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Abstract

We study a machine scheduling model in which job scheduling and machine maintenance activities have to be considered
simultaneously. We develop the worst-case bounds for some heuristic algorithms, including a sharper worst-case bound of the SPT
schedule than the results in the literature, and another bound of the EDD schedule.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Maintenance; SPT schedule; EDD schedule; Worst-case bound

1. Introduction

In this note, we will study the worst-case bound analysis of two heuristic algorithms for maintenance scheduling
problems. The situation is as follows. We have a set of jobs to be processed on a single machine. The machine has to be
interrupted for maintenance from time to time. The problem is to determine the schedule of jobs and the maintenance
activities for the machine simultaneously.

When the objective is to minimize total completion time of jobs, the problem has been studied by Qi et al. [14] where
they prove that the problem is NP-hard in the strong sense, and propose several heuristic algorithms including the
SPT schedule. Meanwhile, the same scheduling model is independently studied by Akturk et al. [1,2] with a different
motivation from tool management where they interpret the maintenance activities as the tool changes. Recently, Akturk
et al. [3] show that the SPT schedule has a worst-case bound of 2. In this paper, we will present some new results that
further improve the bound.

The problem belongs to the field of machine scheduling with non-availability constraints (see [9,13] for reviews).
In general, there are two types of models: (1) the non-available machine periods are given and (2) the non-available
machine periods are decision variables. Some recent results on the worst-case bound analysis of SPT and WSPT
schedules for the former case can be found in Kacem and Chu [11] and Sadfi et al. [12]. Our model falls into the latter
case. Some related results for similar models can be found in Cassady and Kutanoglu [4], Chen [5], Graves and Lee
[7], and Lee and Lin [10].
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In the rest of this paper, we first formally define the problem in Section 2, then study the problem with two different
objective functions in Sections 3 and 4, respectively. Our focus is the worst-case analysis for some simple heuristic
algorithms.

2. Problem description

The problem is formally defined as follows. There are n jobs to be processed on a single machine. Each job Jj has
a processing time pj , and is available at time 0. The jobs cannot be pre-empted. The machine has to be stopped for
maintenance after continuously working for a period of time. Suppose that the longest possible continuously working
time for the machine is T time units and it takes t time units for each maintenance.Although mathematically T and t could
be any positive numbers, in practice we usually have T > t , i.e., the available working time of the machine is longer
than the unavailable time. If, on the other hand, T � t , it implies that the machine is unavailable under maintenance for
more than 50% of the time, which is at least not common if not unrealistic at all.

A feasible schedule � can then be described by a series of job batches, where each job belongs to a specific batch,
the total processing time of the jobs in any batch cannot be more than T, and there is a maintenance between any two
consecutive batches. Furthermore, we also need to determine the sequence of jobs within each batch in the schedule.
In order to have a feasible schedule, we need to assume that maxj {pj }�T .

Suppose that there are L batches in a schedule �, and the number of jobs in batch Bi is ni . Consider the jth job in a
schedule, denoted by J[j ]. If it is in batch Bi , then its completion time is given by C[j ] = ∑j

k=1 p[k] + (i − 1)t .
We will consider two common objective functions. The first one is to minimize total completion time:

f (�) =
n∑

j=1

C[j ] =
n∑

j=1

(n − j + 1)p[j ] +
L∑

i=2

(i − 1)ni t .

The second objective function is to minimize the maximum lateness Lmax where each job Jj has a given due date
dj and its lateness in a schedule � is defined as Lj = Cj − dj . Then the maximum lateness of a schedule is given by
Lmax = maxj {Lj }.

3. SPT schedule

The problem of minimizing total completion time is NP-hard [14], and the SPT schedule has been computationally
shown to be an effective heuristic algorithm in Qi et al. [14], and Akturk et al. [2,3]. In an SPT schedule, we first
sequence jobs in the non-decreasing order of their processing times, then insert certain maintenance activities into the
SPT sequence such that each maintenance is as late as possible. In Akturk et al. [3], it is shown that the SPT schedule
has a worst-case bound of 2, i.e., f (SPT)/f (�∗)�2, where �∗ is the optimal schedule. We can improve this result by
the following analysis.

We start with a relaxation of the problem where pre-emption is allowed, i.e., a job can be interrupted by a maintenance,
and resumed later when the maintenance is completed. We use f ′(�) to denote the total completion time for such a
pre-emptive version of the problem.

Consider the pre-emptive SPT (P-SPT) schedule where jobs are sequenced in the non-decreasing order of processing
times, and maintenance is scheduled as late as possible, i.e., in the following intervals:

[T , T + t], [2T + t, 2(T + t)], . . . , [(L − 1)T + (L − 2)t, (L − 1)(T + t)].
In such a schedule, the ith maintenance may interrupt a job, which is denoted by J ∗

i , as shown in Fig. 1. For the aim
of simplicity, if the ith maintenance does not interrupt a job, we use J ∗

i to refer to the job immediately following the
maintenance.

Lemma 1. A P-SPT schedule is optimal to the pre-emptive problem of minimizing total completion time.

Proof. First, we see that there exists an optimal schedule in which if one job Jj1 is interrupted by a maintenance, it
should be resumed immediately after the maintenance is completed. If this is not true, for example, another job Jj2

is scheduled after the maintenance, then we can swap the processed part of Jj1 and Jj2 so that part of or entire Jj2 is
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Fig. 1. The P-SPT schedule.

Fig. 2. The N-SPT schedule.

processed before the maintenance. Thus, Jj2 will have an earlier completion time, while the completion time for Jj1

will not change after such a swap. We also notice that the maintenance activities will not change for any swap of jobs
because jobs can be pre-empted.

Now we show the optimality of a P-SPT schedule. Suppose that in an optimal schedule job Jj1 is immediately
followed by Jj2, but pj1 > pj2 . Then we can swap these two jobs. After swapping, the new completion time of Jj2 will
be smaller than the original completion time of Jj1 , and the new completion time of Jj1 will be the same as the original
completion time of Jj2 . So the total completion time will be reduced after swapping. Therefore, a P-SPT schedule must
be optimal. �

Based on Lemma 1, we have

Theorem 1. The worst-case bound of the SPT schedule is no more than 1 + t/(t + T ), i.e.,

f (SPT)

f (�∗)
< 1 + t

t + T
.

Proof. Consider the corresponding pre-emptive version of the problem and a P-SPT schedule. We use f ′(P -SPT ) to
denote the total completion time for all jobs in the P-SPT schedule. Because the pre-emptive problem is a relaxation
of the original problem, it should have a smaller cost than the optimal schedule to the original problem. Formally, we
have

f ′(P -SPT)�f (�∗).

Based on the P-SPT schedule, we can construct another schedule, denoted by N-SPT schedule, which is feasible
to the original problem. For each pre-empted job J ∗

i in the P-SPT schedule, we first remove the originally scheduled
maintenance activity i, then add two maintenance activities i′ and i′′, one being just before J ∗

i and one being just after
J ∗

i , as shown in Fig. 2. The N-SPT schedule is feasible to the original problem because the distance between any two
adjacent maintenance activities is no more than T.

Note that the jobs in the N-SPT schedule are with the same sequence as the jobs in the P-SPT schedule. Suppose
in the P-SPT schedule there are li jobs following job J ∗

i , including the jobs in all the following batches. Then during
the construction of the N-SPT schedule, each time a maintenance activity i is replaced by two maintenance activities
i′ and i′′, there are li jobs of which the completion time is increased by t. Therefore, we have

f (N -SPT) = f ′(P -SPT) + t (l1 + l2 + · · · + lL−1).

Also, in the P-SPT schedule, from the definition of li , we have

f ′(P -SPT) > (T + t)(l1 − l2) + 2(T + t)(l2 − l3) + · · · + (L − 1)(T + t)lL−1

= (T + t)(l1 + l2 + · · · + lL−1).
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Hence,

f (N -SPT) < f ′(P -SPT) + t

t + T
f ′(P -SPT).

Finally, the SPT schedule is better than the N-SPT schedule because (1) they have the same job sequence, and (2)
the completion time of any job in the SPT schedule is no later than that in the N-SPT schedule. We have (2) because
the SPT schedule is actually obtained from the N-SPT schedule by postponing every maintenance activity as late as
possible. So,

f (SPT)�f (N -SPT) <

(
1 + t

t + T

)
f ′(P -SPT)�

(
1 + t

t + T

)
f (�∗). �

When t → 0, we have f (SPT)/f (�∗) → 1, which is consistent with the fact that an SPT schedule is optimal when
there is no maintenance requirement. The bound becomes large as t increases, which is consistent to the computational
results [3] that the average SPT performance becomes worse when t > T .

Because t/(t + T ) < 1, our bound dominates the result in [3] where the bound of 2 is found. Moreover, under the
reasonable assumption that t < T , we have t/(t + T ) < 1

2 .

Corollary 1. When t < T , the worst-case bound of the SPT schedule is 3
2 .

However, we still cannot show the tightness of the bound for t > 0. The problem instance with the largest bound that
we can find has a relative error of t/(2t + 2.5T ), or f (SPT)/f (�∗) → 11

9 when t → T .

Example 1. Suppose that there are five jobs, and their processing times are p1 = 4�, p2 = T/2 − 2�, p3 = T/2 − �,
p4=T/2+2�, and p5=T/2+2�, respectively, where 0 < � < T/12. In an SPT schedule, three maintenance activities are
needed following jobs 2, 3, and 4, respectively; and the total completion time is given by 6t + 5T + 15�. When t > �/2,
there is an optimal schedule where jobs 1 and 3 are processed first, then followed by jobs 2, 4, and 5. In such a schedule,
two maintenance activities are needed following jobs 3 and 4, respectively; and the total completion time is 4t+5T +16�.
Therefore, we have f (SPT)/f (�∗)=1+ (2t − �)/(4t +5T +16�). When � → 0, f (SPT)/f (�∗) → 1+ t/(2t +2.5T );
and when t → T , f (SPT)/f (�∗) → 11

9 .
In [3], it is shown that when there are three batches in an SPT schedule, there is a tight bound of 3

2 as t → +∞.
Under the assumption that t < T , we can show that the bound is reduced to at most 21

17 . We first need another lemma.

Lemma 2. If an SPT schedule has three batches, then the completion time of a job j in the third batch is at least 3T/2,
even when t = 0.

Proof. In an SPT schedule, let job k be the first job in the second batch, and Ti be the sum of processing times of jobs in
batch i, i = 1 and 2. Then from the definition of an SPT schedule, we have T1 +pk > T , T1 +T2 > T , and T2 +pj > T .

If pk < T/2, then T1 �T/2. Thus Cj �T1 + (T2 + pj )�3T/2.
If pk �T/2, then pj �pk �T/2. Thus Cj �(T1 + T2) + pj �3T/2. �

Theorem 2. If an SPT schedule has three batches and t < T , then the worst-case bound is no more than 21
17 .

Proof. For any feasible schedule �, let FS(�) be the cost of � if t = 0, and FT (�) = f (�) − FS(�), i.e., FT (�) is the
cost purely incurred by maintenance activities. From [3], we know that fS(SPT)�FS(�∗) and fT (SPT)� 3

2FT (�∗), so
we have

f (SPT)

f (�∗)
= FT (SPT) + FS(SPT)

FT (�∗) + FS(�∗)
� FT (SPT) + FS(SPT)

2
3FT (SPT) + FS(SPT)

= 1 + 1

2 + (3FS(SPT))/(FT (SPT))
.

Let C0
j be the completion time of a job j in an SPT schedule when t = 0, i.e., FS(SPT) = ∑n

j=1C
0
j . Now consider each

job j’s contribution to FT (SPT). (1) If job j is in the first batch, then its contribution to FT (SPT) is 0 because of no
maintenance before it; (2) if job j is in the second batch, then its contribution to FT (SPT) is t, which is less than C0

j
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Table 1
Example for the EDD schedule

j= 1 2 3 4 5 6 7 8 9

pj T /2 � T/2 � T/2 � T/2 � T/2
dj T /9 2T/9 3T/9 4T/9 5T/9 6T/9 7T/9 8T/9 T

m(j) 1 1 2 2 2 2 3 3 3
k(j) 1 1 2 2 3 3 4 4 5

because C0
j > T > t ; and (3) if job j is in the third batch, then its contribution to FT (SPT) is 2t , which is less than 4

3C0
j

due to Lemma 2. Overall, we have FT (SPT) < 4
3FS(SPT). So

f (SPT)

f (�∗)
�1 + 1

2 + (3FS(SPT))/(FT (SPT))
< 1 + 1

2 + 9/4
= 21

17
. �

We still cannot show the tightness of the above bound. The largest bound that we can find is 6
5 .

Example 2. Let there be four jobs with p1 = 2�, p2 =T/2 − �, p3 =p4 =T/2 + �, � < t/2. Then an SPT schedule has
three batches, and we have f (SPT) = 3T + 3t + 8�. In an optimal schedule �∗, jobs 1 and 3 form the first batch, jobs 2
and 4 form the second batch, and f (�∗)=3T +2t +10�. Thus, when � → 0 and t → T , we have f (SPT)/f (�∗) → 6

5 .

4. EDD schedule

In this section, we study the problem of minimizing the maximum lateness, which is strongly NP-hard because it
becomes a bin packing problem when all due dates are 0. It is known that bin packing is a strongly NP-hard problem
[6]. Without loss of generality, in this section we assume that jobs are indexed in the EDD order, i.e., d1 �d2 � · · · �dn.

When an EDD schedule is used as a heuristic algorithm to solve the problem, jobs are sequenced in the non-decreasing
order of due dates, and maintenance is inserted as late as possible. Because in an optimal schedule �∗ it is possible that
Lmax(�∗)= 0, any small error of a heuristic algorithm may result in an infinite relative error if the error is measured by
the ratio over the optimum. To resolve this issue, we use the absolute error bound to express the worse-case analysis of
the EDD schedule. Similar approaches have been used in the literature such as Koulamas and Kyparisis [8].

To quantify the worst-case bound for an EDD schedule, we need the following notation.
m(j): the minimum number of batches that are needed for processing jobs J1, J2, . . . , Jj . Note that m(j) can be

obtained by solving a bin-packing problem for the first j jobs.
k(j): index of the batch where job Jj is in an EDD schedule.
We use an example to demonstrate these two definitions.

Example 3. Consider a problem with n = 9 jobs. The processing time and due date for each job are given in Table 1,
where � < T/8.

Note that in Example 3, m(5) = 2 because we only need two batches for processing the first five jobs if we want to
minimize the total number of batches, but k(5) = 3 because job J5 is in batch B3 in an EDD schedule.

In general, we have m(j)�k(j) for any job Jj . The next theorem indicates that the error of an EDD schedule depends
on the difference between m(j) and k(j) for the job Jj that has the largest lateness in an EDD schedule.

Theorem 3. Suppose that job Ji∗ is the job with the largest lateness in an EDD schedule, Li∗ = maxj {Lj }, then

Lmax(EDD)�Lmax(�
∗) + (k(i∗) − m(i∗))t .

Proof. From the definition the EDD schedule and job Ji∗ , we have

Lmax(EDD) = Li∗(EDD) = p1 + · · · + pi∗ + (k(i∗) − 1)t − di∗ .



X. Qi / Discrete Applied Mathematics 155 (2007) 416–422 421

Consider an optimal schedule �∗. Suppose job Jj is the last job among jobs J1, . . . , Ji∗ in �∗. Then we know that the
earliest batch to which Jj can be scheduled is Bm(i∗). Thus

Cj (�
∗)�p1 + · · · + pi∗ + (m(i∗) − 1)t .

Since dj �di∗ , we have

Lj (�
∗) = Cj (�

∗) − dj

�p1 + · · · + pi∗ + (k(i∗) − 1)t + (m(i∗) − k(i∗))t − di∗

= Lmax(EDD) + (m(i∗) − k(i∗))t .

So, Lmax(EDD)�Lj (�∗) + (k(i∗) − m(i∗))t �Lmax(�∗) + (k(i∗) − m(i∗))t . �

The tightness of Theorem 3 can be shown by the problem in Example 3. In an EDD schedule for the problem, we have
i∗=9, Lmax(EDD)=L9=3T/2+4�+4t . In an optimal schedule �∗ we can process jobs 1, 2, 4, 6, and 8 in the first batch,
jobs 3 and 5 in the second batch, and jobs 7 and 9 in the third batch, which leads to Lmax(�∗) = L9 = 3T/2 + 4� + 2t .
Therefore, Lmax(EDD) = Lmax(�∗) + 2t = Lmax(�∗) + (k(9) − m(9))t .

From Theorem 3, we immediately have

Corollary 2. The EDD schedule is optimal to the problem of minimizing the maximum lateness if either one of the
following conditions is true:

(1) the EDD schedule has only two batches;
(2) the job with the largest lateness is in batches 1 or 2, i.e., k(i∗) = 1 or k(i∗) = 2;
(3) k(i∗) = m(i∗).

In Theorem 3, the error bound estimation is expressed by k(i∗) and m(i∗), the exact values of which depend on a
specific schedule. So it is not a fixed worst-case bound in the traditional meaning. A stronger result is as follows.

The EDD schedule is actually an implementation of the NEXT FIT algorithm for the bin packing problem where
k(j) is the number of bins to contain the first j items in the NEXT FIT solution. It is known that the worst-case bound
of the NEXT FIT solution is 2 − ε where ε is an arbitrarily small positive number (see [6] for details). Therefore, for
any job Ji∗ defined in Theorem 3, we have k(i∗) < 2m(i∗), and hence k(i∗) − m(i∗) < m(i∗). Because k(i∗) − m(i∗)
is integral, we have k(i∗) − m(i∗)�m(i∗) − 1, and m(i∗) − 1 achieves the maximum value when i∗ = n. So we have

Corollary 3. The worst-case bound of the EDD schedule is (m(n) − 1)t , i.e.,

Lmax(EDD)�Lmax(�
∗) + (m(n) − 1)t .

The tightness of Corollary 3 can also be shown by the problem in Example 3 where we have Lmax(EDD)�Lmax(�∗)+
2t = Lmax(�∗) + (m(9) − 1)t .

The worst-case bound given in Corollary 3 is solely determined by the problem input rather than a specific schedule,
but it is still difficult to calculate because m(n) is actually the optimal solution to bin packing, a classical NP-hard
problem. To obtained an easy-to-calculate bound, we can use an upper bound of m(n), denoted by m+

n , in the worst-case
performance estimate of an EDD schedule such that Lmax(EDD)�Lmax(�∗) + (m+

n − 1)t .
It is easy to find m+

n by any heuristic algorithm for bin packing problems. For example, using BEST FIT [6] algorithm
for the above example, we can find a solution with three bins, i.e., m+

n = 3. So the bound estimation based on m+
n is

still tight.
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