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An overview is provided of some of the basic facts concerning rim hook lattices and ribbon tableaux,
using a representation of partitions by their edge sequences. An action is defined for the affine Coxeter
group of typeA, _1 on ther-rim hook lattice, and thereby on the sets of standard and semistandard
r-ribbon tableaux, and this action is related to the concept of chainsiltbon tableaux.

© 1999 Academic Press

1. INTRODUCTION

Rim hook lattices are defined by endowing the Bedf all partitions of natural numbers
with a partial ordering ‘<’ for somer > 0; this partial ordering is generated by the removal
of the so-called rim hooks of length(also called -ribbons) from Young diagrams. Saturated
chains in such a lattice correspond to combinatorial objects known as ribbon tableaux. In this
paper we study the basic properties of ribbon tableaux, using a particular way to represent
partitions, namely by their edge sequences; this leads in a very easy way to a structure theorem
for rim hook lattices (Section 2), and thereby to decomposition theorems for ribbon tableaux
(Section 3). Neither these theorems nor the concept of edge sequences are new, but it appears
that the systematic use of edge sequences to study rim hook lattices and ribbon tableaux is.
From our description we obtain in a natural way an action of the g&uphich is an affine
Coxeter group of typeA,_1, by automorphisms on therim hook lattice, and thereby on
r-ribbon tableaux (Section 4). A detailed study of this action leads to the concept of chains of
ribbons inr-ribbon tableaux, which has been considered previously only for domino tableaux
(r = 2); we derive some basic combinatorial properties of chains and of the operation of
moving them in the ribbon tableau.

The purpose of this paper is twofold. In the first place we wish to provide a self-contained
introduction to the theory of ribbon tableaux, giving simple proofs of all the basic facts. In the
second place this paper is a preliminary to a forthcoming paper [16] on domino tableaux: we
collect here all definitions and results needed there for domino tableaux that are valid in the
more general setting ofribbon tableaux.

Elements ofN x N will be called squares, and correspondingly displayed, using the matrix
convention that the firstindex increases downwards, and the second index to the right. The term
inward will be used throughout to mean ‘to the left and/or upwards’, and similautyvard
means ‘to the right and/or downwards’; a typical use is to discriminate between inward and
outward slides fojeu de taquin.

We shall denote the set of all partitions of natural number® bipepending on the context,

a partitionr € P will be either considered to be a weakly decreasing sequéngces, .. .)

of natural numbers, or will be identified with the corresponding Young diadr@nj) €

NxN | j < Ai} (asetof squares); the latter always applies when set theoretic notation such as
@, j) € »is used. The empty partitiofd, O, . . .) will be denoted by, the cardinality) ; A

of the Young diagram. by |A|, and its transpose By/". For, 1 € P the use of the notation

A/ will imply that o € A, but otherwise it is just a formal symbol; it is related to the skew
diagrama \ u (set theoretic difference of Young diagrams), but that set alone might fail to
determine. and .
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2. EDGE SEQUENCES

We associate ta € P a doubly infinite words (o) over the alphab€f0, 1}, called itsedge
sequence. It describes the shape of the boundary of the (connected) region occupied by the set
of squareN x N\ 1, as a sequence of vertical and horizontal line segments (of length 1) going
from bottom-left to top-right, where 1 represents a vertical segment and each 0 a horizontal
segment. For instance, far= (3, 3, 1) the part of the boundary near the origin looks like
this:

We therefore havé(A,) = (...111010011000...), where the ' is a reference mark
indicating the point where the boundary crosses the main diagonal. The individual terms of
an edge sequence will be referred to abits. Formally§ (1) is a magZ — {0, 1} defined by

1 ifde{r —i—1]ieN},
s)() = {o ifde{jl—ktjrl j €Ny, @

(the two conditions are easily seen to be complementary);|tineark separates the indices
d < 0 from the indicesl > 0. We shall denote the edge seqeti@® = (...111000...)
of the empty partition by, so that

0@ =[5 facn, @
We define
FD = {f:Z — {0,1} | f(d) = 8o(d) for all but finitely manyd} 3)

(the sequences at finite Hamming distance fégJnthens is an injectior’ — FD. Moreover,
for any i € P, the differences betweexir) andsg are evenly distributed between both sides
of the ‘|’ mark: there aré{i € N | (i, i) € A} differences on either side. In fact, if we define
for f € FD its ‘displacement’ as

d(f) = Z f(i) —do(i) ={d=0] f(d) =1} —[{d <0O]| f(d) =0}|,
| EZ

then the imageé (P) of P in FD is precisely{f € FD | d(f) = 0}. There is an action
of Z on FD by translations, given b, (f)(i) = f(i — n); informally speakingt,(f) is the
same sequence ds but with the reference mark’ ‘shifted n places to the left. One has
dt,(f)) = d(f) +n, sos(P) is a set of representatives of the orbits of this action, which
means that if a sequence without a reference mark is given, there is a unique way of inserting
it to obtain a sequenci ) for somei € P. Abusing the notation somewhat, we shall write
8~Y(f) = aforany f € FD in the orbit of5(1), i.e., in applyings—* we allow relocation of
the reference mark if necessary.

REMARK. Clearly §(A) records information about the Young diagramby diagonals’
rather than by rows or columns. Individual edges, however, do not lie on diagonalbwf
in between two successive ones. As the diagonal of a squgreis naturally labelled by the
integerj — i, the most natural indexing set for the bitssgf) would seem to b& + % rather
thanZ. On the other hand, it is convenient to have the structut2 abailable, such as the
mapsZ — Z/n. The natural order-reversing involution @fin this context is — —1 —1,
which interchange® andZ \ N, rather than +— —i.
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2.1. Other concepts related to edge sequend@ge finds in the literature various concepts
thatare more orless equivalentto edge sequences, inthe sense thatthey are in bijection by means
of a straightforward translation witfD, or with some subset or its set of translation orbits. For
the convenience of those acquainted with these concepts, we shall mention some of them, and
detail the pertinent bijections. We shall start with various concepts mentioned in [12], some
of which also occur in [8, 2.7], see also [13]. First, one associates to a paitiobtengthl
(i.e.,l = Ag) the set of its ‘first column hook lengthX;, = {xj +1—i—1]i =0, ...,1 =1},
which equals§(1)~1(1) + 1) N N (note that the shift is such that 0 is the smallest integer
absent froms(1)~1(1) +1). Forr > 0 the set)(;rr ={X4+r | xe X}U{0,...,r =1}
is defined, which is simplys(1)~1(1) + 1 +r) N N. Each of these sets is a so-call@det
(a finite subset oN), and from anys-setX one recovers. asé—2(f), wheref e FD is the
characteristic function of the s&t U (Z \ N). The concept of ‘partition sequences’ (which
are doubly infinite words ovef0, 1}) is almost equivalent to our edge sequences, with two
differences: the rbles of 0 and 1 are interchanged, and, as no formal definition of (equality of)
doubly infinite words is given in [12], partition sequences seem to correspond to translation
orbits inFD. Olsson [12] also defines partition sequences with a ‘cut’, which is similar to
our reference mark”, but is used for a rather different purpose (namely to define Frobenius
symbols).

The ‘Maya diagrams’ of [3, Section 4] are introduced as sequences, index&d ofy
black and white squares, such that all squares at sufficiently negative indices are black, and
those at sufficiently positive indices are white; this is exactly equivalent to our definition
of FD. The objects formally representing Maya diagrams are not rdaps {0, 1} however,
but permutationsn of Z that have no descent except possibly betwednand 0: one has
m(i) > m(@ — 1) foralli # 0. Any f € FD uniquely determines such a permutation, whose
respective restrictions are the order-preserving bijectibn® — f~1(1) andN — f~1(0);
conversely one recovers fromm by f = 8o o m~1. The ‘charge’ ofm is defined as
limi_ +oo M(i) —i, which is equal ta ( f ). Each Maya diagram determines an ‘infinite Young
diagram’ (a subset & x N), which encodes a finite Young diagram together with the charge of
the Maya diagram; this corresponds to the fact that FD is determined by —( f ) andd( ).

2.2. Removal of hooksThe basic attributes of the Young diagrancan be read fronf =
8(1); the main concept used to do this is that of tle®k. There is a hodk associated to each
squarg(i, j) € A, namelytheset = {(i, j)) e A | j/ = jIU{(i’, j) € A | i’ > i}; the number
|h| is called its length. The segments of the boundary thfat cross the ends of colunjrand
of rowi, respectively, correspond to the bitssgh) at indicesk = j — AV andl = Aj —i — 1;
we havek < | (in factl — k = |h|), §(A)(k) = 0, ands(»)(I) = 1. Moreover, any such pair
(k, 1) comes from a unique hodkof A. Therefore we define a hook df € FD to be a pair
(k,l) withk <1, f(k) =0,andf () = 1, and call — k the length of this hook. We also
define| f | to be the number of hooks df, so thatis(1)| = |A|.

Given a hooklk, I) of f € FD, we define another sequentéc FD by interchanging the
bits at indicesc andl: f'(k) =1, f’(1) =0,andf’(i) = f()fori ¢ {k,1}; f’is said to be
obtained by removing the hodk, |) from f. One hagl(f") =d(f)and|f'| = |f|—( —k)
(fork < i <, either(k, i) or (i, ) is a hook of f, but not of f’). If f = §()) andh is the
hook of » corresponding tgk, 1), theni” € P with §(2') = f’ can be obtained by removirg
from A, and then shifting the subsigt’, j’) e A | i’ > i A’ > j} of the remainder one square
up and to the left. The difference set A’ is a connected sequence of squares along the outer
rim of &, with the same number of elements and the same end poihtstas called therim
hookof A corresponding td, and)’ is said to be obtained fromby removing this rim hook.
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If |h| = 1, then the square dfis called acornerof A, and acocornerof ’.
[TTTT1 [TTTT] [[TT1] [TTT1

S H o il =

hook  (.110010(10010D10Q) (.1100110/10010M100Q)

Forr > 0 we define a partial ordering<,’ on FD, which is generated by relations

f’ <, f wheneverf’ is obtained fromf by removing a hook of length. Clearly f’ <, f
impliesd(f’) = d(f), and each translatiap is an isomorphism of the posétD, <;). The
corresponding partial ordering dh is also denoted by<,’, and is generated by’ <; A
wheneven'’ is obtained fromi by removing a rim hook of length the posetP, <;) is called
ther-rim hook lattice. The ordering ‘£ on P coincides with the ordering ‘C’ defined by
inclusion of Young diagrams, so the 1-rim hook lattice is just the Young latiice). Whereas
(P, ©) has a unique minimal elemeft any translateq (5p) of §(¥) is minimal in (FD, <1),
and for anyf € FD one had4(sp) <1 f withd = d(f). Hence the connected components
of (FD, <1) are the fibres of the surjectiahFD — Z, each of which is isomorphic to the
Young lattice(P, ©).

Returning to the case of arbitrary> 0, defineS :FD — FD' by splitting up the bits of a
sequence € FD intor subsequences, according to the congruence class modftlineir
indices:

[T

ﬁm hook

S(f)=(cor(f),cor(f),....c—1,(F)), wherec; r (f)(n) = f(nr +1i).

If f’is obtained fromf by removing a hook of length, then S () differs from S (f)

only in one component; ; (f’), and there the difference is the interchange of two adjacent
bits, i.e., removal of a hook of length 1. It follows th&t is an isomorphism of posets
(FD, <r) — (FD, <1)". Therefore, the connected componentgkid, <, ) are the fibres of
the surjectiod":FD — Z' defined by

d"(f) = (d(cor (f)),....dG—1r (1)),

each of which is isomorphic tgP, ©)". In the fibre abovédy, ..., dr_1) € Z", the minimal
element is‘a?l(td0 (80), - ... tg,_,(80)). It follows easily from the definition ofl that the sum
of ther components of” ( f) equalsd( f) forany f € FD; therefore§ is a posetisomorphism
from (P, <;)tothe subposet@fD, <) formed by the fibres af” above pointsgdo, ..., dr_1)
with Zi;é di = 0. Denoting the set of minimal elements(@, <) by C;, whose elements
are called -cores, we have

P.<n=[[@ o @

reCr

Ther-corey in the connected component of some (P, <;) can be found as as follows.
First compute(do, ..., dr—1) = d"(8(1)), theny = §71(S (4, (80), - . ., tg_,(80))). In
terms of the edge sequende= §(1) this amounts to sorting the bits in each subsequence
Gi r () separately, removing all its hooks, so as to arrivé(ab in which no hooks are left
within any such subsequence. In the component labelled at/the right-hand side of (4),
2 corresponds to antuple (2@, ..., A"~D) ¢ P' called itsr-quotient. Its components are
given bya®) = (S—l(q_,r ) fori =0,...,r — 1, where the convention mentioned above
comes into play — thas~1 will first translate its argument int&(P). It can be seen that
these methods of computing thecore and -quotient ofa are simplified forms of the abacus
construction in [8, 7.2]; different (though equivalent) methods given in [4] (for thecase)
only) and in [2].
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There is an alternative way to compute the ntap §:P — Z". For i e P define the
Laurent polynomial diag(A)= »_ j)e; X' ™', which counts the squares afby diagonals
(the sequence of its coefficients is called a ‘fairy sequericén [4]). Thend" (5(1)) will be
the sequence of coefficients of the imagebf x~1) diag(r)in Z[x]/(1 — x") (this follows
either by an easy induction or|, or directly by considering the contribution of two successive
diagonals numbered i + 1 to the coefficient ok' ™4™, In particular, ther-core ofx is
determined by the image of diag(in Z[x]/(1 — x") (i.e., by counting the squares [off by
diagonals modulo), cf. [8, 2.7.41].

An example may illuminate our constructions. Consider the case andi = (8,6, 6,6,
5,4,1). We draw the Young diagram af determine the edge sequente= §(1), the three
sequencesy 3( f), c1.3(f), c2.3(f) constitutingS( f), and the values a applied to them:

L] d(x): 11101000100111001000 d
C0.3(8(1)): 1 1 0 1 1 0 0 +1
€1,3(8(A)): 1 0 1 0 1 1 0 +1
C23(8(A)): 1 0 0 1 0 0 -2

From this we see that®(8(1)) = (1,1, —2), and it follows that the 3-corg correspond-
ingtoxiss1(...1101101100...) = (2,2,1,1). The components of the 3-quotient
(WO, 2D 1@) of 1 are computed from the subsequences(§(1)) in the table: A©@ =
§71(...1101100..) = (1,1), 2@ =s1..1010110...) = (2,2,1), andr@ =
§71(...1000100Q..) = (3). Graphically we have

y: EE‘, AN\ y: , 2@ H, AD: ﬁ;\, A2 CT17.

If one tries repeatedly to remove rim hooks of length 3 fiomany order, then one will indeed
find thatitis eventually reduced §q which has no further rim hooks of length 3; the rim hooks
that were removed form atiling of\ y. Using the alternative method of finding(5 (1)), one
would first compute diag (A= X 4+x 5+ 2x 4 4+3x 3+ 4x 2+ 4x 1454 4x +4x%+-3x3+
2x44+x54x84+x7, multiply by 1—x~1 to obtain—x =" —x 5 —x "4 —x 3 —x" 1+ 14-x%4+-x3+
x*+x7 (the relation of this polynomial t§(1) = (...11101000100111001000..)

is easy to perceive), and determine its image £ — 2x2 in Z[x]/(1 — x3) is, which indeed
givesd3(s(1)) = (1,1, —2).

2.3. Distribution of r-core sizesIn the isomorphism (4), adding a hook of lengtto 1 (the
left-hand side) corresponds to adding just a single corner from one of the partitibo$its
r-quotient (the right-hand side); therefdig = |y| +r 3, [»)|. We have indicated above
how ther-corey can be found, buty| can be expressed directly in terms of the parameters
(do,...,dr—1) = d"(8(1)). We have seen thaly) is formed by splicing togethar copies

of 8o, with copyi translated oved;; therefore,|y| = |5(y)| can be computed by counting
hooks in this sequence. We obtain

di — d;
yl= > ( ) ‘), (5)
O<i<j<r

the summand counts the hoalks|) of §(y) with eitherk = j andl =i (in cased; > d;), or
with k =i andl = j modulor (in cased; < dj; note that(di ;dj) = (1*d2+di)). Sinces(y)
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has no hooks of length divisible bry all hooks are counted. Using the fact thaf d; = O,

the formula simplifies to
r r—1 rfl.
|V|=§<Zdi2>+z|di (6)
i=0 i=0

(cf. [7, Bijection 2]). Forr = 2 there is only one parameter, so we may wige= —d; = d,
and gety| = (sz) =2d?—d. Since(_ZZd) = (2d2+1), we see that all triangular numbers occur
exactly once as the size of a 2-core; indeed the 2-cores are precisely the ‘staircase’ partitions

of the form(k, k —1,...,1) fork > 0.

3. STANDARD AND SEMISTANDARD RIBBON TABLEAUX

3.1. Standard ribbon tableauxAs is well known, saturated chains ({®, ) correspond to
standard tableaux (see, for instance, [15]). The corresponding concépt, fer) is that of
r-ribbon tableaux.

DEFINITION 3.1.1. Letr > 1 andx, u € P; a standard-ribbon tableals of shaper/u
is a saturated chaip = 2% <, A1 <; .-+ <, AK = 1 in (P, <), together with &-element
totally ordered se. The set of skew diagrania' ™2\ Al | 0 <i < k} is denoted by RitS),
and its elements are called ribbons ®f The symbolS is also used to denote the unique
bijection Rib©) — Awith S(*1\ A1) < S(I*1\ 1)) whenevei < j, andS(é) is called
the entry of¢ in S, for & € Rib(S).

Ribbon tableaux are sometimes called rim hook tableaux, but notg th&ib(S) need not
be a rim hook ofx, only of some\'. By itself a ribbon of any standardribbon tableau is
called arr -ribbon, or in case = 2 alternatively a domino; 2-ribbon tableaux are also called
domino tableaux.

NOTE. Althoughthe same symbolis used, we do not iderfifyith the bijection Ribg) —
A, which determines \ « but not necessarily andu themselves. The distinction is necessary
because we shall perform constructions that require explicit knowledgemd ... The price
we pay is that our tableaux cannot be translated in the plane, or involve squares Nutsitde

We shall display a ribbon tableaux by drawing each ribbon with its entry placed in it. Unless
the shape./u is explicitly given, this leaves some ambiguity (even about the location of the
origin), but in such cases we shall assume hdias the smallest possible value. Here, for
instance, is a standard 3-ribbon tableau of the sh@peén the example given earlier, and with

set of entriesA = {0, 1, ...,9}.
0 7
1

8

2
4
3| [ 1]
6

We now introduce some terminology related to individual ribbons. &.et v \ v’ be an
r-ribbon, thens (V") is obtained frons (v) by removing some hookk, |) of lengthl — k =r;
we writel = pos(&), and call it theositionof £&. We have

pos(§)=max{j —i | (i, ]) € &},
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the number of the rightmost diagonal meetigin particular forr = 1, the position of a
square is just the number of the diagonal on which it lies. We also defin@timeof ¢ to
consist of the bits o (v) (or equivalently ofs(v")) at the indices betwednandl:

form@) = )k +1),...,8w)1 — 1)) e {0,1) L.

The bits of forni¢) describe for each pair of successive squares whether they are hori-
zontally or vertically adjacent. For= 2 we call the two possible forms of dominoes simply
horizontal (form(&)= (0)) and vertical (forng) = (1)). Finally, we define théeightof &,
written ‘ht(¢)’, as the sum of the bits of for), in other words the number of vertical
adjacencies among the square§ jior one less than the number of rows that nieet

PrROPOSITION 3.1.2. Letr > 0, A, u € P with u <, A, and A a totally ordered set with
M\l =r]ALlet WO, A Dyand(n @, ..., 1"—D) be the r-quotients of andy, and
let d" (8(A)) = d"(8(w)) = (do, ..., dr_1). There is a bijection between the set of standard
r-ribbon tableaux S of shape/u with entries in A, and the set of r-tupléSp, ..., S—1)
of ordinary standard tableaux, where 8as shape.!) /1), and the sets of entries of the S
are mutually disjoint, and unite to A. If x is a squarexd? \ 1, then $(x) = S(¢) for a
& € Rib(S) with pos(&)=r (posk) + di) +1.

PROOF. The existence of the bijection is immediate from (4): e&&h ..., S_1) corre-
sponds to a saturated chain(®, <) from (u©@, ..., u" D) to W@, ..., A"-D). Since
Gir(8(1) = tg (8(11))) by the explicit description of the isomorphism (4), a&it®)() is
equal toci r (§(A))(I + di), which in turn equal$ (1) (r (I + di) + i); from this the relation
between pos() and pos(& ¥ollows. ]

For the case of an emptycore (i.e.,d; = O for all i) our bijection coincides with the map
IT of [14, Corollary 23]. As an example, consider the tabl&depicted above; we have
A= (8,6,6,6,5,4,1)/(2,2,1,1) so that.@ = (1,1), AV = (2,2,1), andr® = (3),
all u® aref (sincep is a 3-core), and3(5(1)) = (1,1, —2). The successive ribbons have
positions 34,1, -2,0,—4,—1,7, 2,4, so that entries 0 and 4 will end up$ with positions
0 and—1, entries 1, 2, 3, 7, and 9 i& with positions 0,—1, —2, 1, and 0, and entries 5, 6,
and 8 in$ with positions 0, 1, and 2; we find

. 9] .
S , Si

3.2. Semistandard ribbon tableauxn analogy of the situation for ordinary tableaux, we
define, in addition to standard domino tableaux, semistandaittbon tableaux, in which
multiple occurrences of the same entry are allowed. They will allow a decomposition similar to
Proposition 3.1.2, but without the condition of disjointness of the sets or entries. In combination
with the fact that the generating function of all ordinary semistandard tableaux of given shape
and range of entries, weighted by the multiset of their entries, is a Schur function, this will
imply that semistandand-ribbon tableaux satisfy a similar generating function identity.

In view of the desired decomposition, we shall base our definition of semistandidabn
tableaux on theistandardization, rather than on (weak and strict) monotonicity conditions
for rows and columns, as is usually done for ordinary semistandard tableaux=£f@ such
a definition is still possible (however, see [2]) and it is equivalent to the one we shall give).
Loosely speaking, the standardization of a semistandard tableau is a standard tableau obtained

7

o, s [5[6[8]

|00l’\)|—‘




186 M. A. A. van Leeuwen

from it by renumbering its entries such that the relative order of distinct entries is preserved,
and equal entries are made increasing from left to right. A condition is needed to ensure that
there is a well defined left to right ordering among ribbons with equal entries: we require such
ribbons to have distinct positions, and ordering them by increasing position should give a valid
standard tableau. For ordinary tableau this is equivalent to requiring weak increase of entries
along rows, and strict increase down columns.

DEFINITION 3.2.1. Let a standard -ribbon tableauS of shapei/u with entries{i € N
| i <k} be given, and a sequenee= (mp, my, ...) with allm; € Nand)_ m; = k. These
define a semistandarefibbon tablead of shape./u, with foreacht € Rib(T) the entryT (&)
defined as the uniqug € N such that2i<j m; < S¢) < Zisj m;, provided that for all
£,& e Rib(T) with T(¢) = T(&) andS(§) < S(&'), one has pag) < pos(£). In this case
Sis called the standardization ©f andw its weight wt(T'), and we define Ribi{) = Rib(S).

In the literature the weight is also called content or evaluation. Our definition is equivalent
to the one in [9, Section 4]. We shall write Tab/u) for the set of semistandardribbon
tableaux of shapk/u, and Tab(i/u; A) for its subset of tableaux whose entries lieArc N.

Also, for any weightv = (mgp, my, . ..) we shall writex® = [7; ximi ,whereg{x; | i € N}isaset
of commuting indeterminates. Here is an example, giving a semistandard 4-ribbon tableau
of shape(7,7,7,7,7,5)/(4) with x™T = x?x3x2:

3 1

1 [ ] 1 [
S= 2 ., ©=1(0,4,3,002), T= 1 .
7 g > 5 15
[ 2

4 |
| 5

PROPOSITION 3.2.2. Letr > 0, andx, u € P with u <y A; let W@, ... 20Dy and
@, ..., u"D) be the r-quotients of and . There is a natural bijection between the set
of semistandard r-ribbon tableaux T of shapgu, and the set of r-tuple€ly, ..., Tr_1) of
ordinary semistandard tableaux, with ®f shaper® /™, and Zir;é WH(T) = wi(T). If
S is the standardization of T, so thatél) = f(S(&)) for an appropriate weakly monotonic
map f, and S corresponds under the bijection of Proposition 3.1(&o..., S_1), then
Ti (x) = f(S (%)) for each square > A0 /@),

PrROOF. The final sentence completely determines eaco it will suffice to show that these

T; are semistandard tableaux, and that the correspondence is invertibbe, yLetA® /@

be such thafl; (x) = Ti(y) and S(x) < S(y), and definet, &’ € Rib(S) = Rib(T) by

S(€) = S(x) andSE") = S(y). ThenT(§) = T(&'), so that po&) < pos(§), while
pos(&)= pos(¢) = i modulor ; therefore by Proposition 3.1.2 we have pos< pos(y), and

T is semistandard. For invertibility we need to order all the occurrences of the same entry in
any of the tableauj, in order to determine th&; Proposition 3.1.2 makes clear that these
occurrenced; (x) should be ordered by increasing value gosk) + d;) + 1. O

As an example, the semistandard 4-ribbon tablBalisplayed above corresponds to

1|2
T (A5 Te (A1 T 2. T .
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COROLLARY 3.2.3. Letr > O, letix, u € P with © <, A and respective r-quotients

QO A Dyand (@, ..., "Dy, and let A be a finite initial subset of. One has
r—1
XM — l_[ S0/ (XA),
TeTabh (A /u; A) i=0

where s, (xa) denotes the skew Schur function fgy. in the indeterminategx; | i € A}.

PrROOF. Proposition 3.2.2 reduces the general case to the well-knownrcasel ([10,
I (5.12)]). a

3.3. Signs and spinsPropositions 3.1.2 and 3.2.2 translate many properties of ribbon tab-
leaux in a trivial way to those of ordinary tableaux. However, the values(rand ht(&)for

& € Rib(T) cannot be easily expressed interms of the tabl@aux ., T, _1 thatT decomposes

into and, in particular, the quantiy’; .ginr, ht(§) provides an interesting statistic.

PROPOSITION 3.3.1. The parity of) ; .ginr) ht(§) is constant on each s&aly (A /).

PROOF. Fix r, and definingV (1) = §(\)"1(L) = (& —i —1|i e N}, let f/:V(w) —
V (1) be defined by the condition that for each congruence &as®dulor, the restriction
of ;. toV (u)NCis an order-preserving bijection oritgA) NC. Itis clear that for any chain
w=210< < ... < AK=xrin (P, <) one hasf; ,, = f)»k/)\k—l 0---0 f)\z/)hl o f)Ll/AO,
and that ifs \ u is anr-ribbong, then the number of inversions &f,, (i.e., pairs < j with
fryu() > fo/.()))is hi(€). Since for composition of bijections between totally ordered sets,
the parity of the number of inversions is additive, the proposition follows. O

DEFINITION 3.3.2. For u <y A and T e Tak(x/w), the spin of T is Spin(T) =
3 Y e cribr) (&), and ther-sign of A/ is & (A/p) = (—1)*SP"®), which is independent
of T by Proposition 3.3.1.

This spin statistic generalizes the one defined for domino tableaux in [2, Section 3]; a
discussion of -signs can also be found in [11, Section 2]. Spinlies inN or in N + %
according ag, (A/u) is +1 or —1, and a lower bound for it is half the number of inversions
of the mapf,,, in the proof above.

4. AFFINE PERMUTATIONS AND CHAINS IN RIBBON TABLEAUX

4.1. Action of the affine Coxeter group of tyBe_1. From this point on we shall assume

r > 2, and all congruences mentioned will be modulé-rom the isomorphism (4) it follows
that the posetP, <;) has very many automorphisms, in fact continuously many. We shall
consider here a subgroup of automorphisms that is of particular interest.

DEFINITION 4.1.1. § is the group of permutationsof Z which preserve, for any systefn
of representatives ¢t /r, the sum of its valuesy - S= Y o (9).

By replacing one representative by another, we seestiat r) = o (i) +r foralli € Z,
so thatr maps congruence classes to congruence classeS; @nthdeed a group; moreover,
its action onZ induces an action o /r. Every bijections:S — S between two systems
of representatives df/r with > S = 3" S can be extended to a uniqaee S by using
o(i +r) =0o(i) +r. The groupS is isomorphic to the affine Coxeter group of type_1,
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see [1]. This is the group with generatess s, ..., S -1, subject to the relatiors,? = efor
alli, ss; =sjs for j #i 41, andifr # 2 alsossjs = sjss;j for j =i £ 1. In aslight
deviation from [1], we take fos the element of; that interchangeis— 1 andi, and fixes all
other congruence classes; the Coxeter relations are verified immediately.

PROPOSITION 4.1.2. The groupS acts on(FD, <,) by automorphisms; the action is by
permutation of the bitsio (f))(i) = f(o~1()) foro € S, f e FDandi € Z. One has
d(o(f)) =d(f)forallc € § and f € FD, so the restriction td(P) induces and action
of § on (P, <) by automorphisms.

PROOF. We haver (f) € FD becauséo (i) —i| is bounded for any € S ; to see that the
action ofo is an automorphism afFD, <;), it suffices to check that if ' is obtained fromf
by removal of a hooki,i + r), theno (') is obtained frono (f) by removal of the hook
(o(i),o( +r1)) =(o(i),o(i)+r). The fact thad is an invariant of the action is shown by
verification for each of the generatags O

Let us describe the action of a generaspron 7 more explicitly. For anyi = j, the
interchange of the bits @f(1) at indices — 1 andi has no effect unless these bits differ, i.e.,
unless\ has either a corner or a cocorner in diaganélso, the effect is to remove the corner,
respectively, to add the cocorner. Neyvperforms this operation for all diagonals congruent
to j at once, s®; (1) is obtained fromi by removing those of its cornecs and adding those
of its cocornerg, that have pos(c= j.

PROPOSITION 4.1.3. If 0 € S, andx € P haslr—corey and rl—quotieni(x(o), AU
theno (1) has r-cores (y) and r-quotient(x( O . A "(—=1)) “interpreting super-
scripts toA as elements of./r.

ProoF. This follows immediately from (the explicit description of) the isomorphism (4).0

The action ofS; onP can be restricted t6; ; the generators act as follows in terms of the

parametrization provided by o § : G — Z'. Lety € C; have parameter&l, ..., dr_1),
thens;j(y) has parameter@l, ..., dj, dj_1,...,dr_1) if j # 0, whilesy(y) has parameters
(dr_1+1,ds, ..., dr_2 dg—1). Therefore this action & onC; corresponds precisely to the
standard action & by affine transformations of the root lattice of the Weyl group of tpe .
In particular, the action is transitive, and since the stabilizérefC; is (sy, ..., 5-1) = &, it
gives a bijection betweaf andS; /S . Itis shownin [1, Theorem 6.3] that partial orderirg *
on C; corresponds to the Bruhat order 8/S; (the ‘unit increase monotonic functiog
corresponding ter isgiven byp(j) = |{i € Z |i < ] —1A8(y)(i) = 0}]).

PROPOSITION 4.1.4. The action o, on (P, <,) induces an action on standard r-ribbon
tableaux, such that € S sends standard r-ribbon tableaux of shapgu to standard r-
ribbon tableaux of shape (1)/o (1), with the same set of entries; if the chain(R, <)
of a standard r-ribbon tableau S i&® <, --- <, AXin (P, <), theno (S) has the chain
oA%< - < (N, Using Proposition 3.1.2, if S corresponds (&, ..., S—_1) by
the bijection fori/u, theno (S) corresponds tdS;-1q), - - -, S,-14—1)) (With the subscripts
interpreted inZ/r) by the bijection fofo (1) /o (10).

Since the ribborg = A1 T1\ A" € Rib(S) corresponds to the ribbart = o (A1) \ o (A1) €
Rib(c (9)), it seems that acts independently on each individual ribbon. However, this is not
true, since ribbons are just skew diagrams, ang does not uniquely determiné anda! +1;
for other pairs of partitions, v/ with & = v \ v’ one may have (v) \ o (V') # &'.
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To better understand the situation, consider the casesthsita generatos;. From the
description of the action afj on P it follows that for any squarg with posi) # j, one has
x € Aifand only if x € sj(1), and thereforex € £ if and only if x € &’; we shall call such
squaredixedfor sj. All but one of the squares df are fixed, s&’ can only differ fromé
by the replacement of its non-fixed square by another one. Nog@pes s;j (pos(£)), which
differs from pos(&)if either pos(é)= j — 1 or pogé) = |, so if this non-fixed square lies at
one of the ends of the ribban it will be replaced by a square at the other end; otherwise the
only possible change is the replacement of a square by another one on the same diagonal. In
the latter case forg’) is, in fact, obtained from form(éby interchanging two adjacent bits,
and the indicated change happens whenever these two bits differ; in pagidsldetermined
by & alone. In the cases where po9(& pos(§), the bits of form(® are those of form(§)
shifted one place left or right, with a bit disappearing at the side of the non-fixed squgre of
and an unrelated bit appearing at the other end. This new bit is what rhakepend on
AI+1/41 in this case, rather than just gn

The new bit that enters into forg) is a bit of §(A1 1), just outside the hoolk, I) whose
removal leads té(1') (sol = pos(&)andk = | —r): itiss(AI 1) (1 4+ 1) if pos(&)= j — 1, or
ST (k — 1) if pos(&) = | (this bit is unaffected by the hook removal, so one may replace
A+ by A" in these expressions). In this situation we definefisked-end squaref & to be
the square at the opposite endéoés its non-fixed square, and thiscriminant squaref &
to be the next square in the same anti-diagonal in the direction awayfromn, one place
above and to the right of the fixed-end square if pos££) — 1, or one place below and to the
left of it if pos(£) = |, like the fixed-end square, the discriminant square is fixed;foiThe
value of the new bit o’ is determined by whether or not the discriminant squasés lies in
N x N\ A'. If x € & for somegg € Rib(9), then this question is equivalent 8&g) > S(¢);
otherwisex ¢ A \ u, and the question is equivalentxoe N x N\ A (here the shapg/u
of Sis explicitly used). If in the former case the ribbahandég are adjacent along at least
one edge, then this adjacency already determines wh8ther > S(¢), so a comparison of
entries ofSis needed only it and&p are non-adjacent; in that case, the discriminant square
of ¢ is also the fixed-end square &f andvice versa.

As an example we take the 3-ribbon tabl&shown before, anfl = 0. For eact§ € Rib(S)
with &” - &, we draw an arrow either from the non-fixed squaré @f pos(&’) = pos(€)), or
from the fixed-end square &f(otherwise), to the square &1\ £. We have similarly drawn
arrows insy(S) for the reverse transformation.

Loy N
2

I
s T4 89 %0 819
3 -+
3 [ 7T|46¢
5 +» 6
. 5 <«

Of the ribbonst € Rib(S) with pos(¢) = 1, the straight ones (with entries 2, 7 and 9) are
unchanged, while for the bent ones (1 and 3) the middle square moves within its diagonal. The
ribbons 5, 6 and 8 with p@s) = 2 move one place to the top right; the ribbons 0 and 4 with
pos(£)= 0 move to the bottom left. The discriminant squares of the ribbons with entries 0, 4,
5, 6, 8 lie in the ribbons with entries 2, 5, 4, 8, 9, respectively; the ribbons whose entries are
compared are non-adjacent only for the entries 4 and §(9) the ribbons with entries 0, 5,

and 6 have a discriminant square that does not lie in any ribbon; for the ribbon with entry 5,
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the effect of applyingp cannot be determined from the display of the tableau alone (without
indication of the origin or of the shape/ v of the tableau).

4.2. Open and closed chains of ribbonBrom the discussion above it can be seen that it may
be possible to obtain a valid ribbon tableau fr@iy replacing only a subset of its ribbons

by their corresponding ribbons &) (S); the minimal non-empty subsets of R&)(with this
property are essentially what we shall call trainsin Sfor s; (not to be confused with the
chain in(P, <;) of S). In the tableals above, the chains are the sets of ribbons with entries
{8,1,0}, {5, 6,4, 3}, and the singleton}, {7}, {9} for ribbons that do not move. There s, in
fact, more structure to a chain than just that of a set of ribbons: if for a rigpanRib(S)

its corresponding ribbog) € Rib(sj(S)) has one square in common wih € Rib(S), then

&1 can be considered to be the successdgpafi its chain inSfor s;; therefore, chains will be
formally defined in a slightly different way. For= 2, the partition of Ril§S) into chains has
been described elsewhere: chains coincide with the cycles in a domino tableau in [5, (1.5.18)],
and with the connected components in the labyrinth of a domino tableau in [2, Section 8].
While our definitions are more general, the case 2 remains of particular interest, and has
special properties not valid for> 2.

Denote byDj(1r/u) the set of squares with posk) = | that either lie inA \ 1 or are
a cocorner ofs or a corner ofu. Let a bipartite graptG;(S) on Rib@©S) U Dj(x/u) de
defined as follows: for a ribbos = A+ Al e Rib(S) with corresponding ribbog’ =
Sj A\ sj(A') € Rib(sj(9)), there is an edge labelled 0 betwegmndx € Dj(r/u)
wheneverx € &, and an edge labelled 1 whenevee £’. Then the chains its for sj are
defined as connected component€x3i(S). The valency inG;(S) of any vertex in Ril§S)
is 2: it has one edge labelled 0 and one labelled 1. For a vertexDj(A/un) the valency
is at most 2 (at most one edge with either label), which value is assumed if and only if
X e A\ w)N(sj)\sj(u). Iffor x € Dj(r/n) there is an edge labelled 1 &0 and an
edge labelled 0 tg’, with &" # &, then' is called thesuccessoof £ for sj. The subset of
vertices inDj (/) with no edge labelled 1 will be denoted by, which is the disjoint union
of dg = A\ sj(4) andd™ = sj(u) \ u, and the subset of vertices b (1 /1) with no edge
labelled 0 byd*, which is the disjoint union ofi” = sj(3) \ » andd" = s\ sj ().

A chain will be calledopenif it has some vertex with valency less than two, ahased
otherwise. Of the vertices with valency less than two in an open chain there is dne in
called the starting square of the chain, and oné*incalled the ending square of the chain;
when these coincide the chain contains no ribbons, and is aaitgdy. A closed chain either
consists of a ribbon and a square linked by two edges, in which case the chain isroaléd
or of a single cycle containing at least two ribbons.

For any chairC in Sfor sj, a new tablea® can be formed by moving the chab It is
obtained by modifying each partitidd of the saturated chair® <, --- <, AKin (P, <)
of Sas follows: each square that occurs as a verte® ahd is a corner or cocorner &f is
removed from, respectively added 16, This means that a ribbdne Rib(S) changes if and
only if it occurs inC, in which case it is replaced by the corresponding ribgoa Rib(s; (),

i.e., the square joined i@ to & by an edge labelled 0 is removed from it, and the square joined
to it by an edge labelled 1 is added. It is easily verified ®as indeed a standardribbon
tableau. In the cases wheteis an empty or a trivial chain, the ribbons 8fand their entries
are the same as f&; however,S = Sholds only ifC is a trivial chain, since for empty chains
the shape./u is replaced by another shape, although the skew diagram containing the
ribbons does not change. Because distinct chairsfor s; are disjoint, the operations of
moving them commute mutually, and moving all of them gispsS). After moving a chain

in Sfor sj, its modified ribbons again form a chain fgr, and moving that chain gives bagk
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We have seen above how chains can be located by finding for each ribbon the square connected
toitin G;(S) by an edge labelled 1; one may also work in the opposite direction, and find for
each square € G;(S) \ d™ the ribbon connected to it by an edge labelled 1. Excluding the
easy case that is part of a trivial chain, the choice is either between the ribbons containing
the two neighbouring squares »fin the outward direction, or those in the inward direction:
if X € d* only one direction is possible, and otherwises £ for some¢ € Rib(S), and
the direction that contains another square: aé not considered. The choice between the
neighbours ok in the proper direction is given by a rule very similar to thajeaf de taquin
if there is only one candidate ribbon, it wins, and if there are two candidates, the one with the
smallest entry wins in case of outward neighbours, and the one with the largest entry in case of
inward neighbours. Like the rule fgeu de taquinthis rule just reflects the requirement that
the change preserves the tableau condition. Note that here theishapéSis used only to
determine the set of squane$o consider in the first place, not in finding the indicated ribbon
for givenx.

4.3. Chains in semistandard r-ribbon tableaux.

PrROPOSITION 4.3.1. Let T be a semistandard r-ribbon tableau, C a chain in its standard-
ization S for g, and $ the standard r-ribbon tableau obtained by moving C in S. There is
another semistandard r-ribbon tablead With standardization Sandwt(T’) = wt(T), said
to be obtained by moving C in T, unless C is a closed chain with exactly two rilghans
with T(¢) = T(n).

ProoF. Assume tha8 and wt(T) do not define a semistandardibbon tableau; this means
that there ar€, n € Rib(S) with S(n) = S(¢) + 1 andT (¢§) = T (), so that pos(¢) {pos(n),
while the corresponding dominoés, n’ € Rib(S) have pos(§ > pos(ij). Because the
positions of ribbons change by at most one when moving a chain, and consecutive ribbons
cannot have equal positions, we must have that o#dnd n occur inC, and pos(n)=
pos(&)+ 1 = pos(&) while pos(1j) = pos(¢) — 1. Therefores Un = &’ Un’/, soC is indeed
a closed chain with¢, n} as its set of ribbons. a

We define the chains faj in a semistandand-ribbon tableau to be those in its standardiza-
tion, but the ones excluded in Proposition 4.3.1 will be céitebidden chains. The proposition
shows that no action & on semistandard-ribbon tableaux can be defined that commutes
with taking the standardization. However, the second part of Proposition 4.1.4 provides a way
to define an action & on semistandandribbon tableaux, if one uses the bijections of Propo-
sition 3.2.2 instead of Proposition 3.1.2. This action can also be described as follows, using the
fact that a semistandardribbon tableadr is completely determined by specifying its shape
A/u and for each entry the set pogT) = {pos(§)| £ € Rib(T) AT (&) =i}. Foro € S
the shape o6 (T) iso (A)/o () and one has pp& (T)) = {o(p) | p € pos(T)}. The effect
of the generators; of S can be understood in terms of moving chains: one can obj€ln
from T by moving all its chains fos; except the forbidden ones. To see this, consider the
list of integers pos(&), for af € Rib(T) in order of increasing entries in the standardization
of T; this is just a concatenation of all p@$ ) for increasing, with the elements within each
pos (T) arranged in increasing order. Now the analogous lissf¢T) can be obtained by
applyings; to each of the the numbers in the original list, except that the elements within each
pos (T) may need to be reordered to keep them increasing. $née —i| < 1 foralli, this
is only needed when ppd) contains two consecutive numbers that are interchanges, by
and reordering will return this pair of numbers to their original state (bedpreas applied).

Such pairs correspond precisely to forbidden chaifisfior sj, and the specialization sf (T)
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differs from the result of applying; to the specialization of only in the fact that the ribbons
of such chains have remained in their original position$ inVe summarize our findings as
follows.

PROPOSITION 4.3.2. There is a weight-preserving action &f on the set of semistandard
r-ribbon tableaux, such thatj$T) is obtained from T by moving all its chains for except
the forbidden ones. For € S we have, using Proposition 3.2.2, that if T corresponds to
(To, ..., Tr—1) by the bijection for./u, theno (T) corresponds taT, -1y, - - -, Tp-1_1))
(with the subscripts interpreted i/r) by the bijection foto (1) /o (14).

4.4. Chains and spin changeror anr -ribbon tableau, the sets™ andd™ of starting and
ending squares of its open chains $prdepend only on its shapge/ . When building up the
tableau by successive addition of ribbons in order of increasing entries, thnt?_s:ﬂarlnizldﬁr do

not change (they depend only pi), while the changes td; anddg are directly related to the

way the set of chains faj evolves. Initially, when the shape jig/i« (no ribbons)dy = diJr

is the set of corners of . with posi) = j, anddy” = d” is the analogous set of cocorners;
there is one empty chain for each elementof= d*. Now, assume the shapejigu and a
ribbong = A"\ A is added; put’ = sj (1) \ sj (). If pos(&) = pos(€), then the only possible
change tal; ord; is the replacement of a square by the next one on the same diagonal, which
happens if that diagonal meétsif so & joins the chain starting or ending in that square, and
otherwises becomes a trivial chain. If pos(& pos(£), letx € & andy € &’ be the non-fixed
squares (s¢posi) — posfy)| = r), and distinguish the cases where 0, 1, or 2 of them lie
indg U dg. If neither of them does, thenandy are added respectively ¢ anddg", andé

starts a new open chain, startingkrand ending iry. If one of them lies ird; U df, theng

joins the open chain that starts or ends at that square, which square is replaced by the other one
of {x, y} as element ofi; ordg. If both x andy lie in d; U dd, thenx is removed frondZ

andy fromdg ", and there are two further possibilities, depending on whether or not the chains
starting iny and ending inx coincide. If they do, the§ joins that chain and transforms it

to a closed chain; otherwisgjoins the two chains to a single open chain. When a closed
chain is formed, we say that it moves counter-clockwise if{pbs pos(y), and clockwise if

posly) < posK).

PropPOSITION 4.4.1. Let T be a (semi)standard r-ribbon tableau, and IétbE obtained
from T by moving a chain C in T for; sthenSpin(T) andSpin(T’) are related according to
the following cases.

(1) C is an open chain, with starting square x and ending square y then
(a) either xe dy and ye d or x € d” and ye dJ: Spin(T’) = Spin(T);
(b) either xe dg’, y € df andposi) > pos(y),orx € d,y € diJr andposik) <
pos(y): Spin(T) = Spin(T) + 3;
(c) either xe dy, y € df andposk) < posy), orx e d, y € di+ andposi) >
pos(y): Spin(T’) = Spin(T) — 3.
(2) C is aclosed chain then
() C moves counter-clockwis&pin(T’) = Spin(T) + 1.
(b) C moves clockwiseSpin(T’) = Spin(T) — 1.

Proor. This follows by induction on the number of ribbons ®f using the given de-
scription of the evolution of chains. Lét &’ be as in that description; if eithér does
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not belong toC, or ht(¢) = ht(¢’), there is no change in Sgif) — Spin(T’), and the in-
duction is trivial. The cases remain whegdorms a new chain, closes an open chain, or
joins two open chains; in the first two of these the proposition follows easily. In the final
caset contributesﬂ:% to Spin(T) — Spin(T’), and each of the open chains being joined can

be as in 1(a), 1(b), or 1(c), so there are many more cases to distinguish; however, because
these two chains cannot cross each other, the proposition can be established in all ¢ases.

There is a more intuitive way to understand the proposition. We may draw arrows, as was
done earlier, to indicate the movement of ribbon<offor each ribbore of C there is an
arrow pointing into it and one pointing out of it (we include an arrow into the first ribbon of
an open chain). Then ht(&hanges only if, of these two arrows, one points inward and the
other points outward; if so, it increases when the chain turns to the lgftaatd it decreases
when the chain turns to the right. It then follows from topological considerations that the
accumulated amount of turning along an open chain is, at most, half a turn left or right, in
accordance with the subcases of 1 in the proposition, and along a closed chain it is a full turn
either left or right, in accordance with case 2. Here is an example of a domino tableau with
various chains.

T
A

1 36 8K

0, |- pl0+

N <
-~
b

¥g

The chain of dominoes with entries 8, 4, 6, 3 is of type 1(a), the one with entry 1 is of type 1(b),
the one with entries 5, 10 is of type 1(c), and the closed chain with entries 0, 2, 9, 7 is of type
2(a). There are ‘left turns’ at ribbons 4, 1, 0, and 9, and ‘right turns’ at ribbons 6 and 5; at the
remaining ribbons no turn is registered, because there is no change from inward to outward
movement.

4.5. Moving open chains only.

DEFINITION 4.5.1. Let0< j <r and letT be a semistandardribbon tableausj o T is
the semistandand-ribbon tableau obtained froi by moving all open chains ifi for s;.

Clearly, the shape dj o T is the same as that sf(T). This definition is stated mainly for
future reference; its importance lies in the observation that moving open chains has certain nice
properties, particularly in the case of domino tableaux, that do not hold in general for closed
chains. Proposition 4.3.1 gives a first indication in this direction, as does [6, Theorem 2.2.9],
which states, loosely speaking, that moving open chains in domino tableaux, as well as moving
certain closed ones, commutes with the process of Schensted insertion defined in [5] (see also
[15, 4.2]). An obvious question is wheth&r— sj o T defines an action & ; this turns out
to be the case only for = 2.

PROPOSITION 4.5.2. The operations T— sjoT for j = 0, 1extendto aweight-preserving
action ofS; on the set of semistandard domino tableaux.

PrOOF. The only relations to check asgosj o T =T for j = 0, 1, which are obviousl
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As an example that the Coxeter relationsSefdo not hold forr > 2, we display here the
successive stages in the computatiorso$ sp o Sp 0 Spo S o g o Sfor a standard 3-ribbon
tableauS.

0 [0 ] 0 0 ] ] 2’J 0 0
1 1 2 2 0 2 2
S: y—lz_si y—lz_sifl f_si1 _sil _‘Qﬂ) 1 _Si 1| |
3 3 3 3 3
3 3

We note some other properties specific to the domino case. Both genasagrsf S, act
on Z without fixed points, so the cases s = pos(¢) above do not occur; there are no
trivial chains, and closed chains always have an even number of dominoes. Sin¢g)form
consists of a single bit, the form of a domino before and after its chain is moved are completely
unrelated.

Any o € S, has a unique reduced expression, which is a product of genesgtarsls;
in which they occur alternatingly. If one determine&S) by successive application of these
generators, and tracks sorgee Rib(S) through the successive steps, then postither
increases at each step or decreases at each step; which of the two happens depends on the
original parity of pos(¢). Loosely speaking, the ribbons are divided into two cohorts, that
march in opposite directions; the interaction between them is limited to sideways movements
(up and down along diagonals). If the reduced expression is sufficiently long, the two groups of
dominoes will eventually pass each other completely, and the domino tableau will be divided
into two parts that are directly related to the tabled®&y, S;) corresponding tdS in the
bijection of Proposition 3.1.2; such a domino tableau is called a segragated tableau in the
following [16]. There, a more important operation is in fact the computatiosn ofS, for
which the use of the reduced expressiorvof essential. The difference with the process
just described is that, whenever a domino is part of a closed chain, it halts for one step. This
makes it reverse its direction and join the opposite cohort, until possibly it becomes part of
another closed chain at some later step. Since the shape &fis the same as that of(S),
the domino tableau eventually becomes segragated here as well, but since the occurrence of
closed chains is hard to predict, it is not easy to tell which of the original dominoes will
end up in which part of the segragated tableau. We conclude by displaying such a ‘collision
experiment’.
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