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Abstract

In this paper we improve and extend duality theorems for crossed products obtained by M
pinen (C. Chen) from the case of base fields (Dedekind domains) to the case of arbitrary Noe
commutative ground rings under fairly weak conditions. In particular we extend an improved v
of the celebrated Blattner–Montgomery duality theorem to the case of arbitrary Noetherian co
tative ground rings.
 2005 Elsevier Inc. All rights reserved.
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Introduction

Crossed productsin the theory of Hopf algebras were presented independentl
R. Blattner, M. Cohen, S. Montgomery [10] and Y. Doi, M. Takeuchi [20]. The so-ca
duality theorems for crossed products have their roots in the theory of group rings
Cohen–Montgomery duality theorems[13]).

In [9] R. Blattner and S. Montgomery extended Cohen–Montgomery duality theo
to the case of a HopfR-algebra with bijective antipode acting on anR-algebra, where
R is a base field, providing an infinite version of the finite one achieved independ
by M. Van den Bergh [28]. The celebratedBlattner–Montgomeryduality theorem was
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extended by C. Chen and W. Nichols [14] to the case of Dedekind domains. In a
paper with J. Gómez-Torrecillas and F. Lobillo [5, Theorem 3.2] that result was exte
to the case of arbitrary Noetherian ground rings.

In the case of a HopfR-algebra (with a not necessarily bijective antipode) over a b
field, M. Koppinen introduced in [23, Theorem 4.2] duality theorems for a rightH -crossed
product A #σ H with invertible cocycle and a leftH -module subalgebraU ⊆ H ∗. For
a Hopf R-algebra with bijective antipode and anR-subbialgebraU ⊆ H ◦, [23, Corol-
lary 5.4] provided an improved version of Blattner–Montgomery duality theorem, drop
the assumption thatU ⊆ H ◦ is a HopfR-subalgebra with bijective antipode.

Inspired by the work of M. Koppinen, C. Chen presented in [12] duality theorem
right H -crossed productsA #σ H with invertible cocycle. Although his main results we
formulated for arbitrary ground rings, the main applications he gave were limited t
case of a base field [12, Corollaries 4, 9] or a Dedekind domain [12, Corollaries 5, 1

The main objective of this note is unify these duality theorems and their proofs a
as to generalize them to the case of arbitrary Noetherian ground rings under fairly
conditions. Another improvement is weakening the assumption that the antipode
Hopf algebraH is bijective by replacing it with the weaker condition thatH has atwisted
antipode, i.e.,H op has an antipodeS.

In the first section we present the needed definitions and lemmata. In the s
section we present the main result (Theorem 2.9) for a HopfR-algebra with twisted an
tipode, a rightH -crossed productA #σ H with invertible cocycle and a rightH -module
R-subalgebraU ⊆ H ∗, whereR is an arbitrary Noetherian ground ring. In caseRH is lo-
cally projective we introduce a rightH -submoduleHυ ⊆ H ∗, such that(Hυ,H) satisfies
the modified RL-condition (12) with respect toH and use it to present results analogo
to those of M. Koppinen [23] (Theorem 2.16 and Corollary 3.13).

As a corollary, with σ trivial, Theorem 2.21 generalizes Koppinen’s version
the Blattner–Montgomery duality theorem [23, Corollary 5.4] to the case of arbi
Noetherian ground rings (this improves also [5, Theorem 3.2]). Corollary 2.22 ex
[25, Corollary 9.4.11] to the case of arbitrary QF ground rings (for an arbitrary
H -crossed product see Corollary 2.11). Given a HopfR-algebraH with twisted antipode
and a rightH -crossed productA #σ H with invertible cocycle, Theorem 2.25 provides
version Theorem 2.9 formulated for thecleft H -extension(A #σ H)/A.

The third section deals with the case of an arbitrary HopfR-algebra (not necessari
with twisted antipode). There we generalize results of C. Chen [12] from the case of
field or a Dedekind domain to the case of arbitrary Noetherian ring. For a locally proje
Hopf R-algebraH, we consider theR-subalgebraHω ⊆ H ∗ presented by M. Koppine
and prove his main duality theorem [23, Theorem 4.2] over arbitrary Noetherian g
rings. We also generalize several corollaries of [23, Section 5] to the case of arb
Noetherian ground rings.

By R we denote a commutative ring with 1R �= 0R. The category of unitalR-(bi)mo-
dules will be denoted byMR. Any unadorned tensor product is understood to be oveR.
We considerR as a linear topological ring with the discrete topology. ForR-modulesM,

N we say anR-submoduleK ⊂ M is N -pure, if the canonical map idK ⊗ ιN :K ⊗R

N → M ⊗R N is injective. If K ⊂ M is N -pure for everyR-moduleN, then we say

K ⊂ M is pure(in the sense of Cohn). ForR-modulesM,N we denote byτ :M ⊗R N →
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N ⊗R M the canonicaltwist isomorphism. LetA be anR-algebra. The category ofunital
left (respectively right)A-modules will be denoted byAM (respectivelyMA). For anA-
moduleM we call anA-submoduleK ⊂ M R-cofinite, if M/K is finitely generated in
MR. For any twoR-modulesM andN , we consider HomR(M,N) ↪→ NM with the finite
topology induced from the product topology onNM (N is considered with the discre
topology). See [7] for more details.

We assume the reader is familiar with the theory of HopfR-algebras. For the basic de
initions and concepts we refer to [27] and [25]. For anR-coalgebra(C,∆C, εC) we call a
pureR-submodulẽC ⊆ C anR-coalgebra provided∆C(C̃) ⊆ C̃⊗R C̃. For anR-coalgebra
C and anR-algebraA, we consider HomR(C,A) as anR-algebra under the so-calledcon-
volution product(f 	 g)(c) := ∑

f (c1)g(c2) and unityηA ◦ εC.

For anR-coalgebraC and a rightC-comodule(M,�M) we denote by Cf(M) ⊆ C the
R-submodule generated by{m〈0〉 | m ∈ M, �M(m) = ∑

m〈0〉 ⊗ m〈1〉}. For anR-bialgebra
H and a rightH -comoduleM, we setMcoH = {m ∈ M | �M(m) = m ⊗ 1H }.

1. Preliminaries

In this section we introduce some needed definitions and results.

1.1. MeasuringR-pairings

Let C be anR-coalgebra andA be anR-algebra with a morphism ofR-algebras
β :A → C∗, a �→ [c �→ 〈a, c〉]. Then we callP := (A,C) a measuringR-pairing (the
terminology is inspired by [27, p. 139]). In this caseC is anA-bimodule through the lef
and the rightA-actions

a ⇀ c :=
∑

c1〈a, c2〉 and c ↼ a :=
∑

〈a, c1〉c2 for all a ∈ A, c ∈ C. (1)

1.2. Theα-condition

Let V , W be R-modules with anR-linear mapβ :V → W ∗. We say theR-pairing
P := (V ,W) satisfies theα-condition(or P is anα-pairing), if for everyR-moduleM the
following map is injective:

αP
M :M ⊗R W → HomR(V,M),

∑
mi ⊗ wi �→

[
v �→

∑
mi〈v,wi〉

]
. (2)

We say anR-moduleW satisfies theα-condition, if the canonicalR-pairing (W ∗,W)

satisfies theα-condition (equivalently, ifRW is locally projective in the sense of B. Zim
mermann-Huisgen ([30, Theorem 2.1], [21, Theorem 3.2])). IfRW is locally projective,
thenRW is flat andR-cogenerated (e.g., [4, Bemerkung 2.1.5]).

1.3. TheC-adic topology

Let P = (A,C) be a measuringR-pairing and considerC as a leftA-module with the

induced leftA-action in (1). ThenA becomes a left linear topologicalR-algebra under the
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so-calledC-adic topologyTC−(A) with neighbourhood basis of 0A:

BC−(0A) = {
(0C : W) | W ⊂ C is a finite subset

}
.

The category ofdiscreteleft (A,TC−(A))-modules is denoted byσ [AC]. In factσ [AC] is
thesmallestGrothendieck full subcategory ofAM that containsC. The reader is referre
to [7,11] for more investigation of this topology and to [29] for the well-developed th
of categories of typeσ [M].

1.4. Let P = (A,C) be a measuringα-pairing. LetM be a leftA-module and conside
the canonicalA-linear mapρM :M → HomR(A,M). We set RatC(AM) := ρ−1

M (M ⊗R C)

and callM C-rational, if RatC(AM) = M. If AM is C-rational, then we have anR-linear
map�M := (αP

M)−1 ◦ ρM :M → M ⊗R C. The class ofC-rational leftA-modules build a
full subcategory ofAM, which we denote with RatC(AM) (see [4, Lemma 2.2.7]).

Theorem 1.5 [2, Theorems 1.14, 1.15]. For a measuringR-pairing P = (A,C) the fol-
lowing are equivalent:

(1) P satisfies theα-condition;
(2) RC is locally projective andβP (A) ⊆ C∗ is dense.

If these equivalent conditions are satisfied, then we have isomorphisms of catego

MC � σ [AC] = RatC(AM) � σ [C∗C] = RatC(C∗M).

1.6. ([5, Remark 2.14, Proposition 2.15], [6]) AssumeR to be Noetherian. LetA be
anR-algebra and considerA∗ as anA-bimodule through the regular left and right actio

(af )(b) = f (ba) and(f a)(b) = f (ab) for a, b ∈ A andf ∈ H ∗. (3)

We set

A◦ := {
f ∈ A∗ | Af A is finitely generated inMR

}
= {

f ∈ A∗ | Ke(f ) contains anR-cofiniteA-ideal
}
.

Then (A,A◦) is a measuringα-pairing if and only ifA◦ ⊂ RA is pure. In this caseA◦
is a locally projectiveR-coalgebra and for everyR-subcoalgebrãC ⊆ A◦, the induced
R-pairing(A, C̃) is a measuringα-pairing.

An R-algebra (respectively anR-bialgebra, a HopfR-algebra)A with A◦ ⊂ RA pure
will be called anα-algebra(respectively anα-bialgebra, a Hopf α-algebra). If H is an
α-bialgebra (respectively a Hopfα-algebra), thenH ◦ is an R-bialgebra (respectively

Hopf R-algebra).
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a 1.8
1.7. [10,20] LetH be anR-bialgebra andA an R-algebra. Aweak leftH -action on
A is anR-linear mapw :H ⊗R A → A, h ⊗ a �→ ha, such that the inducedR-linear map
β :A → HomR(H,A), a �→ [h �→ ha] is anR-algebra morphism and 1H ⇀ a = a for all
a ∈ A.

LetA have a weak leftH -action andσ :H ⊗R H → A anR-linear map. ThenA#σ H :=
A ⊗R H is a (not necessarily associative) R-algebra under the multiplication

(a #σ h)
(
ã #σ h̃

) :=
∑

a
(
h1ã

)
σ
(
h2 ⊗ h̃1

)
#σ h3h̃2 (4)

and has in general no unity. IfA #σ H is an associativeR-algebra with unity 1A #σ 1H ,

thenA #σ H is called aright H -crossed product.In this case(A #σ H, id ⊗ ∆H ) is a right
H -comodule algebra with(A #σ H)coH = A. We sayσ in invertible, if it is invertible in
(HomR(H ⊗R H,A), 	).

Lemma 1.8 ([10], [20, Lemma 10]). Let H be anR-bialgebra,A an R-algebra with a
weak leftH -action andσ ∈ HomR(H ⊗R H,A).

(1) 1 #σ 1 is a unity forA #σ H if and only ifσ is normal, i.e.,

σ(h ⊗ 1H ) = ε(h)1A = σ(1H ⊗ h) for all h ∈ H. (5)

(2) Assumeσ to be normal. ThenA #σ H is an associativeR-algebra if and only ifσ is a
cocycle, i.e.,

∑[
h1σ(k1 ⊗ l1)

]
σ(h2 ⊗ k2l2)

=
∑

σ(h1 ⊗ k1)σ (h2k2 ⊗ l) for all h, k, l ∈ H, (6)

and satisfies thetwisted module condition

∑[
h1[k1a]]σ(h2 ⊗ k2)=

∑
σ(h1 ⊗ k1)

[
(h2k2)a

]
for all h, k ∈H, a ∈A. (7)

1.9. Left smash product

Let H be anR-bialgebra andA a leftH -module algebra. Then

σ :H ⊗R H → A, h ⊗ k �→ ε(h)ε(k)1A

is a trivial normal cocycle and satisfies the twisted module condition (7). By Lemm
A #H := A #σ H is an associativeR-algebra with multiplication

(a #h) • (
ã # h̃

) =
∑

a
(
h1ã

)
#h2h̃ (8)

and unity 1A # 1H . If the left H -action onA is also trivial , thenA # H = A ⊗R H as

R-algebras. TheR-algebraA #H was presented by M. Sweedler [27, pp. 155–156].
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2. The main duality theorem

In this section we present the main result in this note, namely Theorem 2.9. F
convention of the reader we begin with some definitions.

2.1. ([18], [16, p. 375]) LetH be anR-bialgebra andB a rightH -comodule algebra
Then #(H,B) := (HomR(H,B), 	̂) is an associativeR-algebra with multiplication

(f 	̂ g)(h) =
∑

f
(
g(h2)〈1〉h1

)
g(h2)〈0〉 for all f,g ∈ HomR(H,B), h ∈ H, (9)

and unityηB ◦εH . If U ⊆ H ∗ is aright H -module subalgebra (withεH ∈ U ), thenB #U :=
B ⊗R U is an associativeR-algebra with multiplication

(b #f )
(
b̃ # f̃

) =
∑

bb̃〈0〉 #
(
f b̃〈1〉

)
	 f̃ for all b, b̃ ∈ B, f, f̃ ∈ U (10)

(and unity 1B # εH ).

Remark 2.2. Let R be Noetherian,H an α-bialgebra,U ⊆ H ◦ an R-subbialgebra and
consider theα-pairingP := (H,U). SinceH is a leftU -module algebra under the actio
f ⇀ h := ∑

h1f (h2), we can endowH ⊗R U with the structure of aleft smash algebra
under the multiplication (8). On the other handH is a rightH -comodule algebra unde
∆H , U ⊆ H ∗ is a rightH -module subalgebra under the right regularH -action (3) and
H ⊗R U can be endowed with the structure of aright smash algebraunder the multiplica-
tion (10). It can be easily seen that the twoR-algebras are isomorphic. In fact we have
arbitraryh, h̃ ∈ H, f, f̃ ∈ U and allk ∈ H :

αP
H

(
(h #f ) • (

h̃ # f̃
))

(k) = αP
H

(∑
h
(
f1 ⇀ h̃

)
#f2 	 f̃

)
(k)

=
∑

h
(
f1 ⇀ h̃

)(
f2 	 f̃

)
(k)

=
∑

hh̃1f1
(
h̃2

)
f2(k1)f̃ (k2)

=
∑

hh̃1f
(
h̃2k1

)
f̃ (k2)

=
∑

hh̃1
(
f h̃2

)
(k1)f̃ (k2)

= αP
H

(∑
hh̃1 #

(
f h̃2

)
	 f̃

)
(k)

= αP
H

(
(h #f )

(
h̃ # f̃

))
(k).

SinceαP
H is injective, we get(h #f ) • (h̃ # f̃ ) = (h #f )(h̃ # f̃ ) and we are done.

The following definition provides a generalization of theRL-conditionsuggested by [9]

Definition 2.3. Let H be anR-bialgebra,U ⊆ H ∗ a rightH -module subalgebra under th

right regularH -action,V ⊆ H ∗ anR-submodule and consider theR-linear maps
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λ :H #U → EndR(H),
∑

hj #gj �→ [
k̃ �→ hj

(
gj ⇀ k̃

)]
,

ρ :V → EndR(H), g �→ [
k̃ �→ k̃ ↼ g

]
. (11)

We say(V ,U) satisfies theRL-conditionwith respect toH, providedρ(V ) ⊆ λ(H # U),

i.e., if

for everyg ∈ V, ∃{
(hj , gj )

} ⊂ H × U,

s.t. k̃ ↼ g =
∑

hj

(
gj ⇀ k̃

)
for all k̃ ∈ H. (12)

We sayU satisfies the RL-condition with respect toH, if (U,U) satisfies the RL-condition
with respect toH.

Lemma 2.4. Let H be anR-bialgebra,U ⊆ H ∗ a right H -module subalgebra and con
sider H as a right H -comodule algebra through∆H . Let #(H,H) and H # U be the
R-algebras defined in2.1 and consider the canonicalR-algebra morphismβ :H # U →
#(H,H).

(1) If RH is finitely generated projective, thenH #H ∗ β� #(H,H) asR-algebras.
(2) If H is a Hopf R-algebra with twisted antipode, then#(H,H) � EndR(H) as

R-algebras.
(3) Let H be a finitely generated projective HopfR-algebra. Thenλ :H # H ∗ →

EndR(H), defined in(11), is an R-algebra isomorphism. In particularH ∗ satisfies
the RL-condition(12)with respect toH.

(4) If RH is locally projective andU ⊆ H ∗ is dense, thenβ(H #U) ⊆ #(H,H) is a dense
R-subalgebra. If moreoverH is a HopfR-algebra with twisted antipode andRH is
projective, then

H #U
λ

↪→ EndR(H)

is a denseR-subalgebra.

Proof. (1) SinceRH is finitely generated projective,β is bijective.
(2) LetH be a HopfR-algebra with twisted antipodeS and consider theR-linear maps

φ1 : #(H,H) → EndR(H), f �→
[
h �→

∑
f (h2)h1

]
,

φ2 : EndR(H) → #(H,H), g �→
[
k �→

∑
g(k2)S(k1)

]
.

For arbitraryf,g ∈ #(H,H) andh ∈ H we have

φ1(f 	̂ g)(h) =
∑

(f 	̂ g)(h2)h1 =
∑

f
(
g(h3)2h2

)
g(h3)1h1

=
∑

f
(
g(h2)2h12

)
g(h2)1h11 = φ1(f )

(∑
g(h2)h1

)
( )
= φ1(f ) ◦ φ1(g) (h),
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i.e.,φ1 is anR-algebra morphism. For allR-linear mapsf,g :H → H we have

(φ1 ◦ φ2)(g)(h) =
∑

φ2(g)(h2)h1 =
∑

g(h3)S(h2)h1

=
∑

g(h2)ε(h1) = g(h),

(φ2 ◦ φ1)(f )(h) =
∑

φ1(f )(h2)S(h1) =
∑

f (h3)h2S(h1)

=
∑

f (h2)ε(h1) = f (h).

Henceφ1 is anR-algebra isomorphism with inverseφ2.

(3) Let H be a finitely generated projective HopfR-algebra. By (1) and (2) we hav
R-algebra isomorphisms

H #U
β� #(H,H)

φ1� EndR(H)

(recall that the antipode of a finitely generated projective HopfR-algebra is bijective by
[26, Proposition 4], henceH has a twisted antipodeS := S−1). Soλ = φ1 ◦ β :H # U →
EndR(H) is anR-algebra isomorphisms. In particularρ(H ∗) ⊆ EndR(H) = λ(H # H ∗),
i.e.,H ∗ satisfies the RL-condition (12) with respect toH.

(4) By [3, Corollary 3.20]β(H #U) ⊆ #(H,H) is a denseR-subalgebra. IfH is a Hopf
R-algebra with twisted antipode then

#(H,H)
φ1� EndR(H)

asR-algebras by (2) and we are done (notice thatβ is an embedding, ifRH is projec-
tive). �
Lemma 2.5. LetH be a HopfR-algebra with twisted antipode,A anR-algebra,U ⊆ H ∗
an R-submoduleand consider theR-pairing P := (H,U). Then the canonicalR-linear
mapα := αP

A⊗RH : (A ⊗R H) ⊗R U → HomR(H,A ⊗R H) is injective if and only if the
following map is injective

χ :A ⊗R (H ⊗R U) → End−A(H ⊗R A),

a ⊗ (h ⊗ f ) �→ [(
k ⊗ ã

) �→ h(f ⇀ k) ⊗ aã
]
. (13)

Proof. AssumeH to have a twisted antipodeS. We show first that theR-linear map

ε : HomR(H,A ⊗R H) → End−A(H ⊗R A), g �→ [
k ⊗ ã �→ τ

(
g(k2)

)(
k1 ⊗ ã

)]
is bijective with inverse

ε−1 : End−A(H ⊗R A) → HomR(H,A ⊗R H),[ ( )( )]

f �→ k �→ τ f (k2 ⊗ 1A) 1A ⊗ S(k1) .
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In fact we have for allf ∈ End−A(H ⊗R A), k ∈ H, ã ∈ A:

ε
(
ε−1(f )

)(
k ⊗ ã

) =
∑

τ
[
ε−1(f )(k2)

](
k1 ⊗ ã

)
=

∑
τ
[
τ
(
f (k22 ⊗ 1A)

)(
1A ⊗ S(k21)

)](
k1 ⊗ ã

)
=

∑
f (k22 ⊗ 1A)

(
S(k21) ⊗ 1A

)(
k1 ⊗ ã

)
=

∑
f (k2 ⊗ 1A)

(
S(k12)k11 ⊗ ã

)
=

∑
f (k2 ⊗ 1A)

(
εH (k1)1H ⊗ ã

)
= f

(
k ⊗ ã

)
and for allg ∈ HomR(H,A ⊗R H), k ∈ H :

ε−1(ε(g)
)
(k) =

∑
τ
[
ε(g)(k2 ⊗ 1A)

](
1A ⊗ S(k1)

)
=

∑
τ
[
τ
(
g(k22)

)
(k21 ⊗ 1A)

](
1A ⊗ S(k1)

)
=

∑
g(k22)

(
1A ⊗ k21S(k1)

)
=

∑
g(k2)

(
1A ⊗ k12S(k11)

)
=

∑
g(k2)

(
1A ⊗ εH (k1)

)
= g(k).

Moreover we have for alla ∈ A, h ∈ H, f ∈ U andk ∈ H :

(ε ◦ α)
(
a ⊗ (h ⊗ f )

)(
k ⊗ ã

) = τ
(
α
(
a ⊗ (h ⊗ f )

)
(k2)

)(
k1 ⊗ ã

)
=

∑
f (k2)(h ⊗ a)

(
k1 ⊗ ã

)
=

∑
hf (k2)k1 ⊗ aã

= h(f ⇀ k) ⊗ aã

= χ
(
a ⊗ (h ⊗ f )

)(
k ⊗ ã

)
,

i.e.,χ = ε ◦ α. Consequentlyχ is injective if and only ifα is so. �
2.6. Let H be a HopfR-algebra with twisted antipode,A#σ H a rightH -crossed prod

uct with invertible cocycle and consider theR-linear mapsϕ,ψ :H ⊗R A → HomR(H,A)

defined as:

ϕ(h ⊗ a)
(
h̃
) =

∑[
S
(
h̃2

)
a
]
σ
(
S
(
h̃1

) ⊗ h
)
,

( ) ∑ ( ( ))[ ] ( ( ) )

ψ(h ⊗ a) h̃ = σ−1 h̃3 ⊗ S h̃2 h̃4a σ h̃5 ⊗ S h̃1 h .
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Let U ⊆ H ∗ be aright H -module subalgebra,V ⊆ H ∗ anR-submodule and consider th
canonicalR-linear mapJ :A ⊗R V → HomR(H,A). We say(V ,U) is compatible, if the
following conditions are satisfied:

(1) ϕ(H ⊗R A), ψ(H ⊗R A) ⊆ J (A ⊗R V );
(2) (V ,U) satisfies theRL-condition(12) with respect toH.

In the light of Lemma 2.5 and the modified RL-condition (12) we introduce an impro
version of [12, Theorem 3, Corollary 4] over arbitrary commutative ground rings:

Proposition 2.7. Let H be a HopfR-algebra with twisted antipodeS, A #σ H a right
H -crossed product with invertible cocycle,U ⊆ H ∗ a right H -module subalgebra an
consider theR-pairing P := (H,U). Assume there exists aright H -submoduleV ⊆ H ∗,
such that(V ,U) is compatible. If the canonicalR-linear mapα := αP

A⊗RH : (A⊗R H)⊗R

U → HomR(H,A ⊗R H) is injective, then there exists anR-algebra isomorphism

(A #σ H) #U � A ⊗R (H #U).

Proof. Replacing the inverse of the antipode in [12, Lemma 2] with the twisted anti
S we have a commutative diagram ofR-algebra morphisms

(A #σ H) #U

α γ

#(H,A #σ H)
π

End−A(H ⊗R A)

A ⊗R (H #U)

χδ

(14)

where

α
(
a # (h #f )

)
(k) = (a #h)f (k),

χ
(
a ⊗ (h #f )

)(
k ⊗ ã

) = h(f ⇀ k) ⊗ aã,

γ
(
(a #h) #f

)(
k ⊗ ã

) =
∑

h4(f ⇀ k3) ⊗ [
S(h3k2)a

]
σ
(
S(h2k1) ⊗ h1

)
ã,

δ
(
a ⊗ (h #f )

)
(k) =

∑
σ−1(h2k4 ⊗ S(h1k3)

)[
(h3k5)a

]
σ
(
h4k6 ⊗ S(k2)

)
#h5(f ⇀ k7)S(k1),

π(g)
(
k ⊗ ã

) = ν
(∑

g(k5)
(
σ−1(k2 ⊗ S(k1)

)(
k3 ⇀ ã

)
#k4

))
,

and

∑ [ ] ( )

ν :A #σ H → H ⊗R A, a #σ h �→ h4 ⊗ S(h3)a σ S(h2) ⊗ h1 .
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Analogously to the proof of [12, Corollary 4] (and replacing the inverse of the anti
by the twisted antipodeS) can be shown that the compatibility of(V ,U) implies Im(γ ) ⊆
Im(χ) and Im(δ) ⊆ Im(α). Assume now thatα := αP

A⊗RH is injective. Thenχ is injective
by Lemma 2.5 and consequentlyδ is injective. Analogously to [12, Lemma 1, p. 2890]π is
anR-algebra isomorphism, henceγ is injective and we are done.�
Lemma 2.8. Let R be Noetherian,W an R-module,U ⊆ W ∗ an R-submodule and con
sider theR-pairing P := (W,U). Then the canonical mapαP

M :M ⊗R U → HomR(W,M)

is injective for anR-moduleM if and only ifU ⊂ RW is M-pure. ConsequentlyP satisfies
theα-condition if and only ifU ⊂ RW is pure.

Proof. Let M be anR-module and consider the commutative diagram

M ⊗R U

idM⊗ιU

αP
M

HomR(W,M)

M ⊗R RW
� MW

where�(m ⊗ f )(w) = mf (w). Write M = lim−→I
Mi as a direct limit of its finitely gener

atedR-submodules. SinceMi is f.p. inMR we have for everyi ∈ I the isomorphism o
R-modules

�i :Mi ⊗ RW → MW
i , m ⊗ f �→ [

w �→ mf (w)
]
.

Moreover for everyi ∈ I the restriction of� onMi coincides with�i, hence

� = lim−→ �Mi
: lim−→ Mi ⊗ RW → lim−→ MW

i ⊂ MW

is injective. It’s obvious then thatαP
M is injective iff idM ⊗ ιU is injective iff U ⊂ RW is

M-pure. �
We are ready now to present the main duality theorem in this note, which gener

[12, Corollary 4] (respectively [12, Corollary 5]) from the case of a base field (respec
a Dedekind domain) to the case of an arbitrary Noetherian ring:

Theorem 2.9. Let R be Noetherian,H a HopfR-algebra with twisted antipode,A #σ H

a right H -crossed product with invertible cocycle,U ⊆ H ∗ a right H -module subalge
bra and consider theR-pairing P := (H,U). Assume there exists a rightH -submodule
V ⊆ H ∗, such that(V ,U) is compatible. IfU ⊂ RH is A ⊗R H -pure (e.g.,H is a Hopf
α-algebra andU ⊆ H ◦ is anR-subbialgebra), then we have anR-algebra isomorphism
(A #σ H) #U � A ⊗R (H #U).
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Proof. By Proposition 2.7 it remains to show thatαP
A⊗RH is injective. If U ⊂ RH is

A ⊗R H -pure, thenαP
A⊗RH is injective by Lemma 2.8. IfH is a Hopf α-algebra, then

H ◦ ⊂ RH is pure and for everyR-subbialgebraU ⊆ H ◦, U ⊂ RH is pure (since by con
ventionU ⊆ H ◦ is pure), henceαP

A⊗RH is injective. �
Definition 2.10. Let R be Noetherian. After [25] we call anR-algebraA residually finite
(called in other referencesproper), if the canonical mapA → A◦∗ is injective (equivalently
if

⋂{Ke(f ) | f ∈ A◦} = 0).

Corollary 2.11. Let H be a HopfR-algebra with twisted antipode andRH projective,
A#σ H a right H -crossed product with invertible cocycle,U ⊆ H ∗ a right H -module sub-
algebra and consider theR-paringP := (H,U). Assume there exists a rightH -submodule
V ⊆ H ∗, such that(V ,U) is compatible. IfU ⊆ H ∗ is dense and the canonicalR-linear
mapαP

A⊗RH is injective(e.g.,R is Noetherian andU ⊆ RH is A-pure), then there exists
denseR-subalgebraL⊆ EndR(H) and anR-algebra isomorphism

(A #σ H) #U � A ⊗R L

This is the case in particular, ifR is a QF ring,H is a residually finite Hopfα-algebra and
U ⊆ H ◦ is a denseR-subbialgebra.

Proof. If U ⊆ H ∗ is dense, thenL := H # U
λ

↪→ EndR(H) is a denseR-subalgebra by
Lemma 2.4(4) and the isomorphism follows by Theorem 2.9. IfR is a QF ring andH is
a residually finite Hopfα-algebra, thenH ◦ ⊂ H ∗ is dense by [4, Proposition 2.4.19].
moreoverU ⊆ H ◦ is a denseR-subbialgebra, thenU ⊆ H ∗ is dense,αP

A⊗RH is injective
and we are done.�
Corollary 2.12. Let H be a HopfR-algebra with twisted antipode,A #σ H a right
H -crossed product with invertible cocycle and consider theR-pairingP := (H,H ∗). Then
we have an isomorphism ofR-algebras

(A #σ H) #H ∗ � A ⊗R

(
H #H ∗)

at least when:

(1) RH is finitely generated projective, or
(2) RA is finitely generated,H is cocommutative andαP

A⊗RH is injective (e.g., R is
Noetherian andH ∗ ↪→ RH is A ⊗R H -pure).

Proof. (1) SinceRH is finitely generated projective, the canonicalR-linear mapJ : A⊗R

H ∗ → HomR(H,A) is bijective andH ∗ satisfies the RL-condition (12) with respect toH

by Lemma 2.4(3), hence(H ∗,H ∗) is compatible. MoreoverP = (H,H ∗) � (H ∗∗,H ∗)
satisfies theα-condition, sinceRH ∗ is finitely generated projective. The result follow

now by Proposition 2.7.
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(2) Since RA is finitely generated, the canonicalR-linear map J :A ⊗R H ∗ →

HomR(H,A) is surjective. SinceH is cocommutative,H ∗ satisfies the RL-condition (12
with respect toH, hence(H ∗,H ∗) is compatible. By assumptionαP

A⊗RH is injective and
we are done by Proposition 2.7.�
Corollary 2.13. LetH be a free HopfR-algebra of rankn andA #σ H a right H -crossed
product with invertible cocycle. Then we have an isomorphism ofR-algebras

(A #σ H) #H ∗ � A ⊗R Mn(R) � Mn(A).

Proof. By Corollary 2.12(A #σ H) # H ∗ � A ⊗R (H # H ∗). SinceRH is finitely gener-
ated projective,H # H ∗ � EndR(H) by Lemma 2.4(3). ButRH is free of rankn, hence
EndR(H) � Mn(R). It is evident thatA ⊗R Mn(R) � Mn(A) and we are done.�

The right H ∗-submodule Hυ ⊆ H ∗

In what follows letH be alocally projectiveHopf R-algebra withtwisted antipodeand
consider the measuringα-pairing P := (H ∗,H) (notice that the canonicalR-linear map
αP

R :H → H ∗∗ is injective).

Lemma 2.14. ConsiderH ∗ with the rightH ∗-action

(f ↼ g)(h) :=
∑

g
(
h3S(h1)

)
f (h2) for all f,g ∈ H ∗ andh ∈ H.

ThenH ∗ is a rightH ∗-module andHυ := H Rat(H ∗
H ∗) is a leftH -comodule with structure

mapυ :Hυ → H ⊗R Hυ.

Proof. For arbitraryf,g, g̃ ∈ H ∗ we have

(
f ↼

(
g 	 g̃

))
(h) =

∑(
g 	 g̃

)(
h3S(h1)

)
f (h2)

=
∑

g
(
h31S(h1)1

)
g̃
(
h32S(h1)2

)
f (h2)

=
∑

g
(
h31S(h12)

)
g̃
(
h32S(h11)

)
f (h2)

=
∑

g
(
h4S(h2)

)
g̃
(
h5S(h1)

)
f (h3)

=
∑

g̃
(
h3S(h1)

)
g
(
h23S(h21)

)
f (h22)

=
∑

g̃
(
h3S(h1)

)
(f ↼ g)(h2)

= (
(f ↼ g) ↼ g̃

)
(h).

SinceRH is locally projective, analogously to Theorem 1.5 we have thatH Rat(H ∗
H ∗) is a
left H -comodule. �
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Proposition 2.15. Consider the leftH -comodule(Hυ,υ).

(1) If f ∈ Hυ, thenυ(f ) = ∑
f〈−1〉 ⊗ f〈0〉 satisfies the following conditions:

(a) f 	 g = ∑
gf〈−1〉 	 f〈0〉 for all g ∈ H ∗;

(b) h ↼ f = ∑
f〈−1〉(f〈0〉 ⇀ h) for all h ∈ H ;

(c)
∑

h3S(h1)f (h2) = ∑
f〈−1〉f〈0〉(h) for all h ∈ H.

(2) Let f ∈ H ∗. If there existsζ = ∑
f〈−1〉 ⊗ f〈0〉 ∈ H ⊗R H ∗ that satisfies any of th

conditions in(1), thenf ∈ Hυ andυ(f ) = ζ.

(3) For all f, f̃ ∈ Hυ andg ∈ H ∗ we have

(
f 	 f̃

)
	 g =

∑
g
(
f̃〈−1〉f〈−1〉

)
	

(
f〈0〉 	 f̃〈0〉

)
.

(4) Hυ ⊆ H ∗ is a rightH -submodule with

υ(f h) =
∑

S(h3)f〈−1〉h1 ⊗ f〈0〉h2 for all h ∈ H andf ∈ Hυ.

Proof. (1) Letf ∈ Hυ with υ(f ) = ∑
f〈−1〉 ⊗ f〈0〉.

(a) For allg ∈ H ∗ andh ∈ H we have

(f 	 g)(h) =
∑

f (h1)g(h2) =
∑

g
(
h3S(h12)h11

)
f (h2)

=
∑

g
(
h23S(h21)h1

)
f (h22) =

∑
(h1g)

(
h23S(h21)

)
f (h22)

=
∑(

f ↼ (h1g)
)
(h2) =

∑
(h1g)(f〈−1〉)f〈0〉(h2)

=
∑

g(f〈−1〉h1)f〈0〉(h2) =
∑

(gf〈−1〉)(h1)f〈0〉(h2)

=
(∑

(gf〈−1〉) 	 f〈0〉
)
(h).

(b) For allg ∈ H ∗ andh ∈ H we have

g(h ↼ f ) = g
(∑

f (h1)h2

)
=

∑
f (h1)g(h2)

=
∑

f (h2)g
(
h3S(h12)h11

) =
∑

f (h22)g
(
h23S(h21)h1

)
=

∑
f (h22)(h1g)

(
h23S(h21)

) =
∑(

f ↼ (h1g)
)
(h2)

=
∑

(h1g)(f〈−1〉)f〈0〉(h2) = g
(∑

f〈−1〉h1f〈0〉(h2)
)

= g
(∑

f〈−1〉(f〈0〉 ⇀ h)
)
.

(c) Trivial.
(2) Letf ∈ H ∗ andζ = ∑

f〈−1〉 ⊗ f〈0〉 ∈ H ⊗R H ∗. We are done once we have show∑

that(f ↼ g)(h) = g(f〈−1〉)f〈0〉(h) for arbitraryg ∈ H ∗ andh ∈ H.
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(a) Assume (1)(a) holds. Then we have

(f ↼ g)(h) =
∑

g
(
h3S(h1)

)
f (h2)

=
∑(

S(h1)g
)
(h22)f (h21)

=
∑(

f 	 S(h1)g
)
(h2)

=
∑(

S(h1)gf〈−1〉 	 f〈0〉
)
(h2)

=
∑(

S(h1)gf〈−1〉
)
(h2)f〈0〉(h3)

=
∑

g
(
f〈−1〉h2S(h1)

)
f〈0〉(h3)

=
∑

g(f〈−1〉)f〈0〉(h).

(b) Assume (1)(b) holds. Then we have

(f ↼ g)(h) =
∑

g
(
h3S(h1)

)
f (h2)

=
∑(

S(h1)g
)
(h2 ↼ f )

=
∑(

S(h1)g
)(

f〈−1〉(f〈0〉 ⇀ h2)
)

=
∑(

S(h1)g
)(

f〈−1〉h2f〈0〉(h3)
)

=
∑

g
(
f〈−1〉h2S(h1)

)
f〈0〉(h3)

=
∑

g(f〈−1〉)f〈0〉(h).

(c) Trivial.
(3) Letf, f̃ ∈ Hυ. For arbitraryg ∈ H ∗ we have by (1)(a):

(
f 	 f̃

)
	 g = f 	

(
f̃ 	 g

)
=

∑
f 	

(
gf̃〈−1〉 	 f̃〈0〉

)
=

∑(
f 	 gf̃〈−1〉

)
	 f̃〈0〉

=
∑(

gf̃〈−1〉
)
f〈−1〉 	

(
f〈0〉 	 f̃〈0〉

)
=

∑
g
(
f̃〈−1〉f〈−1〉

)
	

(
f〈0〉 	 f̃〈0〉

)
.

(4) Letf ∈ Hυ andh ∈ H. Then we have for allg ∈ H ∗ andk ∈ H :

(
(f h) ↼ g

)
(k) =

∑
g
(
k3S(k1)

)
(f h)(k2)∑ ( )
= g k3S(k1) f (hk2)
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=
∑

g
(
S(h4)h3k3S(k1)S(h12)h11

)
f (h2k2)

=
∑

g
(
S(h3)h23k3S(k1)S(h21)h1

)
f (h22k2)

=
∑(

h1gS(h3)
)(

h23k3S(k1)S(h21)
)
f (h22k2)

=
∑(

h1gS(h3)
)(

h23k3S(h21k1)
)
f (h22k2)

=
∑(

h1gS(h3)
)(

(h2k)3S
(
(h2k)1

))
f

(
(h2k)2

)
=

∑(
f ↼

(
h1gS(h3)

))
(h2k)

=
∑(

h1gS(h3)
)
(f〈−1〉)f〈0〉(h2k)

=
∑

g
(
S(h3)f〈−1〉h1

)
(f〈0〉h2)(k). �

As a consequence of Proposition 2.7 and Theorem 2.9 and analogous to [23,
rem 4.2] we get

Theorem 2.16. Let H be a locally projective HopfR-algebra with twisted antipode
U ⊆ H ∗ a right H -module subalgebra,P := (H,U) the inducedR-pairing and assume
thatϕ(H ⊗R A), ψ(H ⊗R A) ⊆ J (A⊗R υ−1(H ⊗R U)). If αP

A⊗RH is injective(e.g.,R is
Noetherian andU ⊂ RH is A-pure), then there is anR-algebra isomorphism

(A #σ H) #U � A ⊗R (H #U).

Proof. It follows from Proposition 2.15(4) thatV := υ−1(H ⊗R U) ⊂ H ∗ is a right
H -submodule. SinceV ⊆ Hυ, it follows by Proposition 2.15(1)(b) that(V ,U) satisfies
the RL-condition (12) with respect toH. Consequently(V ,U) is compatible. IfαP

A⊗RH is
injective, then the result follows by Proposition 2.7.�
Corollary 2.17. LetH be a locally projective HopfR-algebra with twisted antipode,U ⊆
Hυ a right H -module subalgebra ofH ∗, P := (H,U) the inducedR-pairing and assume
thatυ(U) ⊆ H ⊗R U and ϕ̄(H ⊗R A), ψ̄(H ⊗R A) ⊆ J (A ⊗R U). If αP

A⊗RH is injective
(e.g.,R is Noetherian andU ⊂ RH is A-pure), then there is anR-algebra isomorphism

(A #σ H) #U � A ⊗R (H #U).

Blattner–Montgomery duality theorem revisited

The following definition is suggested by [9, Definition 1.3]:

Definition 2.18. Let R be Noetherian,H an R-bialgebra,U ⊆ H ◦ an R-submodule and
A a left H -module algebra. ThenA will be calledU -locally finite if and only if for every⋂

a ∈ A there exists a finite subset{f1, . . . , fk} ⊂ U, such that k

i=1 Ke(fi) ⊆ (0A :a).
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Lemma 2.19 [1, Proposition 3.3]. Let R be Noetherian,H an α-bialgebra,U ⊆ H ◦ an
R-subbialgebra and consider the measuringα-pairing (H,U).

(1) If A is a right (a left) U -comodule algebra, thenA is a left(a right) H -module algebra
(2) If A is a left(a right) H -module algebra, thenRatU(H A) is a right(a left) U -comodule

algebra.

The following result generalizes [9, Lemma 1.5] from the case of a base field to th
of an arbitrary Noetherian ground ring.

Lemma 2.20. Let R be Noetherian,A an R-algebra,H an α-bialgebra andU ⊆ H ◦ an
R-subbialgebra. ThenA is a U -locally finite leftH -module algebra if and only ifA is a
right U -comodule algebra.

Proof. Consider the measuringα-pairing (H,U). AssumeA to be a rightU -comodule
algebra. ThenA is a leftH -module algebra by Lemma 2.19(1). Moreover for everya ∈ A

with �(a) = ∑n
j=1 aj ⊗ gj ∈ A ⊗R U we have

⋂n
j=1 Ke(gi) ⊆ (0A :a), i.e., H A is U -

locally finite. On the other hand, assumeA to be aU -locally finite left H -module algebra
and considerH with the left U -adic topologyTU−(H) (see 1.3). By Lemma 2.19(2
RatU(H A) is a rightU -comodule algebra and we are done once we have shown thaA =
RatU(H A). By assumption there exists for everya ∈ A a subsetW = {f1, . . . , fk} ⊂ U,

such that
⋂k

i=1 Ke(fi) ⊆ (0A :a). If h ∈ (0U :W), then fi(h) = (hfi)(1H ) = 0 for i =
1, . . . , k and so(0U :W) ⊆ ⋂k

i=1 Ke(fi) ⊆ (0A :a), i.e.,A is a discrete left(H,TU−(H))-
module (see 1.3). ConsequentlyA ∈ σ [H U ] = RatU(HM) (see Theorem 1.5), i.e.,A =
RatU(H A). �

The following result provides an improved version of Blattner–Montgomery du
theorem for the case of arbitrary Noetherian base rings, replacing the assumption “U ⊆ H ◦
is a HopfR-subalgebra with bijective antipode” in the original version [9, Theorem
and in [5, 3.2] with “U ⊆ H ◦ is anyR-subbialgebra” (as suggested by M. Koppinen [
Corollary 5.4]); and replacing the assumption thatH has a bijective antipode with th
weaker condition thatH has a twisted antipodeS.

Corollary 2.21. LetR be Noetherian,H a Hopfα-algebra with twisted antipode andU ⊆
H ◦ anR-subbialgebra. LetA be aU -locally finite leftH -module algebra and considerA
with the induced rightH -comodule structure. If there exists a rightH -submoduleV ⊆ H ∗,
such thatCf(A) ∪ S∗(Cf(A)) ⊆ V and(V ,U) satisfies the RL-condition(12) with respect
to H, then we have an isomorphism ofR-algebras

(A #H) #U � A ⊗R (H #U).

Proof. For the trivial cocycleσ(h⊗ k) := ε(h)ε(k)1A we haveA#σ H = A#H. Consider
the canonicalR-linear mapJ :A ⊗R V → HomR(H,A). For everyh ∈ H anda ∈ A we

have
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and
ϕ(h ⊗ a)
(
h̃
) = [

S
(
h̃
)
a
]
ε(h) =

∑
a〈0〉

〈
S
(
h̃
)
, a〈1〉

〉
ε(h)

=
∑

a〈0〉S∗(a〈1〉)
(
h̃
)
ε(h) = J

(∑
a〈0〉ε(h) ⊗ S∗(a〈1〉)

)(
h̃
)
,

i.e.,ϕ(H ⊗R A) ⊆ J (A ⊗R V ). On the other hand we have for allh, h̃ ∈ H anda ∈ A:

ψ(h ⊗ a)
(
h̃
) = [

h̃a
]
ε(h) =

∑
a〈0〉

〈
h̃, a〈1〉

〉
ε(h) = J

(∑
a〈0〉ε(h) ⊗ a〈1〉

)(
h̃
)
,

i.e., ψ(H ⊗R A) ⊆ J (A ⊗R U). By assumption(V ,U) satisfies the RL-condition (12
with respect toH, hence(V ,U) is compatible and the result follows then by Theorem
(notice thatP = (H,U) is anα-pairing). �

As a consequence of Corollaries 2.11 and 2.21 we get

Corollary 2.22. Let R be Noetherian,H a projective Hopfα-algebra with twisted an
tipode andU ⊆ H ◦ an R-subbialgebra. LetA be a U -locally finite left H -module al-
gebra and considerA with the induced rightH -comodule structure. Assume there ex
a right H -submoduleV ⊆ H ∗, such thatCf(A) ∪ S∗(Cf(A)) ⊆ V and (V ,U) satisfies
the RL-condition(12) with respect toH. If U ⊆ H ∗ is dense, then there exists a den
R-subalgebraL ⊆ EndR(H) and anR-algebra isomorphism

(A #H) #U � A ⊗R L.

In particular this holds, ifR is a QF ring,H is residually finite andU ⊆ H ◦ is dense.

Cleft H -extensions

Hopf–Galois extensions were presented by S. Chase and M. Sweedler [15] for acom-
mutativeR-algebra acting on a HopfR-algebra and are considered as generalizatio
the classical Galois extensions over fields (e.g., [25, 8.1.2]). In [24] H. Kreimer
M. Takeuchi extended these to thenoncommutativecase.

2.23. H -extensions [17]

Let H be anR-bialgebra,B a right H -comodule algebra and consider theR-algebra
A := BcoH = {a ∈ B | �(a) = a ⊗ 1H }. The algebra extensionA ↪→ B is called aright
H -extension. A (total) integral for B is anH -colinearmapθ :H → B (with θ(1H ) = 1B ).
If B admits an integral, which is invertible in(HomR(H,B), 	), then the rightH -extension
A ↪→ B is calledcleft.

Lemma 2.24 ([20, Theorems 9, 11], [8, Theorem 1.18], [19, 1.1.]). Let H be anR-bi-

algebra.
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(1) If B/A is a cleft right H -extension with total invertible integralθ :H → B, thenA is
a leftH -module algebra through

ha =
∑

θ(h1)aθ−1(h2) for all h ∈ H anda ∈ A

andA #σ H is a rightH -crossed product with invertible cocycle

σ(h ⊗ k) =
∑

θ(h1)θ(k1)θ
−1(h2k2),

where σ−1(h ⊗ k) =
∑

θ(h1k1)θ
−1(k2)θ

−1(h2).

MoreoverB � A #σ H as rightH -comodule algebras.
(2) Let H be a HopfR-algebra. If B := A #σ H is a right H -crossed product with in

vertible cocycleσ ∈ HomR(H ⊗R H,A), thenB/A is a cleft right H -extension with
invertible total integral

θ :H → A #σ H, θ(h) = 1A #h,

where θ−1(h) =
∑

σ−1(S(h2) ⊗ h3
)

#σ S(h1).

Let H be a HopfR-algebra with twisted antipode,B/A a cleft right H -extension
with invertible total integralθ :H → B and consider theR-linear mapsϕ̃, ψ̃ :A ⊗R H →
HomR(H,A) defined as:

ϕ̃(h ⊗ a)
(
h̃
) =

∑
θ
(
S
(
h̃2

))
aθ(h1)θ

−1(S(
h̃1

)
h2

)
, (15)

ψ̃(h ⊗ a)
(
h̃
) =

∑
θ−1(S(

h̃3
))

aθ
(
S
(
h̃2

)
h1

)
θ−1(h̃4S

(
h̃1

)
h2

)
. (16)

With the help of Lemma 2.24 one can easily derive the following version of Theorem
and Corollary 2.11 forcleft right H -extensions:

Theorem 2.25. Let R be Noetherian,H a HopfR-algebra with twisted antipode,B/A a
cleft right H -extension with invertible total integralθ :H → B, U ⊆ H ∗ a rightH -module
subalgebra and consider theR-pairing P := (H,U). Assume there exists a rightH -sub-
moduleV ⊆ H ∗, such that:

(1) ϕ̃(H ⊗R A), ψ̃(H ⊗R A) ⊆ J (A ⊗R V );
(2) (V ,U) satisfies theRL-condition (12)with respect toH.

If U ⊂ RH is A ⊗R H -pure (e.g.,H is a Hopfα-algebra andU ⊆ H ◦ is anR-subbi-
algebra), then there is anR-algebra isomorphism

B #U � A ⊗R (H #U).

If moreoverRH is projective andU ⊆ H ∗ is dense(e.g.,R is a QF ring,H is residually fi-

nite andU ⊆ H ◦ is dense), thenB #U � A⊗R L for a denseR-subalgebraL⊆ EndR(H).
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3. Koppinen duality theorem

In this section we prove an improved version of Koppinen’s duality theorem pres
in [23] over arbitrary Noetherian ground rings under fairly weak conditions. In fac
results in this section are similar to those in the second section with a main advantag
they are evident for arbitrary HopfR-algebras (not necessarily with twisted antipodes)

3.1. Let H be anR-bialgebra andB a rightH -comodule algebra. Then #op(H,B) =
HomR(H,B) is an associativeR-algebra with multiplication

(f 	̃ g)(h) =
∑

f (h2)〈0〉g
(
h1f (h2)〈1〉

)
for all f,g ∈ HomR(H,B), h ∈ H (17)

and unityηB ◦εH . If U ⊆ H ∗ is aleft H -module subalgebra (withεH ∈ U ), thenB #opU =
B ⊗R U is an associativeR-algebra with multiplication

(b #f )
(
b̃ # f̃

) =
∑

b〈0〉b̃ #
((

b〈1〉f̃
)
	 f

)
for all b, b̃ ∈ B, f, f̃ ∈ U (18)

(and unity 1B # εH ).

Definition 3.2. Let H be anR-bialgebra,U ⊆ H ∗ a left H -module subalgebra under th
left regularH -action,V ⊆ H ∗ anR-submodule and consider theR-linear maps

λ̄ :H #op U → EndR(H),
∑

hj ⊗ gj �→
[
k̃ �→

∑(
gj ⇀ k̃

)
hj

]
,

ρ̄ :V → EndR(H), g �→ [
k̃ �→ k̃ ↼ g

]
. (19)

We say(V ,U) satisfies theRL-condition with respect toH, if ρ̄(V ) ⊆ λ̄(H #op U), i.e., if

for everyg ∈ V, ∃{
(hj , gj )

} ⊂ H × U

s.t. k̃ ↼ g =
∑(

gj ⇀ k̃
)
hj for everyk̃ ∈ H. (20)

Lemma 3.3. Let H be anR-bialgebra,U ⊆ H ∗ a left H -module subalgebra and con
siderH as a rightH -comodule algebra through∆H . Let #op(H,H) andH #op U be the
R-algebras defined in3.1and consider the canonicalR-algebra morphismβ̄ :H #opU →
#op(H,H).

(1) If RH is finitely generated projective, thenH #op H ∗ β̄� #op(H,H) asR-algebras.
(2) If H is a HopfR-algebra, then#op(H,H) � EndR(H)op asR-algebras.
(3) Let H be a finitely generated projective HopfR-algebra. Thenλ̄ :H #op H ∗ →

EndR(H)op, defined in(19), is anR-algebra isomorphism. In particularH ∗ satisfies

the RL-condition(20)with respect toH.
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(4) If RH is locally projective andU ⊆ H ∗ is dense, thenβ̄(H #op U) ⊆ #op(H,H) is a
denseR-subalgebra. If moreoverH is a projective HopfR-algebra, then

H #op U
λ̄

↪→ EndR(H)op

is a denseR-subalgebra.

Proof. (1) SinceRH is finitely generated projective,̄β is bijective.
(2) LetH be a HopfR-algebra and consider theR-linear maps

φ̄1 : #op(H,H) → EndR(H)op, f �→
[
h �→

∑
h1f (h2)

]
,

φ̄2 : EndR(H)op → #op(H,H), g �→
[
k �→

∑
S(k1)g(k2)

]
.

For arbitraryf,g ∈ #op(H,H) andh ∈ H we have

φ̄1(f 	̃ g)(h) =
∑

h1(f 	̃ g)(h2) =
∑

h1f (h3)1g
(
h2f (h3)2

)
=

∑
h11f

(
h2)1g

(
h12f (h2)2

) = φ̄1(g)
(∑

h1f (h2)
)

= (
φ̄1(g) ◦ φ̄1(f )

)
(h),

i.e., φ̄1 is anR-algebra morphism. For allR-linear mapsf,g :H → H andh ∈ H we have

(
φ̄1 ◦ φ̄2

)
(g)(h) =

∑
h1φ̄2(g)(h2) =

∑
h1S(h2)g(h3)

=
∑

ε(h1)g(h2) = g(h),(
φ̄2 ◦ φ̄1

)
(f )(h) =

∑
S(h1)φ̄1(f )(h2) =

∑
S(h1)h2f (h3)

=
∑

ε(h1)f (h2) = f (h).

Henceφ̄1 is anR-algebra isomorphism with inversēφ2.

(3) LetH be a finitely generated projective HopfR-algebra. By (1) and (2)

H #op H ∗ β̄� #op(H,H)
φ̄1� EndR(H)op

asR-algebras. Hencēλ = φ̄1 ◦ β̄ :H #op H ∗ → EndR(H)op is anR-algebra isomorphism
In particularρ̄(H ∗) ⊆ EndR(H)op = λ̄(H #opH ∗), i.e.,H ∗ satisfies the RL-condition (20
with respect toH.

(4) By [3, Theorem 3.18(2)]̄β(H #op U) ⊆ #op(H,H) is a denseR-subalgebra. IfH is
a HopfR-algebra, then

#(H,H)
φ̄1� EndR(H)op

asR-algebras by (2) and we are done (notice thatβ̄ is an embedding, ifRH is projec-

tive). �
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Lemma 3.4. Let H be a HopfR-algebra, A an R-algebra, U ⊆ H ∗ a left H -sub-
module and consider theR-paring P := (H,U). Then the canonicalR-linear mapᾱ :=
αP

A⊗RH : (A ⊗R H) ⊗R U → HomR(H,A ⊗R H) is injective if and only if the following
map is injective

χ̄ :A ⊗R (H ⊗R U) → EndA−(A ⊗R H),

a ⊗ (h ⊗ f ) �→ [(
ã ⊗ k

) �→ ãa ⊗ (f ⇀ k)h
]
. (21)

Proof. First we show that theR-linear map

ε̄ : HomR(H,A ⊗R H) → EndA−(A ⊗R H), g �→ [
ã ⊗ k �→ (

ã ⊗ k1
)
g(k2)

]
is bijective with inverse

ε̄−1 : EndA−(A ⊗R H) → HomR(H,A ⊗R H), f �→ [
k �→ (

1A ⊗ S(k1)
)
f (1A ⊗ k2)

]
.

In fact we have for allf ∈ EndA−(A ⊗R H), k ∈ H, ã ∈ A:

ε̄
(
ε̄−1(f )

)(
ã ⊗ k

) =
∑(

ã ⊗ k1
)
ε̄−1(f )(k2)

=
∑(

ã ⊗ k1
)(

1A ⊗ S(k2)
)
f (1A ⊗ k3)

=
∑(

ã ⊗ k1S(k2)
)
f (1A ⊗ k3)

=
∑(

ã ⊗ εH (k1)1H

)
f (1A ⊗ k2)

=
∑(

ã ⊗ 1H

)
f (1A ⊗ k)

= f
(
ã ⊗ k

)
and for allg ∈ HomR(H,A ⊗R H), k ∈ H :

ε̄−1(ε̄(g)
)
(k) =

∑(
1A ⊗ S(k1)

)
ε̄(g)(1A ⊗ k2)

=
∑(

1A ⊗ S(k1)
)
(1⊗ k2)g(k3)

=
∑(

1A ⊗ S(k1)k2
)
g(k3)

=
∑(

1A ⊗ εH (k1)1H

)
g(k2)

= (1A ⊗ 1H )g(k)

= g(k).

Moreover we have for alla ∈ A, h ∈ H, f ∈ U andk ∈ H :

(
ε̄ ◦ ᾱ

)(
a ⊗ (h ⊗ f )

)(
ã ⊗ k

) =
∑(

ã ⊗ k1
)
αP

A⊗RH

(
a ⊗ (h ⊗ f )

)
(k2)

=
∑(

ã ⊗ k1
)
(a ⊗ h)f (k2)∑
= ãa ⊗ k1f (k2)h
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= ãa ⊗ (f ⇀ k)h

= χ̄
(
a ⊗ (h ⊗ f )

)(
ã ⊗ k

)
,

i.e., χ̄ = ε̄ ◦ ᾱ. Consequentlȳχ is injective iff ᾱ is so. �
3.5. Let H be a HopfR-algebra,A #σ H a right H -crossed product with invertibl

cocycle and consider theR-linear mapsϕ̄, ψ̄ :H ⊗R A → HomR(H,A) defined as

ϕ̄(h ⊗ a)
(
h̃
) =

∑[
h̃1a

]
σ
(
h̃2 ⊗ h

)
,

ψ̄(h ⊗ a)
(
h̃
) =

∑
σ−1(S(

h̃3
) ⊗ h̃4

)[
S
(
h̃2

)
a
]
σ
(
S
(
h̃1

) ⊗ h̃5h
)
.

Let U ⊆ H ∗ be aleft H -module subalgebra,V ⊆ H ∗ an R-submodule and consider th
R-linear mapJ :A ⊗R V → HomR(H,A). We say(V ,U) is compatible, if the following
conditions are satisfied:

(1) ϕ̄(H ⊗R A), ψ̄(H ⊗R A) ⊆ J (A ⊗R V );
(2) (V ,U) satisfies theRL-condition(20) with respect toH.

Analogously to Proposition 2.7 and in the light of Lemma 3.4 and the modified
condition (20) we restate [12, Theorem 8, Corollary 9] for the case of an arbitrary com
tative ground ring:

Proposition 3.6. Let H be a HopfR-algebra,A #σ H be a rightH -crossed product with
invertible cocycle,U ⊆ H ∗ a left H -module subalgebra and consider theR-pairing P :=
(H,U). Assume there exists anR-submoduleV ⊆ H ∗, such that(V ,U) is compatible. If
the canonicalR-linear map

ᾱ := αP
A⊗RH : (A ⊗R H) ⊗R U → HomR(H,A ⊗R H)

is injective, then there exists anR-algebra isomorphism

(A #σ H) #op U � A ⊗R

(
H #op U

)
.

Proof. By [12, Lemma 7] we have a commutative diagram ofR-algebra morphisms

(A #σ H) #op U

ᾱ γ̄

#op(H,A #σ H)
π̄

EndA−(A ⊗R H)op

χ̄δ̄

(22)
A ⊗R (H #op U)
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where

ᾱ
(
(a #h) #op f

)
(k) = (a #h)f (k),

χ̄
(
a ⊗ (

h #op f
))(

ã ⊗ k
) = ãa ⊗ (f ⇀ k)h,

γ̄
(
(a #h) #op f

)(
ã ⊗ k

) =
∑

ã[k1a]σ(k2 ⊗ h1) ⊗ (f ⇀ k3)h2,

δ̄
(
a ⊗ (

h #op f
))

(k) =
∑

σ−1(S(k4) ⊗ k5
)[

S(k3)a
]
σ
(
S(k2) ⊗ k6h1

)
#S(k1)(f ⇀ k7)h2,

π̄(g)
(
ã ⊗ k

) =
∑(

ã #σ k1
)
g(k2).

By assumptionᾱ := αP
A⊗RH is injective, henceχ̄ is by Lemma 3.4 injective and con

sequentlyδ̄ is injective. Moreoverπ̄ is an R-algebra isomorphism by [23, Propos
tion 4.1], henceγ̄ is injective. It remains then to show that Im(γ̄ ) ⊆ Im(χ̄) and Im(δ̄) ⊆
Im(ᾱ). For arbitrarya ⊗ h ∈ A ⊗R H, there exists

∑
au ⊗ gu ∈ A ⊗R V such that

ϕ̄(h1 ⊗ a) = J (
∑

au ⊗ gu) and moreover there exists
∑

huj #op guj ∈ H ⊗R U with
ρ̄(gu) = λ̄(

∑
huj #op guj ). So for alla, ã ∈ A, h, k ∈ H andf ∈ U :

γ̄
(
(a #h) #op f

)(
ã ⊗ k

) =
∑

ã[k1a]σ(k2 ⊗ h1) ⊗ (f ⇀ k3)h2

=
∑

ã[k11a]σ(k12 ⊗ h1) ⊗ (f ⇀ k2)h2

=
∑

ãϕ̄(h1 ⊗ a)(k1) ⊗ (f ⇀ k2)h2

=
∑

ãJ
(∑

au ⊗ gu

)
(k1) ⊗ (f ⇀ k2)h2

=
∑

ãaugu(k1) ⊗ (f ⇀ k2)h2

=
∑

ãau ⊗ gu(k1)k2f (k3)h2

=
∑

ãau ⊗ (k1 ↼ gu)f (k2)h2

=
∑

ãau ⊗ (gu,j ⇀ k1)hu,j f (k2)h2

=
∑

ãau ⊗ k1gu,j (k2)f (k3)hu,jh2

=
∑

ãau ⊗ (
(gu,j 	 f ) ⇀ k

)
hu,jh2

= χ̄
(
au ⊗ (

hu,jh2 #op (gu,j 	 f )
))(

ã ⊗ k
)
,

i.e., Im(γ̄ ) ⊆ Im(χ̄). For arbitrarya ⊗ h ∈ A ⊗R H, there exists
∑

aw ⊗ gw ∈ A ⊗R V

such thatϕ̄(h1 ⊗ a) = J (
∑

aw ⊗ gw) and moreover there exists
∑

hwj #opgwj ∈ H ⊗R U

with ρ̄(gu) = λ̄(
∑

hwj #op gwj ). So we have for alla ∈ A, h, k ∈ H andf ∈ U :

δ̄
(
a ⊗ (

h #op f
))

(k) =
∑

σ−1(S(k4) ⊗ k5
)[

S(k3)a
]
σ
(
S(k2) ⊗ k6h1

)
#S(k1)(f ⇀ k7)h2

=
∑

σ−1(S(k23) ⊗ k24
)[

S(k22)a
]
σ
(
S(k21) ⊗ k25h1

)

#S(k1)(f ⇀ k3)h2
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t

=
∑

ψ̄(h1 ⊗ a)(k2) #S(k1)(f ⇀ k3)h2

=
∑

J
(∑

aw ⊗ gw

)
(k2) #S(k1)(f ⇀ k3)h2

=
∑

awgw(k2) #S(k1)(f ⇀ k3)h2

=
∑

aw #S(k1)gw(k2)k3f (k4)h2

=
∑

aw #S(k1)(k2 ↼ gw)f (k3)h2

=
∑

aw #S(k1)(gw,j ⇀ k2)hw,j f (k3)h2

=
∑

aw #S(k1)k2gw,j (k3)f (k4)hw,jh2

=
∑

aw #gw,j (k1)f (k2)hw,jh2

=
∑

aw # (gw,j 	 f )(k)hw,jh2

= ᾱ
(
(aw #hw,jh2) #op gw,j 	 f

)
(k),

i.e., Im(δ̄) ⊆ Im(ᾱ) and we are done.�
As a consequence of Lemma 2.8 and Proposition 3.6 we get a theorem, analog

Theorem 2.9, which generalizes [12, Corollary 9] (respectively [12, Corollary 10]) from
case of a base field (respectively a Dedekind domain) to the case of an arbitrary Noe
ground ring:

Theorem 3.7. Let R be Noetherian,H a Hopf R-algebra,A #σ H a right H -crossed
product with invertible cocycle,U ⊆ H ∗ a left H -module subalgebra and consider t
R-pairing P := (H,U). Assume there exists anR-submoduleV ⊆ H ∗, such that(V ,U)

is compatible. IfU ⊂ RH is A ⊗R H -pure(e.g.,H is a Hopfα-algebra andU ⊆ H ◦ is an
R-subbialgebra), then we have anR-algebra isomorphism

(A #σ H)op #U � A ⊗R

(
H #op U

)
.

Corollary 3.8. Let H be a projective HopfR-algebra,A #σ H a right H -crossed produc
with invertible cocycle,U ⊆ H ∗ a left H -module subalgebra and consider theR-paring
P := (H,U). Assume there exists anR-submoduleV ⊆ H ∗, such that(V ,U) is compat-
ible. If U ⊆ H ∗ is dense and the canonicalR-linear mapαP

A⊗RH is injective(e.g.,R is
Noetherian andU ⊆ RH is A-pure), then there is a denseR-subalgebraL ⊆ EndR(H)op

and anR-algebra isomorphism

(A #σ H) #op U � A ⊗R L.

This is the case in particular, ifR is a QF ring,H is a residually finite Hopfα-algebra and

U ⊆ H ◦ is a denseR-subbialgebra.
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Proof. If U ⊆ H ∗ is dense, thenL := H #op U
λ̄

↪→ EndR(H)op is by Lemma 3.3 a dens
R-subalgebra. IfαP

A⊗RH is injective, then the isomorphism follows by Theorem 3.7
R is a QF ring andH is a residually finite Hopfα-algebra, thenH ◦ ⊂ H ∗ is dense by
[4, Proposition 2.4.19]. If moreoverU ⊆ H ◦ is a denseR-subbialgebra, thenU ⊆ H ∗ is
dense,αP

A⊗RH is injective and we are done.�
Similar argument to those in the proof of Corollary 2.12 can be used to prove

Corollary 3.9. Let H be a HopfR-algebra andA #σ H a right H -crossed product with
invertible cocycle. Then we have an isomorphism ofR-algebras

(A #σ H) #op H ∗ � A ⊗R

(
H #op H ∗)

at least when

(1) RH is finitely generated projective, or
(2) RA is finitely generated,H is cocommutative andαP

A⊗RH is injective (e.g., R is
Noetherian andH ∗ ↪→ RH is A ⊗R H -pure).

The subalgebra Hω ⊆ H ∗

In what follows letH be a locally projectiveHopf R-algebra and consider the me
suringα-pairingP := (H ∗,H) (notice that the canonicalR-linear mapαP

R :H → H ∗∗ is
injective).

3.10. ConsiderH ∗ with the rightH ∗-action

(f ↼ g)(h) :=
∑

f (h2)g
(
S(h1)h3

)
for all f,g ∈ H ∗ andh ∈ H.

ThenH ∗ is a rightH ∗-module andHω := H Rat(H ∗
H ∗) is analogously to Theorem 1.5

left H -comodule with structure mapω :Hω → H ⊗R Hω.

Analogously to [23, Propositions 3.2, 3.3] we have

Proposition 3.11. Consider the leftH -comodule(Hω,ω).

(1) If f ∈ Hω, thenω(f ) = ∑
f〈−1〉 ⊗ f〈0〉 satisfies the following conditions:

(a) f 	 g = ∑
f〈−1〉g 	 f〈0〉 for all g ∈ H ∗;

(b) h ↼ f = ∑
(f〈0〉 ⇀ h)f〈−1〉 for all h ∈ H ;

(c)
∑

f (h2)S(h1)h3 = ∑
f〈0〉(h)f〈−1〉 for all h ∈ H.

(2) Let f ∈ H ∗. If there existsζ = ∑
f〈−1〉 ⊗ f〈0〉 ∈ H ⊗R H ∗ that satisfies any of th

conditions in(1), thenf ∈ Hω andω(f ) = ζ.
(3) Hω ⊆ H ∗ is anR-subalgebra and moreover a leftH -comodule algebra.
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(4) Hω ⊆ H ∗ is a leftH -module subalgebra with

ω(hf ) =
∑

h1f〈−1〉S(h3) ⊗ h2f〈0〉 for all h ∈ H andf ∈ Hω.

As a consequence of Proposition 3.6 and Theorem 3.7 we get the following gene
tion of [23, Theorem 4.2]:

Theorem 3.12. Let H be a locally projective HopfR-algebra, U ⊆ H ∗ a left H -
module subalgebra,P := (H,U) the inducedR-pairing and assume that̄ϕ(H ⊗R A),

ψ̄(H ⊗R A) ⊆ J (A ⊗R ω−1(H ⊗R U)). If αP
A⊗RH is injective(e.g.,R is Noetherian and

U ⊂ RH is A-pure), then there is anR-algebra isomorphism

(A #σ H)op #U � A ⊗R

(
H #op U

)
.

Proof. Consider theR-submoduleV := ω−1(H ⊗R U). SinceV ⊆ Hω, it is clear by
Proposition 3.11(1)(b) that(V ,U) satisfies the RL-condition (20) with respect toH.

Consequently(V ,U) is compatible. IfαP
A⊗RH is injective, then we are done by Prop

sition 3.6. �
Corollary 3.13. Let H be a locally projective HopfR-algebra,U ⊆ Hω a left H -module
subalgebra,P := (H,U) the inducedR-pairing and assume thatω(U) ⊆ H ⊗R U and
ϕ̄(H ⊗R A), ψ̄(H ⊗R A) ⊆ J (A ⊗R U). If αP

A⊗RH is injective(e.g.,R is Noetherian and
U ⊂ RH is A-pure), then there is anR-algebra isomorphism

(A #σ H)op #U � A ⊗R

(
H #op U

)
.

Remark 3.14. If the Hopf algebraH has a bijective antipode then it has a twisted antipo
namelyS := S−1. In the proofs (by different authors) of several duality theorems for sm
products assuming the bijectivity of the antipode, no use was made ofS ◦ S−1 = id =
S−1 ◦ S; instead there was a heavy use of the main properties ofS−1, namely that it is an
algebra and coalgebra anti-morphism, and that

∑
S−1(h2)h1 = ε(h)1H =

∑
h2S

−1(h1) for everyh ∈ H.

A twisted antipode has also these main properties and this is why the original ve
(in [4]) of the results in section two remain true after replacing the bijectivity of the
tipode by the weaker condition of the existence of a twisted antipode!!

3.15. (Compare [22, Lemma 5.3].) LetH be a HopfR-algebra with a twisted antipod
S andA #σ H a rightH -crossed product with invertible cocycleσ. Thenhopaop := S(h)a

induces onAop a weak leftH op-action andAop#τ H op is a rightH op-crossed product with
invertible cocycle

τ :H ⊗R H → A, (h, k) �→ σ−1(S(h), S(k)
)
.

MoreoverA #σ H � (Aop #τ H op)op as rightH -comodule algebras.
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Remark 3.16. As indicated earlier, the original versions [4] of the main duality theor
for smash products were proved under the assumption of the bijectivity of the antip
H and it was not clear why such an assumption is not needed in the corresponding
for opposite smash products. Upon suggestion of the referee this condition is repla
this paper with the weaker condition thatH has a twisted antipode which clarifies, to so
extent, this issue (notice that the rule ofH is played in the third section byH op which has a
twisted antipode!!). However, it should be noted that the results in the third section c
be deduced directly from the corresponding results in the second section, since (i
of 3.15) we have to assume thatH has a twisted antipode!!

However, some of duality theorems for smash products can be deduced from th
responding ones for opposite smash products under the assumption thatH has a twisted
antipode. In what follows we give one of these results.

3.17. Let R be Noetherian,H a Hopf α-algebra with twisted antipode,U ⊆ H ◦ an
R-subbialgebra and consider theR-subbialgebraUcop ⊆ (H op)◦. Assume there exists a
R-submoduleV ⊆ (H op)∗, such that

for everyg ∈ V, there exist
{
(hj , gj )

} ⊂ H × U,

s.t. h̃ ↼ g =
∑

hj

(
gj ⇀ h̃

)
for all h ∈ H (23)

and that for every(h, a) ∈ H × A there exist subclasses{au, gu}, {bw,gw} ⊂ A × V with

∑
σ−1(S(

h̃2
) ⊗ S(h)

)[
S
(
h̃1

)
a
] =

∑
augu

(
h̃
)
,

∑
σ−1(h̃1, S

(
h̃5h

))[
h̃2a

]
σ
(
h̃3 ⊗ S

(
h̃4

)) =
∑

bwgw

(
h̃
)
.

Combining [23, Corollary 2.4] and Theorem 3.7 we get theR-algebra isomorphisms

(A #σ H) #U � ((
Aop #τ H op) #op Ucop)op � A ⊗R

(
H op #op Ucop)op

� (
Aop ⊗R

(
H op #op Ucop))op � A ⊗R (H #U).
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