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Abstract

We provide an example of a class of partial di�erential equations being stabilized (in terms
of Lyapunov exponents) by noise. In particular, we show that the stability of the heat equation
can be improved by adding a stochastic term to the equation. We also give an example of an
unstable PDE made stable by noise. c© 1999 Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction

The problem of stabilization of ordinary di�erential equations by noise has been
thoroughly studied. There are many examples known, where after adding a stochastic
term to an ODE the top Lyapunov exponent becomes smaller, i.e. the stochastic system
is more stable than the deterministic one (see for instance Arnold, 1979; Arnold et al.,
1983; Arnold and Kloeden, 1989; Pardoux and Wihstutz, 1988; Pardoux and Wihstutz,
1992). Especially interesting are the cases when the top Lyapunov exponent of the
deterministic system is greater than zero while the top Lyapunov exponent of the
corresponding stochastic system is smaller than zero (i.e. an unstable system is made
stable by noise). To our knowledge no such example has been previously known in
the case of PDEs. We provide a class of such examples, which have the additional
advantage that both the equations and the techniques used in the proofs are simple.
First, we study the Dirichlet problem for the following equation (for a formal setting

see Section 2),

@u
@t
=�u+ �u;

where the constant � is arbitrary, with the initial condition f. For a class of initial
conditions f we calculate the Lyapunov exponents, which are de�ned as

�u(f)= lim sup
t→∞

1
t
log ‖u(t)‖L2
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(for more information about Lyapunov exponents see Arnold and Wihstutz, 1986 and
Arnold et al., 1991). Then we consider the Dirichlet problem for the following stochas-
tic partial di�erential equation

dv(t)= (�v(t) + �v(t)) dt + v(t) dWt;

where the constants � and  are arbitrary, with the initial condition f. We calculate its
Lyapunov exponents for the same class of initial conditions f. The Lyapunov exponents
are de�ned pathwise, i.e.

�v(f;!)= lim sup
t→∞

1
t
log ‖v(t; !)‖L2 :

In this case they exist as limits with probability one and are non-random. We calcu-
late the Lyapunov exponents of the stochastic system as functions of the Lyapunov
exponents of the deterministic one – see Theorem 2.

From Theorem 2 it follows that if �= � the stability of a deterministic system of the
above form can be improved by adding a term with noise ( 6=0) to the equation. More
precisely for a �xed initial condition f, the Lyapunov exponent of the stochastic system
is smaller than the Lyapunov exponent of the deterministic system. In particular, if
�= �=0 it follows that the exponential stability of the heat equation can be improved.
Putting �= �=2�0, where the constant �0 is de�ned in Section 2, and =2�

1=2
0 we

get an example of an exponentially unstable PDE made exponentially stable by noise.
Lyapunov exponents of SPDEs (stochastic partial di�erential equations) have been

studied among others by Carmona and Molchanov (1994) by Flandoli and Schauml�o�el
(1990), Schauml�o�el and Flandoli (1991), by Flandoli (1991) and related problems by
Brze�zniak and Flandoli (1992). Our approach is, however, di�erent from that in the
papers cited above. It is somehow similar to that of Lindemann (1992) mainly because
using expansions of elements of a separable Hilbert space with respect to its basis we
in fact transfer some problems to the space l2.

2. Main results

Let O be a bounded domain in Rd, where d63, with C∞ boundary. We will study
the following equation:

@u
@t
=�u+ �u; (1)

where the constant � is arbitrary, u= u(t; x); t ∈R+ (where R+ denotes the interval
[0;∞)), x∈O.
We set the initial condition

u(0; x)=f(x); (2)

and the Dirichlet boundary condition

u(t; x)= 0; x∈ @O: (3)
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The function f in (2) takes real values. In this paper, we consider only (deterministic)
real-valued initial conditions, f∈H 10 (O)∩H 2(O).
There exists an orthonormal basis of L2(O); {ej}; j=0; 1; 2; : : : , satisfying (see

Taylor, 1996, p. 304)

ej ∈H 10 (O)∩C∞( �O); �ej =−�jej; 0¡�j↗∞:
If f∈L2(O), then we can write

f=
∞∑
j=0

fjej; where fj =(f; ej): (4)

Basing on suitable properties of the heat equation (see Taylor, 1996) it is easy to prove
that the unique solution to the problem (1)–(3) is given by the formula

u(t; x)=
∞∑
j=0

exp (t(−�j + �))fjej(x); t¿0: (5)

Theorem 1. Let us �x an initial condition f; f 6=0. Let j0 be the smallest integer
j¿0 in the expansion (4) of f such that fj0 6=0.
Then the Lyapunov exponent of Eqs. (1)–(3) exists as a limit and is given by

�u(f)= − �j0 + �:

Proof. On the one hand,

1
t
log

∥∥∥∥∥∥
∞∑
j=0

exp (t(−�j + �))fjej(x)
∥∥∥∥∥∥6

1
t
log

( ∞∑
j=j0

|exp (t(−�j0 + �))fj|2
)1=2

=−�j0 + �+
1
t
log ‖f‖;

while on the other hand,

1
t
log

∥∥∥∥∥∥
∞∑
j=0

exp (t(−�j + �))fjej(x)
∥∥∥∥∥∥

¿
1
t
log |exp (t(−�j0 + �))fj0 |= − �j0 + �+

1
t
log |fj0 |:

The existence of the limit and the equality follow.

Let us now consider the following stochastic equation:

dv(t)= (�v(t) + �v(t)) dt + v(t) dWt; (6)

where the constants � and  are arbitrary and Wt is a real-valued Wiener process, with
the initial condition

v(0; x; !)=f(x); x∈O; (7)
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and the Dirichlet boundary condition

v(t; x; !)= 0; x∈ @O: (8)

Conditions (7) and (8) hold for a.a. !∈
.
Following Da Prato et al. (1982) by a strict solution to the problem (6)–(8), we

mean a process v such that with probability 1:

v∈C([0; T ];L2(O)); ∀t ∈ [0; T ] v(t)∈H 10 (O)∩H 2(O)
t→�v(t) + �v(t)∈L1(0; T ;L2(O))
t→ v(t)∈L2(0; T ;L2(O))

and the problem (6)–(8) is satis�ed.
If there exists v(t; x) such that Eq. (6) is satis�ed then its expansion with respect to

the basis {ej} has the form

v(t; x)=
∞∑
j=0

yj(t)ej(x); (9)

where yj(t), for j=0; 1; 2; : : : , satisfy the following stochastic equations:

dyj(t)= (−�j + �)yj(t) dt + yj(t) dWt;
yj(0)=fj

and, therefore,

yj(t)= exp (Wt)exp ((−�j + � − 1
2
2)t)fj: (10)

(see for instance Arnold, 1974). We put

v(t; x)=
∞∑
j=0

exp (Wt) exp ((−�j + � − 1
2
2)t)fjej(x); t ∈R+: (11)

Obviously,

v(t; x)= exp (Wt)exp (((� − �)− 1
2
2)t)u(t; x);

where u(t; x) is the solution to the problem (1)–(3).
Let us �x an interval [0; T ] for arbitrary T¿0.

Proposition 1. The process v(t) given by formula (11) is the unique strict solution
to the problem (6)–(8) on the interval [0; T ].

Proof. We omit the proof of the above proposition. It follows easily from suitable
properties of the solution of the heat equation (see Taylor, 1996).

Since T is arbitrary, it makes sense to study the asymptotic properties of v(t; x), in
particular its Lyapunov exponents.
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We will next, for a given initial condition f, calculate the Lyapunov exponent of the
stochastic system (6)–(8) as a function of the Lyapunov exponent of the deterministic
system (1)–(3).

Theorem 2. Let f 6=0. Then the Lyapunov exponent of the system (6)–(8) almost
surely exists as a limit, is non-random and the following formula holds:

�v(f)= �u(f) + (� − �)− 1
2
2 a:s:

Proof. We compute

�v(f)= lim
t→∞

1
t
log ‖v(t)‖= lim

t→∞
1
t
log
∥∥∥∥exp (Wt)exp

((
(� − �)− 1

2
2
)
t
)
u(t)

∥∥∥∥
= �u(f) + (� − �)− 1

2
2 a:s:

since by the strong law of large numbers limt→∞(Wt=t)= 0 with probability 1 (see
Arnold, 1974, p. 46).

2.1. Applications

Let us consider the case when �= �. Then it follows from Theorem 2 that for a
�xed initial condition f, the Lyapunov exponent of the stochastic system (6)–(8), with
 6=0, is smaller than the Lyapunov exponent of the deterministic system (1)–(3).

Example 1. Let us take �= �=0. Then (1)–(3) is the Dirichlet problem for the heat
equation. It follows that the exponential stability of the heat equation can be improved
by adding to the equation a term with white noise.

Example 2. Let us take �= �=2�0 and =2�0
1=2. The top Lyapunov exponent of

the deterministic system is equal to �0¿0, while the top Lyapunov exponent of the
stochastic system is equal to −�0¡0. Thus, an exponentially unstable system has
become exponentially stable.
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