1) by the bijection forλ/µ, thenσ(T) corresponds to(Tσ−1(0), . . . , Tσ−1(r−1))

(with the subscripts interpreted inZ/r ) by the bijection forσ(λ)/σ (µ).

4.4. Chains and spin change.For anr -ribbon tableau, the setsd− andd+ of starting and
ending squares of its open chains forsj depend only on its shapeλ/µ. When building up the
tableau by successive addition of ribbons in order of increasing entries, the setsd−i andd+i do
not change (they depend only onµ), while the changes tod−o andd+o are directly related to the
way the set of chains forsj evolves. Initially, when the shape isµ/µ (no ribbons),d−o = d+i
is the set of cornersx of µ with pos(x) ≡ j , andd+o = d−i is the analogous set of cocorners;
there is one empty chain for each element ofd− = d+. Now, assume the shape isλ/µ and a
ribbonξ = λ′ \λ is added; putξ ′ = sj (λ

′)\sj (λ). If pos(ξ)= pos(ξ′), then the only possible
change tod−o or d+o is the replacement of a square by the next one on the same diagonal, which
happens if that diagonal meetsξ ; if so ξ joins the chain starting or ending in that square, and
otherwiseξ becomes a trivial chain. If pos(ξ)6= pos(ξ′), let x ∈ ξ andy ∈ ξ ′ be the non-fixed
squares (so| pos(x) − pos(y)| = r ), and distinguish the cases where 0, 1, or 2 of them lie
in d−o ∪ d+o . If neither of them does, thenx andy are added respectively tod−o andd+o , andξ
starts a new open chain, starting inx and ending iny. If one of them lies ind−o ∪ d+o , thenξ
joins the open chain that starts or ends at that square, which square is replaced by the other one
of {x, y} as element ofd−o or d+o . If both x andy lie in d−o ∪ d+o , thenx is removed fromd+o
andy from d−o , and there are two further possibilities, depending on whether or not the chains
starting iny and ending inx coincide. If they do, thenξ joins that chain and transforms it
to a closed chain; otherwiseξ joins the two chains to a single open chain. When a closed
chain is formed, we say that it moves counter-clockwise if pos(x) < pos(y), and clockwise if
pos(y) < pos(x).

PROPOSITION 4.4.1. Let T be a (semi)standard r-ribbon tableau, and let T′ be obtained
from T by moving a chain C in T for sj , thenSpin(T) andSpin(T ′) are related according to
the following cases.

(1) C is an open chain, with starting square x and ending square y then

(a) either x∈ d−o and y∈ d+i or x ∈ d−i and y∈ d+o : Spin(T ′) = Spin(T);
(b) either x ∈ d−o , y ∈ d+o andpos(x) > pos(y), or x ∈ d−i , y ∈ d+i andpos(x) <

pos(y): Spin(T ′) = Spin(T)+ 1
2;

(c) either x ∈ d−o , y ∈ d+o andpos(x) < pos(y), or x ∈ d−i , y ∈ d+i andpos(x) >
pos(y): Spin(T ′) = Spin(T)− 1

2.

(2) C is a closed chain then

(a) C moves counter-clockwise:Spin(T ′) = Spin(T)+ 1.
(b) C moves clockwise:Spin(T ′) = Spin(T)− 1.

PROOF. This follows by induction on the number of ribbons ofT , using the given de-
scription of the evolution of chains. Letξ, ξ ′ be as in that description; if eitherξ does
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not belong toC, or ht(ξ) = ht(ξ′), there is no change in Spin(T) − Spin(T ′), and the in-
duction is trivial. The cases remain whereξ forms a new chain, closes an open chain, or
joins two open chains; in the first two of these the proposition follows easily. In the final
caseξ contributes±1

2 to Spin(T) − Spin(T ′), and each of the open chains being joined can
be as in 1(a), 1(b), or 1(c), so there are many more cases to distinguish; however, because
these two chains cannot cross each other, the proposition can be established in all cases.2

There is a more intuitive way to understand the proposition. We may draw arrows, as was
done earlier, to indicate the movement of ribbons ofC; for each ribbonξ of C there is an
arrow pointing into it and one pointing out of it (we include an arrow into the first ribbon of
an open chain). Then ht(ξ)changes only if, of these two arrows, one points inward and the
other points outward; if so, it increases when the chain turns to the left atξ , and it decreases
when the chain turns to the right. It then follows from topological considerations that the
accumulated amount of turning along an open chain is, at most, half a turn left or right, in
accordance with the subcases of 1 in the proposition, and along a closed chain it is a full turn
either left or right, in accordance with case 2. Here is an example of a domino tableau with
various chains.

0↓
2
↓

9
↑
7
↑

↘
1
↑

↖
5
→10→ ↖

8
↑4↓

6←3
↑

The chain of dominoes with entries 8, 4, 6, 3 is of type 1(a), the one with entry 1 is of type 1(b),
the one with entries 5, 10 is of type 1(c), and the closed chain with entries 0, 2, 9, 7 is of type
2(a). There are ‘left turns’ at ribbons 4, 1, 0, and 9, and ‘right turns’ at ribbons 6 and 5; at the
remaining ribbons no turn is registered, because there is no change from inward to outward
movement.

4.5. Moving open chains only.

DEFINITION 4.5.1. Let 0≤ j < r and letT be a semistandardr -ribbon tableau;sj ◦ T is
the semistandardr -ribbon tableau obtained fromT by moving all open chains inT for sj .

Clearly, the shape ofsj ◦ T is the same as that ofsj (T). This definition is stated mainly for
future reference; its importance lies in the observation that moving open chains has certain nice
properties, particularly in the case of domino tableaux, that do not hold in general for closed
chains. Proposition 4.3.1 gives a first indication in this direction, as does [6, Theorem 2.2.9],
which states, loosely speaking, that moving open chains in domino tableaux, as well as moving
certain closed ones, commutes with the process of Schensted insertion defined in [5] (see also
[15, 4.2]). An obvious question is whetherT 7→ sj ◦ T defines an action of̃Sr ; this turns out
to be the case only forr = 2.

PROPOSITION 4.5.2. The operations T7→ sj ◦T for j = 0,1extend to a weight-preserving
action ofS̃2 on the set of semistandard domino tableaux.

PROOF. The only relations to check aresj ◦ sj ◦ T = T for j = 0,1, which are obvious.2
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As an example that the Coxeter relations ofS̃r do not hold forr > 2, we display here the
successive stages in the computation ofs2 ◦ s0 ◦ s2 ◦ s0 ◦ s2 ◦ s0 ◦ S for a standard 3-ribbon
tableauS.

S :

0
1

2
3

s0

0
1

2
3

s2

0

1
2

3

s0

0

1
2

3

s2
0

1

2

3

s0

0

1
2

3

s2

0

1
2

3
.

We note some other properties specific to the domino case. Both generatorss0, s1 of S̃2 act
on Z without fixed points, so the cases pos(ξ) = pos(ξ′) above do not occur; there are no
trivial chains, and closed chains always have an even number of dominoes. Since form(ξ)

consists of a single bit, the form of a domino before and after its chain is moved are completely
unrelated.

Any σ ∈ S̃2 has a unique reduced expression, which is a product of generatorss0 ands1
in which they occur alternatingly. If one determinesσ(S) by successive application of these
generators, and tracks someξ ∈ Rib(S) through the successive steps, then pos(ξ)either
increases at each step or decreases at each step; which of the two happens depends on the
original parity of pos(ξ). Loosely speaking, the ribbons are divided into two cohorts, that
march in opposite directions; the interaction between them is limited to sideways movements
(up and down along diagonals). If the reduced expression is sufficiently long, the two groups of
dominoes will eventually pass each other completely, and the domino tableau will be divided
into two parts that are directly related to the tableaux(S0, S1) corresponding toS in the
bijection of Proposition 3.1.2; such a domino tableau is called a segragated tableau in the
following [16]. There, a more important operation is in fact the computation ofσ ◦ S, for
which the use of the reduced expression ofσ is essential. The difference with the process
just described is that, whenever a domino is part of a closed chain, it halts for one step. This
makes it reverse its direction and join the opposite cohort, until possibly it becomes part of
another closed chain at some later step. Since the shape ofσ ◦ S is the same as that ofσ(S),
the domino tableau eventually becomes segragated here as well, but since the occurrence of
closed chains is hard to predict, it is not easy to tell which of the original dominoes will
end up in which part of the segragated tableau. We conclude by displaying such a ‘collision
experiment’.

0

1
2

3

4

5

6

7

8
0

1
2

3

4

5

6

7

8
0

1
2

3

4

5

6

7

8

0

1
2

3

4

5

6

7
8

0
1

2 3

4
5

6

7
8

0
1

2 3

4
5

6

7
8

0

1
2

3

4

5

6

7

8

0

1

2
3

4

5

6

7

8
0

1

2
3

4

5

6

7

8
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Département de Math́ematiques,

40 Avenue du Recteur Pineau,
86022 Poitiers, France

E-mail: maavl@mathlabo.univ-poitiers.fr


	INTRODUCTION
	EDGE SEQUENCES
	STANDARD AND SEMISTANDARD RIBBON TABLEAUX
	AFFINE PERMUTATIONS AND CHAINS IN RIBBON TABLEAUX
	REFERENCES

