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Abstract

In this paper we improve and extend duality theorems for crossed products obtained by M. Kop-
pinen (C. Chen) from the case of base fields (Dedekind domains) to the case of arbitrary Noetherian
commutative ground rings under fairly weak conditions. In particular we extend an improved version
of the celebrated Blatther—Montgomery duality theorem to the case of arbitrary Noetherian commu-
tative ground rings.
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Introduction

Crossed productsn the theory of Hopf algebras were presented independently by
R. Blattner, M. Cohen, S. Montgomery [10] and Y. Doi, M. Takeuchi [20]. The so-called
duality theorems for crossed products have their roots in the theory of group rings (e.qg.,
Cohen—Montgomery duality theoreis)]).

In [9] R. Blattner and S. Montgomery extended Cohen—Montgomery duality theorems
to the case of a HopR-algebra with bijective antipode acting on @&algebra, where
R is a base field, providing an infinite version of the finite one achieved independently
by M. Van den Bergh [28]. The celebrat@&@lattner—Montgomenduality theorem was
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extended by C. Chen and W. Nichols [14] to the case of Dedekind domains. In a joint
paper with J. Gomez-Torrecillas and F. Lobillo [5, Theorem 3.2] that result was extended
to the case of arbitrary Noetherian ground rings.

In the case of a HopR-algebra (with a not necessarily bijective antipode) over a base
field, M. Koppinen introduced in [23, Theorem 4.2] duality theorems for a rifjftrossed
product A #, H with invertible cocycle and a leftf-module subalgebr& € H*. For
a Hopf R-algebra with bijective antipode and atsubbialgebray € H°, [23, Corol-
lary 5.4] provided an improved version of Blattner—Montgomery duality theorem, dropping
the assumption thdf € H° is a HopfR-subalgebra with bijective antipode.

Inspired by the work of M. Koppinen, C. Chen presented in [12] duality theorems for
right H-crossed producta #, H with invertible cocycle. Although his main results were
formulated for arbitrary ground rings, the main applications he gave were limited to the
case of a base field [12, Corollaries 4, 9] or a Dedekind domain [12, Corollaries 5, 10].

The main objective of this note is unify these duality theorems and their proofs as well
as to generalize them to the case of arbitrary Noetherian ground rings under fairly weak
conditions. Another improvement is weakening the assumption that the antipode of the
Hopf algebraH is bijective by replacing it with the weaker condition théthas atwisted
antipode i.e., H°P has an antipods.

In the first section we present the needed definitions and lemmata. In the second
section we present the main result (Theorem 2.9) for a Hoplgebra with twisted an-
tipode, a rightH-crossed productl #, H with invertible cocycle and a rightZ-module
R-subalgebrd/ € H*, whereR is an arbitrary Noetherian ground ring. In cag# is lo-
cally projective we introduce a righif -submoduleH" € H*, such that HV, H) satisfies
the modified RL-condition (12) with respect # and use it to present results analogous
to those of M. Koppinen [23] (Theorem 2.16 and Corollary 3.13).

As a corollary, witho trivial, Theorem 2.21 generalizes Koppinen’s version of
the Blatther—Montgomery duality theorem [23, Corollary 5.4] to the case of arbitrary
Noetherian ground rings (this improves also [5, Theorem 3.2]). Corollary 2.22 extends
[25, Corollary 9.4.11] to the case of arbitrary QF ground rings (for an arbitrary right
H-crossed product see Corollary 2.11). Given a HRgdlgebraH with twisted antipode
and a rightH -crossed product #, H with invertible cocycle, Theorem 2.25 provides a
version Theorem 2.9 formulated for thkeft H-extensionA #, H)/A.

The third section deals with the case of an arbitrary HBgdlgebra (not necessarily
with twisted antipode). There we generalize results of C. Chen [12] from the case of a base
field or a Dedekind domain to the case of arbitrary Noetherian ring. For a locally projective
Hopf R-algebraH, we consider theR-subalgebraH® C H* presented by M. Koppinen
and prove his main duality theorem [23, Theorem 4.2] over arbitrary Noetherian ground
rings. We also generalize several corollaries of [23, Section 5] to the case of arbitrary
Noetherian ground rings.

By R we denote a commutative ring withp ££ Og. The category of unitaR-(bi)mo-
dules will be denoted byM . Any unadorned tensor product is understood to be &er
We considerR as a linear topological ring with the discrete topology. RemodulesM,

N we say anR-submoduleK c M is N-pure if the canonical map id ® (y: K ®g
N — M ®g N is injective. If K ¢ M is N-pure for everyR-module N, then we say
K c M is pure(in the sense of Cohn). F&-modulesM, N we denote byt : M @ g N —
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N ®r M the canonicatwistisomorphism. LetA be anR-algebra. The category aoital
left (respectively right)A-modules will be denoted by M (respectivelyM 4). For anA-
module M we call anA-submoduleK ¢ M R-cofinitg if M/K is finitely generated in
M. For any twoR-modulesM andN, we consider Hom(M, N) — NM with the finite
topology induced from the product topology of (N is considered with the discrete
topology). See [7] for more details.

We assume the reader is familiar with the theory of HRpdllgebras. For the basic def-
initions and concepts we refer to [27] and [25]. ForRitoalgebraC, Ac, ec) we call a
pureR- -submoduleC € C anR- -coalgebra prowded&c(C) C C®xC.ForanR- -coalgebra
C and anR-algebraA, we consider Hom(C, A) as anR-algebra under the so-calledn-
volution product(f x g)(c) :=>_ f(c1)g(c2) and unityn4 o ec.

For anR-coalgebraC and a rightC-comodule(M, o) we denote by QfM) C C the
R-submodule generated By o) | m € M, op(m) =) mg @ }. For anR-bialgebra
H and a rightH-comoduleM, We setMCOH {meM| QM(m) =m®1ly}.

1. Preliminaries

In this section we introduce some needed definitions and results.

1.1. MeasuringR-pairings

Let C be anR-coalgebra andd be an R-algebra with a morphism oR-algebras
B:A— C* aw [c+ (a,c)]. Then we callP := (A, C) a measuringR-pairing (the
terminology is inspired by [27, p. 139]). In this caSes an A-bimodule through the left
and the rightA-actions

a—c:= ch(a, c2) and ¢<+«a:= Z(a, c1)cp forallae A, ceC. (1)

1.2. Thex-condition
Let V, W be R-modules with anR-linear mapg:V — W*. We say theR-pairing

P = (V, W) satisfies thex-condition(or P is ana-pairing), if for every R-moduleM the
following map is injective:

aﬁ,:M@RW — Homg (V, M), Zmi®wit—>[vr—>2mi(v,w;)]. (2)
We say anR-module W satisfies thex-condition if the canonicalR-pairing (W*, W)
satisfies thex-condition (equivalently, iy W is locally projective in the sense of B. Zim-
mermann-Huisgen ([30, Theorem 2.1], [21, Theorem 3.2]): W is locally projective,
thengz W is flat andR-cogenerated (e.qg., [4, Bemerkung 2.1.5]).
1.3. TheC-adic topology

Let P = (A, C) be a measuring-pairing and conside€ as a leftA-module with the
induced leftA-action in (1). Them becomes a left linear topologic&lalgebra under the
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so-calledC -adic topologyZ¢_ (A) with neighbourhood basis of40
Bc-(04) ={(0c : W) | W C C is afinite subsgt

The category ofliscreteleft (A, 7¢—(A))-modules is denoted by[4C]. In facto[4C] is

the smallestGrothendieck full subcategory afM that containgC. The reader is referred

to [7,11] for more investigation of this topology and to [29] for the well-developed theory
of categories of type [M].

1.4. LetP = (A, C) be ameasuring-pairing. LetM be a leftA-module and consider
the canonical-linear mappy, : M — Homg (A, M). We set Rdt (4 M) := p;ll(M QrC)
and callM C-rational, if Rat‘ (4 M) = M. If 4M is C-rational, then we have aR-linear
mapoy = (ah) Lo py: M — M @ C. The class ofC-rational leftA-modules build a
full subcategory of, M, which we denote with R&t(4 M) (see [4, Lemma 2.2.7]).

Theorem 1.5 [2, Theorems 1.14, 1.15For a measuringR-pairing P = (A, C) the fol-
lowing are equivalent

(1) P satisfies thex-condition
(2) rC islocally projective an@p(A) € C* is dense.

If these equivalent conditions are satisfied, then we have isomorphisms of categories
ME ~o[4C]=Raf (4 M) ~ o[c+C] =Raf (c+ M).

1.6. ([5, Remark 2.14, Proposition 2.15], [6]) Assumeto be Noetherian. Lef be
an R-algebra and considet* as anA-bimodule through the regular left and right actions

(af)(b) = f(ba) and(fa)(b) = f(ab) fora,be Aandf e H*. 3)

We set

A°:={f € A*| Af A is finitely generated ioVig }
= {f € A* | Ke(f) contains amR-cofinite A-ideal}.

Then (A, A°) is a measuringe-pairing if and only if A° ¢ R4 is pure. In this casei®
is a locally projectiver-coalgebra and for ever-subcoalgebra < A°, the induced
R-pairing (A, C) is a measuring-pairing.

An R-algebra (respectively aR-bialgebra, a HopfR-algebra)A with A° ¢ R4 pure
will be called anx-algebra(respectively amx-bialgebra a Hopf «-algebrg. If H is an
a-bialgebra (respectively a Hopf-algebra), thenH® is an R-bialgebra (respectively a
Hopf R-algebra).
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1.7. [10,20] LetH be anR-bialgebra andd an R-algebra. Aweak left H-action on
AisanR-linearmapw:H ®g A — A, h ® a — ha, such that the inducef-linear map
B:A— Homg(H, A), a — [h— ha] is an R-algebra morphism andgl— a = « for all
acA.

Let A have aweak left/-actionand : H®r H — A anR-linear map. Thed #, H :=
A ®p H is a (ot necessarily associatiy&-algebra under the multiplication

(a#hy h)(a#y h) = a(h1d)o(ha® h)#, haho 4)
and has in general no unity. £ #, H is an associativ&R-algebra with unity } #, 1y,
thenA #, H is called aright H-crossed producin this casgA#, H,id ® Ag) is a right
H-comodule algebra witliA #, H)®°" = A. We sayo in invertible, if it is invertible in
(Homg (H ®g H, A), *).

Lemma 1.8 ([10], [20, Lemma 10]) Let H be an R-bialgebra, A an R-algebra with a
weak leftH-action ando € Homg (H Q@ H, A).

(1) 14 1isaunity forA#, H if and only ifo is normal i.e.,
och®1y)=eh)1ly =01y ®h) forallheH. (5)

(2) Assumer to be normal. Them #, H is an associativeR-algebra if and only itr is a
cocyclei.e.,

> [hio (k1 ® 11)]o (ha ® kal2)
=Y o(ha®k)o(hok2®1) forall h.k.l€H, (6)
and satisfies thewisted module condition
> [hlkallo(ha®k2) = "o (h1®@k1)[(hzka)a] forallh,keH, aeA. (7)
1.9. Left smash product
Let H be anR-bialgebra andA a left H-module algebra. Then
c:HRrH—> A, hQ®kr> e(h)e(k)ls

is atrivial normal cocycle and satisfies the twisted module condition (7). By Lemma 1.8
A#H := A#, H is an associativ&-algebra with multiplication

(a#h)e(a#h) =" a(hia)#hah (8)

and unity L4 # 1. If the left H-action onA is alsotrivial, thenA# H = A @ H as
R-algebras. Th&k-algebraA # H was presented by M. Sweedler [27, pp. 155-156].
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2. Themain duality theorem

In this section we present the main result in this note, namely Theorem 2.9. For the
convention of the reader we begin with some definitions.

2.1. ([18], [16, p. 375]) LetH be anR-bialgebra an®B a right H-comodule algebra.
Then #H, B) := (Homg (H, B), %) is an associativi&-algebra with multiplication

(f*g)(h) = Zf(g(hz)u)hl)g(hz)w) forall f, g e Homg(H,B), he H, (9)

and unityngoey. If U C H* is aright H-module subalgebra (withy € U), thenB#U :=
B ®p U is an associativ&-algebra with multiplication

(b#f)b#f be «f forallb,beB, f,feU (10)
(and unity Iz #¢eg).

Remark 2.2. Let R be NoetherianH an «-bialgebra,U € H° an R-subbialgebra and
consider thex-pairing P := (H, U). SinceH is a left U-module algebra under the action
f—h:=>Y hif(h2), we can endowHd ®r U with the structure of ¢eft smash algebra
under the multiplication (8). On the other ha#tlis a right H-comodule algebra under
Ag, U C H* is a right H-module subalgebra under the right regutaraction (3) and
H ®pg U can be endowed with the structure afight smash algebrander the multiplica-
tion (10). It can be easily seen that the tRealgebras are isomorphic. In fact we have for
arbitraryh,h € H, f, f e U and allk € H:

afy (e (h# )0y =af (3 R(fa—h)# f2+ ) )
=Y h(fi= ) (f2 /K
=Y hha fi(h2) f2(k0) f (k2)
=Y hhyf(h2ka) f (k2)
=Y hh1(fh2)(ka) f (k2)
—af (Zhﬁl#(fﬁz) N f)(k)
=ap ((h# ) (R # )0,
Sincea ! is injective, we geth # f) o (h # f) = (h # f)(h # f) and we are done.
The following definition provides a generalization of RRe-conditionsuggested by [9]:

Definition 2.3. Let H be anR-bialgebra,U € H* a right H-module subalgebra under the
right regularH -action,V € H* an R-submodule and consider ttRelinear maps



218 J.Y. Abuhlail / Journal of Algebra 288 (2005) 212-240

LiH#U —Ende(H), Y hj#gjr [k hj(g;—k)].
p:V—Endg(H), g+ [kk~g] (11)
We say(V, U) satisfies thdrL-conditionwith respect toH, providedp (V) C A(H #U),
ie.,if
foreveryge vV, 3{(hj,g))} CH x U,
st. k<g=) hj(g;—~k) forallkeH. (12)

We sayU satisfies the RL-condition with respecttf if (U, U) satisfies the RL-condition
with respect taH.

Lemma 2.4. Let H be anR-bialgebra,U € H* a right H-module subalgebra and con-
sider H as a right H-comodule algebra througi\y. Let #(H, H) and H # U be the
R-algebras defined i2.1 and consider the canonicat-algebra morphisng: H #U —
#(H, H).

(1) If g H is finitely generated projective, the # H* é #(H, H) as R-algebras.

(2) If H is a Hopf R-algebra with twisted antipode, theti(H, H) ~ Endg(H) as
R-algebras.

(3) Let H be a finitely generated projective Hopt-algebra. Theni:H # H* —
Endg (H), defined in(11), is an R-algebra isomorphism. In particulaf/* satisfies
the RL-condition(12) with respect taH.

(4) If gH is locally projective and/ € H* is dense, theg(H #U) C#(H, H) is a dense
R-subalgebra. If moreoveH is a Hopf R-algebra with twisted antipode anglH is
projective, then

H#U <> Endg(H)
is a denseR-subalgebra.

Proof. (1) Sinceg H is finitely generated projective, is bijective.
(2) Let H be a HopfR-algebra with twisted antipodg and consider th&-linear maps

GLI#(H, H) > Ende(H), [ [ Y fh2)ha.
b2 Ende (H) — #(H, H), g+ [ki> Y g()Sk0)].
For arbitrary f, g e #(H, H) andh € H we have

$1(f R () =Y (f*g)(ha)h1 =Y f(g(h3)2h2)g(h3)1h1

=Y f(8(h2)2h12)g(h2)1h11 = ¢1(f)(zg(h2)hl)
= (¢1(f) 0 91(8)) (h),
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i.e.,¢1 is anR-algebra morphism. For ak-linear mapsf, ¢: H — H we have

(P10 ¢2)(8)(h) =Y da()(h)h1 =) g(h3)S(h2)h1
=Y g(h)e(hy) = g(h),
(@20 ) ()W) =D ¢1(f)(h2)S(h1) =Y f(h3)h2S(hy)
=Y f(h2)e(h1) = f(h).

Henceg, is an R-algebra isomorphism with inverge.
(3) Let H be a finitely generated projective Hopfalgebra. By (1) and (2) we have
R-algebra isomorphisms

H#U >~ #(H H) EndR(H)

(recall that the antipode of a finitely generated projective HRgHlgebra is bijective by
[26, Proposition 4], henc& has a twisted antipodg:= S~1). Sor=¢108: H#U —
Endg (H) is an R-algebra isomorphisms. In particulatH*) C Endg (H) = A(H # H*),
i.e., H* satisfies the RL-condition (12) with respectib

(4) By [3, Corollary 3.2018(H #U) C #(H, H) is a denseR-subalgebra. I is a Hopf
R-algebra with twisted antipode then

H#CH, H) 2 Ende ()

as R-algebras by (2) and we are done (notice thas an embedding, ik H is projec-
tive). O

Lemma 2.5. Let H be a HopfR-algebra with twisted antipoded an R-algebra,U € H*
an R-submoduleand consider theR-pairing P := (H, U). Then the canonicaR-linear
mapo := “f@RH (A®gr H)®r U — Homg(H, A @ H) is injective if and only if the
following map is injective

X AQr(H®rU)— End_s(H ®r A),
a® e f)r [(k®a) - h(f — k) ®adl (13)

Proof. AssumeH to have a twisted antipod& We show first that the&k-linear map
e:HOMg(H,AQg H) > End_s(H ®r A), g [k®@ar> t(gk2))(k1®a)]
is bijective with inverse

e L:End_4(H ®g A) - Homg(H, A Qg H),
fe k= t(fke®14)(1a ® S(kD)].
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In fact we have for allf e End_4(H ®r A), k€ H, a € A:

et ) k@a)=) t[e M k)] (k1 ®a)
=> " 7[r(f k22 ® 14))(1a ® S(k21)] (k1 ® &)
=" flk22®14)(Stka) ® 14) (k1 ® @)
=Y flka®14)(S(k12)k11 ® )
= flk2®1a)(en (k1) 1ln ® d)
=f(k®a)

and for allg e Homzp (H, A®g H), k€ H:
e He@) k) =D rle(@)(ka®14)](1a ® S(kn))

= " 1[t(g(ke0)) (k21 ® 14)] (14 ® S (k1))
=Y g(kao)(1s ® k21S (k1))
=" g(k2)(1a ® k12S (k1))

=" gk)(1a ® ey (k)
= g (k).

Moreover we have forak e A, he H, f € U andk € H:

coa)a®(h® ))(k®ad)=1(a(a® " ® f))(k2)) (k1 ® @)
=> flk(h®a)(k1®a)
=Y hf(ka)k1 ® ad
=h(f —~k)®aa
=x(a®h® f))(k®a),
i.e., x =€ o . Consequently is injective if and only ifx is so. O
2.6. Let H be a HopfR-algebra with twisted antipodd,#, H aright H-crossed prod-

uct with invertible cocycle and consider tiRelinear maps, v : H ® g A — Homg (H, A)
defined as:

p(h@a)(h) =) _[S(h2)a]o (S(h1) @ 1),
Y(h®a)(h =Za h3 ® S(h2))[haa)o (hs ® S(ha)h).
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Let U € H* be aright H-module subalgebrdy € H* an R-submodule and consider the
canonicalR-linear mapJ: A ®g V — Homg(H, A). We say(V, U) is compatible if the
following conditions are satisfied:

(1) p(H®r A), ¥ (HRrA) SJ(AQRV);
(2) (V,U) satisfies th&RL-condition(12) with respect td{.

In the light of Lemma 2.5 and the modified RL-condition (12) we introduce an improved
version of [12, Theorem 3, Corollary 4] over arbitrary commutative ground rings:

Proposition 2.7. Let H be a HopfR-algebra with twisted antipodd, A #, H a right
H-crossed product with invertible cocycl®, € H* a right H-module subalgebra and
consider theR-pairing P := (H, U). Assume there existsraght H-submoduleV € H*,
such that(V, U) is compatible. If the canonica-linear mapa := “f@RH (AQr H) ®r
U — Homg(H, A ®g H) is injective, then there exists @tralgebra isomorphism

(A#, HY#U ~ AQp (H#U).

Proof. Replacing the inverse of the antipode in [12, Lemma 2] with the twisted antipode
S we have a commutative diagram Rfalgebra morphisms

(A#, HY#U

#H,A#, H) End_,(H Qg A) (14)

T

A®g (H#U)

where
ala#(h# ))k) = @#h) f k),
x(@a@m#f))(k®a)=h(f—k) ®aa,
y(@#h) #f)(k@a) =) ha(f = k3) ® [S(hako)a]o (S(hake) ® h1)a,
8(a® (h#t ) (k) =Y o~ (hoks ® S(h1ka))[(hsks)a]o (haks ® S(k2))
#hs(f = kn)S(ky),
r@(k@a) =v(} stks) (0~ (ke ® Skv) (ks — @) #ka) ).

and

ViA#, H—> H®rA, a#sh—> Y ha®[Sha)alo(S(h) @ ha).
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Analogously to the proof of [12, Corollary 4] (and replacing the inverse of the antipode
by the twisted antipod&) can be shown that the compatibility O, U) implies Im(y)
Im(x) and Im(§) € Im(«). Assume now thak := “§®RH is injective. Theny is injective

by Lemma 2.5 and consequendlys injective. Analogously to [12, Lemma 1, p. 2890]s

an R-algebra isomorphism, hengeis injective and we are done.O

Lemma 2.8. Let R be Noetherian an R-module, U € W* an R-submodule and con-
sider theR-pairing P := (W, U). Then the canonical map/{} MQrU — HOMgp (W, M)
is injective for ank-moduleM if and only ifU ¢ RY is M-pure. Consequently satisfies
thex-condition if and only it ¢ RY is pure.

Proof. Let M be anR-module and consider the commutative diagram

P
o
M@rU Homg (W, M)
idM®lUl
M ®r RY - MY

wherew (m ® f)(w) =mf(w). Write M =lim, M; as a direct limit of its finitely gener-
ated R-submodules. Sinc#/; is f.p. in Mg we have for every € I the isomorphism of
R-modules

o M @RV > MY, m® fr [w > mf (w)].
Moreover for every € I the restriction oko on M; coincides withew;, hence

w:li_)wMiili_n1>Mi®RW—>li_>mMiWCMW
is injective. It's obvious then thai}; is injective iff idy ® ty is injective iff U ¢ RV is
M-pure. O

We are ready now to present the main duality theorem in this note, which generalizes
[12, Corollary 4] (respectively [12, Corollary 5]) from the case of a base field (respectively
a Dedekind domain) to the case of an arbitrary Noetherian ring:

Theorem 2.9. Let R be NoetherianH a Hopf R-algebra with twisted antipode4 #, H
a right H-crossed product with invertible cocyclg, € H* a right H-module subalge-
bra and consider theR-pairing P := (H, U). Assume there exists a rigtif-submodule
V C H* such that(V, U) is compatible. IfU ¢ R¥ is A @ H-pure (e.g.,H is a Hopf
a-algebra andU C H° is an R-subbialgebrg, then we have aR-algebra isomorphism

(A#, HY#U ~ AQp (H#U).
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Proof. By Proposition 2.7 it remains to show tha;:’@RH is injective. If U ¢ RY is
A ®pr H-pure, them§®RH is injective by Lemma 2.8. I is a Hopf«-algebra, then
H° c R is pure and for everR-subbialgebra/ € H°, U c R is pure (since by con-
ventionU C H° is pure), hencezf@RH is injective. O

Definition 2.10. Let R be Noetherian. After [25] we call aR-algebraA residually finite
(called in other referencemoper), if the canonical mapt — A°* is injective (equivalently,

if ({Ke(f) | feA°}=0).

Corollary 2.11. Let H be a HopfR-algebra with twisted antipode angH projective,
A#; H aright H-crossed product with invertible cocyclg,C H* a right H-module sub-
algebra and consider thB-paring P := (H, U). Assume there exists a right-submodule
V C H*, such that(V, U) is compatible. IfU C H* is dense and the canonic&H-linear
mapa/f@RH is injective(e.g.,R is Noetherian and/ € R is A-pure), then there exists a
denseR-subalgebral € Endg (H) and anR-algebra isomorphism

(Att, HYHRU ~ A Qg L

This is the case in particular, iR is a QF ring, H is a residually finite Hop#-algebra and
U C H° is a denseR-subbialgebra.

Proof. If U C H* is dense, theil := H#U 4 Endg (H) is a denseR-subalgebra by
Lemma 2.4(4) and the isomorphism follows by Theorem 2.R I§ a QF ring andH is

a residually finite Hopix-algebra, theriH® ¢ H* is dense by [4, Proposition 2.4.19]. If
moreoverU C H° is a denseR-subbialgebra, thety C H* is denseq ), is injective
and we are done.O

Corollary 2.12. Let H be a HopfR-algebra with twisted antipoded #, H a right
H-crossed product with invertible cocycle and considerRapairing P := (H, H*). Then
we have an isomorphism &F-algebras

(A#ty HY#H* ~AQp (H#H")
at least when

(1) rH is finitely generated projective, or
(2) rA is finitely generatedh_( is cocommutative andzf:@RH is injective (e.g., R is
Noetherian and{* < R is A ® g H-pure).

Proof. (1) Sinceg H is finitely generated projective, the canoni®alinear mapJ : A ®
H* — Homg(H, A) is bijective andH* satisfies the RL-condition (12) with respectib
by Lemma 2.4(3), hencéH*, H*) is compatible. MoreoveP = (H, H*) >~ (H**, H*)
satisfies thex-condition, sinceg H* is finitely generated projective. The result follows
now by Proposition 2.7.
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(2) Since rA is finitely generated, the canonic#-linear mapJ:A g H* —
Homg (H, A) is surjective. Sincéd is cocommutative* satisfies the RL-condition (12)
with respect toH, hence(H*, H*) is compatible. By assumptiomj'ij is injective and
we are done by Proposition 2.70

Corollary 2.13. Let H be a free HopfR-algebra of rankn and A #, H a right H-crossed
product with invertible cocycle. Then we have an isomorphis®-afgebras

(A#t, HY#H* >~ A ®@g My (R) >~ M, (A).
Proof. By Corollary 2.12(A#, H)# H* ~ A Qg (H # H*). Sincegr H is finitely gener-
ated projectiveH # H* ~ Endg (H) by Lemma 2.4(3). Bukg H is free of rankn, hence
Endg (H) ~ M, (R). Itis evident thatA ® p M, (R) >~ M,(A) and we are done.O
Theright H*-submodule HY € H*

In what follows letH be alocally projectiveHopf R-algebra withtwisted antipodend
consider the measuring-pairing P := (H*, H) (notice that the canonicat-linear map
ak tH — H** is injective).

Lemma 2.14. ConsiderH* with the right H*-action

(f —g)(h):=>_g(haS(hy)) f(hz) forall f.g e H* andh € H.

ThenH* is aright H*-module andH"V := HRal(H;f,*) is a left H-comodule with structure
mapv:HY — H Qr H".

Proof. For arbitraryf, g, ¢ € H* we have
(f = (g*8))m) =) (g*3)(h3Sh)) f (h2)
g(h31S(h1)1)g(h328(h1)2) f (h2)
g(h315(h12))g(h32S(h11) f (h2)

=25l
=2 sl
=Y g(haS(ha)
=24
=24l

)8 (hsS(h1)) £ (h3)
h3S(h1))g(h23S(h21)) f (h22)
h3S(h1))(f « g)(h2)

=((f — & <& Hh.

Sincer H is locally projective, analogously to Theorem 1.5 we have {’Haal(H;;*) is a
left H-comodule. O



J.Y. Abuhlail / Journal of Algebra 288 (2005) 212-240 225

Proposition 2.15. Consider the leff{ -comodule(HY, v).

(1) If feHY, thenu(f)=)_ fi—1) ® f(o satisfies the following conditions

@ frg=>gfi- l)*fo> forall g € H*;
)y h—=f=> fiu —\h)forallheH

(c) ZhsS(hl)f(hz) Zf w0, (h) forall h e H.

(2) Let f € H*. If there exists = Zf_ ® fio € H ®r H* that satisfies any of the
conditions in(1), thenf € H and u(f) =
(3) Forall f, f € HY andg € H* we have

(F*F)re=>_e(fin fin) * (fio * fl0)-

(4) HY C H* is aright H-submodule with
v(fh) = ZE(hg,)ﬂ_l)hl ® fioyh2 forallhe Handf e HY.

Proof. (1) Let f € HV with v(f) = Zf(—l) ® f0)-
(a) For allg € H* andh € H we have

(f*@ (W)=Y f(h1)g(h) =) g(haS(h12)h11) f (h2)
= Z g(h23S(ha1)h1) f (ha2) = Z(hlg)(hzsg(hzﬂ)f(hzz)
=Y (f < (h1®)(h2) = > _(h18)(fi-1)) fi0) (h2)
=Y g(fienh1) fo(h2) =Y (gf(-1)(h1) fio) (h2)

= (D (efic2)* fio)) .

(b) Forallg € H* andh € H we have

gh— N =g(3 fhhz) =Y fhngtha)
= Z f(h2)g(h3S(h12)h11) = Z f(h22)g(h23S(h21)h1)
=Y f(h2)(h1g) (23S (han)) = Y (f < (h1g))(h2)
=Y (me)(fi-1) fio) (h2) = g(z fi-nhifio (hz))
= g(Z fi-y(fiop — h))-
(c) Trivial.

(2)Let f e H*and¢ =) fi—1y ® fio) € H ®r H*. We are done once we have shown
that (f — g)(h) =) g(fi—1)) fio) (h) for arbitraryg € H* andh € H.
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(a) Assume (1)(a) holds. Then we have

(f =) =Y g(haS(h) f (h2)

=Y (S(h1)g)(h22) f (h21)
=Y " (f *S(h)g)(h2)
=D _(Stgfi-y * fio) (h2)
= Z (S(h1)gfi—1)(h2) fio)(h3)
= Z —1h2S(h1)) fi0)(h3)

= Zg(f 0 (h).

(b) Assume (1)(b) holds. Then we have

(f =) =>_g(haS(hy)) f (h2)
= (8hn)g)(hz = 1)
=" (Stg) (fi-1 (fo, = h2)
=Y (Sh0)g)(fi-vhafio (h3))
=Y g(firnh2Sh) fio (h3)

=Y e(fi-n) fo (h).

(c) Trivial.
(3) Let f, f € H". For arbitraryg € H* we have by (1)(a):

(f*f)*g=.f*(f*g)

= Z 8fi-n) fien <f fo)
=Y e(fiy *(f>*fo>)
(4) Let f € HY andh € H. Then we have for alf € H* andk € H:
((fh) —g)(k) = g(kaSkn) (1) (k2)
= g(kaS(kn)) f (hk2)
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=Y 8(S(ha)haksS(k1)S(h12)h11) f (hakz)

= Zg(S(hS)h23k3§(kl)§(h21)hl)f(h22k2)
= Z (h18S(h3))(haskaS(k1)S(h21)) f (ha2k2)
= (h185(h3)) (h2skaS(haikn)) f (hazkz)
(h18S(h3))((h2k)3S((h2k)1)) f ((h2k)2)
(f + (h1gS(ha))) (h2k)
h1gS(h3))(f(-1)) fi0) (h2k)

g(S(ha) fi—yh1)(fioh2) (k). O

MMM

As a consequence of Proposition 2.7 and Theorem 2.9 and analogous to [23, Theo-
rem 4.2] we get

Theorem 2.16. Let H be a locally projective HopfR-algebra with twisted antipode,
U C H* aright H-module subalgebraP := (H, U) the inducedR-pairing and assume
thatp(H Qg A), ¥(H®r A) C J(AQrv 1 (H Qg U)). If “f@RH is injective(e.g.,R is
Noetherian and’ c R¥ is A-pure), then there is arR-algebra isomorphism

(A#, H)#U ~ A Qg (H#U).

Proof. It follows from Proposition 2.15(4) thaV := v~1(H ®x U) C H* is a right
H-submodule. Sinc& C HY, it follows by Proposition 2.15(1)(b) thatV, U) satisfies
the RL-condition (12) with respect td. ConsequentlyV, U) is compatible. 'f“f;@RH is
injective, then the result follows by Proposition 2.73

Corollary 2.17. Let H be a locally projective HopR-algebra with twisted antipodé/ <
HYV aright H-module subalgebra aff*, P := (H, U) the inducedrR-pairing and assume

thatv(U) € H @ U and@(H ®r A), v (H Qg A) C J(AQgr U). If a§®RH is injective
(e.g.,R is Noetherian and/ c R is A-pure), then there is arR-algebra isomorphism

(A#, H)#U ~ A Qg (H#U).

Blattner—M ontgomery duality theorem revisited
The following definition is suggested by [9, Definition 1.3]:
Definition 2.18. Let R be NoetherianH an R-bialgebra,U € H° an R-submodule and

A aleft H-module algebra. TheA will be calledU-locally finiteif and only if for every
a € A there exists a finite subsgfi, ..., fi} € U, such thaﬁﬁ.‘:1 Ke(f;) € (04:a).
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Lemma 2.19 [1, Proposition 3.3]Let R be NoetherianH an «-bialgebra,U € H° an
R-subbialgebra and consider the measuringairing (H, U).

(1) If Aisaright(aleft) U-comodule algebra, thea is a left(a right) H-module algebra.
(2) If Aisaleft(aright) H-module algebra, theRat (5 A) is a right (a left) U-comodule
algebra.

The following result generalizes [9, Lemma 1.5] from the case of a base field to the case
of an arbitrary Noetherian ground ring.

Lemma 2.20. Let R be NoetherianA an R-algebra, H an «-bialgebra andU € H° an
R-subbialgebra. Them is a U-locally finite left H-module algebra if and only ift is a
right U-comodule algebra.

Proof. Consider the measuring-pairing (H, U). AssumeA to be a rightU-comodule
algebra. Them is a left H-module algebra by Lemma 2.19(1). Moreover for every A
with go(a) = Z 10, ® g€ A®r U we haveﬂ _1Ke(gi) € (04:0a), ie., gAisU-
locally finite. On the other hand, assumdo be aU -locally finite left H-module algebra
and considerd with the left U-adic topology7y_(H) (see 1.3). By Lemma 2.19(2)
Rat’/ (5 A) is a rightU-comodule algebra and we are done once we have showr that
Rat/ (5 A). By assumption there exists for everye A a subsetW = {f1,..., fx} C U,
such thatﬂ _1Ke(fi) < (OA a). If h € (Oy: W), then f;(h) = (hf;)(ly) =0 fori =

.k and so(0y : W) C ﬂ _1Ke(fi) €(04:0a), i.e., Ais adiscrete leftH, Ty (H))-
module (see 1.3). Consequentlye o[y U] = RalU(HM) (see Theorem 1.5), i.e4 =
Rat' (yA). O

The following result provides an improved version of Blatther—Montgomery duality
theorem for the case of arbitrary Noetherian base rings, replacing the assuniptio &/
is a Hopf R-subalgebra with bijective antipode” in the original version [9, Theorem 2.1]
and in [5, 3.2] with ‘U C H° is any R-subbialgebra” (as suggested by M. Koppinen [23,
Corollary 5.4]); and replacing the assumption titathas a bijective antipode with the
weaker condition thal has a twisted antipod:

Corollary 2.21. Let R be NoetherianH a Hopfa-algebra with twisted antipode arid C
H° an R-subbialgebra. LedA be aU-locally finite left H-module algebra and consider
with the induced righ# -comodule structure. If there exists a rightsubmodule/ C H*,
such thatCf(A) U S*(Cf(A)) € V and(V, U) satisfies the RL-conditiofi2) with respect
to H, then we have an isomorphism Rfalgebras

(A#H)#U ~AQpgr (H#U).

Proof. For the trivial cocycler (h ® k) := e(h)e (k)14 we haveA #, H = A# H. Consider
the canonicak-linear mapJ: A ®g V — Homg(H, A). For everyh € H anda € A we
have
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o(h ®a)(h) = [S(h)a]e(h) = Za 1)e(h)
= Za 5% (aw) (i)e(h) = (Za(o>e(h) ® S*(a(1>))(ﬁ),

i.e.,o(H ®g A) C J(A ®g V). On the other hand we have for alli € H anda € A:

llf(h®a)() [ha g(h)—Za ha yJe(h) = (Za ye(h) @ ag )()

i.e., v(H ®r A) C J(A ®g U). By assumptionV, U) satisfies the RL-condition (12)
with respect taH, hence(V, U) is compatible and the result follows then by Theorem 2.9
(notice thatP = (H, U) is ana-pairing). O

As a consequence of Corollaries 2.11 and 2.21 we get

Corollary 2.22. Let R be Noetherian,H a projective Hopfx-algebra with twisted an-
tipode andU C H° an R-subbialgebra. LetA be a U-locally finite left H-module al-
gebra and consideA with the induced rightd-comodule structure. Assume there exists
a right H-submoduleV € H*, such thatCf(A) U §*(Cf(4)) € V and (V, U) satisfies
the RL-condition(12) with respect toH. If U C H* is dense, then there exists a dense
R-subalgebral € Endg (H) and anR-algebra isomorphism

(A#H)#U ~ A®pg L.

In particular this holds, ifR is a QF ring, H is residually finite and/ € H° is dense.

Cleft H-extensions

Hopf—Galois extensions were presented by S. Chase and M. Sweedler [15]dor-a
mutative R-algebra acting on a HopR-algebra and are considered as generalization of
the classical Galois extensions over fields (e.g., [25, 8.1.2]). In [24] H. Kreimer and
M. Takeuchi extended these to thencommutativease.

2.23. H-extensions [17]

Let H be anR-bialgebra,B a right H-comodule algebra and consider tRealgebra
A:= B = {4 e B|o(a) =a ® 1y)}. The algebra extensioA — B is called aright
H-extensionA (total) integralfor B is anH-colinearmapé : H — B (with 0 (1y) = 1p).
If B admits an integral, which is invertible iHomg (H, B), x), then the rightH -extension
A — B is calledcleft.

Lemma 2.24 ([20, Theorems 9, 11], [8, Theorem 1.18], [19, 1.1et H be an R-bi-
algebra.
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(1) If B/A is acleftright H-extension with total invertible integrél: H — B, thenA is
a left H-module algebra through

ha="0(h1)ad~'(hy) forallhe H anda e A
and A #, H is a right H-crossed product with invertible cocycle
a(h®k) = 0(h)0 (k1) (haky),
where o 1 (h @ k)= 0(h1k1)d (k)0 (h2).

MoreoverB >~ A #, H as right H-comodule algebras.

(2) Let H be a HopfR-algebra. If B := A #, H is a right H-crossed product with in-
vertible cocycler € Homg(H ®p H, A), thenB/A is acleft right H-extension with
invertible total integral

0:H—> A#, H, 0(h)=1a#h,
where 6071(h) =) "o Y(S(h2) ® h3) #5 S(ha).

Let H be a HopfR-algebra with twisted antipode?/A a cleft right H-extension
with invertible total integrab : H — B and consider th&-linear mapsp, v : A Qg H —
Homg (H, A) defined as:

gh@a)(h) =>_0(5(h2))ad (h1)o~*(S(h1)h2), (15)
vhea)(h)=> 0% ab (S (h2)h1)0 1 (haS(h1)ho). (16)

With the help of Lemma 2.24 one can easily derive the following version of Theorem 2.9
and Corollary 2.11 focleftright H-extensions:

Theorem 2.25. Let R be NoetherianH a Hopf R-algebra with twisted antipodeB/A a
cleftright H-extension with invertible total integral: H — B, U € H* aright H-module
subalgebra and consider thR-pairing P := (H, U). Assume there exists a right-sub-
moduleV € H*, such that

(1) $(H ®r A), ¥ (H ®r A) S J(AQR V);
(2) (v, U) satisfies th&kL-condition (12)with respect taH.

If U c R” is A®@p H-pure(e.g.,H is a Hopfa-algebra andU € H® is an R-subbi-
algebrg), then there is arkR-algebra isomorphism

B#U >~ A Qg (H#U).

If moreoverg H is projective and/ C H* is densde.g.,R is a QF ring, H is residually fi-
nite andU C H° is densg thenB#U ~ A ®p L for adenseRr-subalgebral C Endg (H).
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3. Koppinen duality theorem

In this section we prove an improved version of Koppinen’s duality theorem presented
in [23] over arbitrary Noetherian ground rings under fairly weak conditions. In fact the
results in this section are similar to those in the second section with a main advantage, that
they are evident for arbitrary Ho®-algebras (not necessarily with twisted antipodes).

3.1. Let H be anR-bialgebra andB a right H-comodule algebra. TherP¥ H, B) =
Homg (H, B) is an associativ®-algebra with multiplication

(f*2) () =) fha)og(h1f(h2)) forall f. g e Homg(H.B), he H (17)

and unityngoeg. If U C H* is aleft H-module subalgebra (witty, € U), thenB#°PU =
B ®p U is an associativ®®-algebra with multiplication

b#(b#f)= Zb<o>5#((b<l>f) xf) forallb,beB, f,feU (18)
(and unity I #ep).

Definition 3.2. Let H be anR-bialgebra,U C H* a left H-module subalgebra under the
left regularH-action,V € H* an R-submodule and consider tlielinear maps

LH#PU > Enck(H). Y hy@g;e [k Y (g5 =)y,

p:V —Ende(H), gr> [kr>k~g] (19)
We say(V, U) satisfies th&RL-condition with respect tél, if 5(V) C A(H #PU), i.e., if

foreveryge Vv, 3{(hj,g))} CHxU

st. k—g=) (g —~k)h; foreverykeH. (20)

Lemma 3.3. Let H be an R-bialgebra,U C H* a left H-module subalgebra and con-
sider H as a right H-comodule algebra throught . Let#°P(H, H) and H #°P U be the
R-algebras defined i8.1and consider the canonica&-algebra morphisng : H #P U —
#P(H, H).

(1) If gH is finitely generated projective, theif #°° H* é #°P(H, H) as R-algebras.

(2) If H is a HopfR-algebra, ther#°P(H, H) ~ Endgr (H)°P as R-algebras.

(3) Let H be a finitely generated projective Hopf-algebra. Theni: H #°P H* —
Endg (H)°P, defined in(19), is an R-algebra isomorphism. In particulak * satisfies
the RL-condition(20) with respect taH.
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(4) If gH is locally projective and/ € H* is densethenB(H #°PU) C#°P(H, H) is a
denseR-subalgebra. If moreoveH is a projective HopfR-algebra, then

H#%P U < Endg(H)%P
is a denseR-subalgebra.

Proof. (1) Sinceg H is finitely generated projective, is bijective.
(2) Let H be a HopfR-algebra and consider ti-linear maps

G1i#P(H, H) — Enck ()P, f > [hi> Y haf(ha) .
$2 ENGe(H)® — #P(H, H), g [k Y Stg(ka) |

For arbitraryf, g € #°°(H, H) andh € H we have

G1(f*Q)(h) =Y ha(f*g)(ha) =) haf(h3)1g(hzf (h3)2)
=" h1af (h1g(hazf h2)2) = (&) (Y haf h2)
= (¢1(8) 0 P1()) (W),

i.e.,¢1 is anR-algebra morphism. For alt-linear mapsf, g: H — H andh € H we have

(¢10¢2) () (h) = Z hig2(g)(ho) = ZhlS(hz)g(h3)
= elh)g(h) = g(h),
(620 ¢1)(/)(m) =Y S(h1)ps(f)(h2) =Y S(h1)hzf (h3)
= e(h) f(ha) = f(h).

Henceg, is anR-algebra isomorphism with inverge.
(3) Let H be a finitely generated projective HoRfalgebra. By (1) and (2)

H#° 1 L4900 1) 2 Endg (H)©P

asR-algebras. Henck = ¢1 o B: H #°° H* — Endg (H)°P is an R-algebra isomorphism.
In particularp(H*) € Endg (H)°P = A(H #°P H*), i.e., H* satisfies the RL-condition (20)
with respect taH.

(4) By [3, Theorem 3.18(2)f(H #°P U) C #°P(H, H) is a denseR-subalgebra. I is
a Hopf R-algebra, then

#(H, H) ¢:l Endg (H)°P

as R-algebras by (2) and we are done (notice thds an embedding, ik H is projec-
tive). O
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Lemma 3.4. Let H be a HopfR-algebra, A an R-algebra, U C H* a left H-sub-
module and consider th&-paring P := (H, U). Then the canonicak-linear mapa :=
a§®RH (A®Qr H)®pr U - Homg(H, A ®g H) is injective if and only if the following
map is injective

X AQr(H®rU) = Enth_(A®r H),
a®(h® f) [(@®k) > da® (f — kh]. 1)

Proof. First we show that th&-linear map

€:Homg(H,AQg H) > Ends_(AQ®g H), gr> [a®@k+> (a®k1)g(ko)]
is bijective with inverse
e Endi_(A®g H) — HOoMr(H, A®g H), [+ [ki> (14 ® S(k) f(1a ® k2)].
In fact we have for allf e Endy_(A ®r H), k€ H, a € A:

e @k =) (@®k)e (k)

=Y (a®ki)(1a ® S(k2)) f (14 ® k3)
=) (@®kS(k) f(1s ®k3)
=Y (@a®en(k)ln)f(1a @ k2)
=Y (@®1u)f(1a®k)

and for allg € Homg (H, A ® H), k € H:
EME@) =) (14 ® Sk1))é(2)(1a ® k2)
=Y (14 ®S(k1) 1@ ka)g(k3)
=Y (1 ® S(ka)kz) g (k3)

= Z (14 ® e (k1)1p)g (k)
=14 ®1g)gk)
= g(k).

Moreover we have forat e A, he H, f e U andk € H:
(€oa)(a®@h® N)@avk) = (a®k)aly,y(a® e 1)k
=Y (a®ki)(@®h)f(k2)
= aa®kif (k)h
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=aa® (f ~k)h
=x(a®h® f))(axk),

i.e., x =€ oa. Consequently is injective iff & is so. O

3.5. Let H be a HopfR-algebra,A #, H a right H-crossed product with invertible
cocycle and consider the-linear mapsp, v : H @ g A — Homg (H, A) defined as

ph® a)(fl) = Z [h1a]o (h2 ® h),
W (h ®a) ZO h3 ®h4)[ (flz)a]a(S(ﬁl) ®ﬁ5h).

Let U C H* be aleft H-module subalgebrad/ € H* an R-submodule and consider the
R-linear mapJ: A ®g V — Homg(H, A). We say(V, U) is compatible if the following
conditions are satisfied:

(1) ¢(H ®r A), ¥(H ®r A) S J(AQR V);
(2) (V,U) satisfies th&kL-condition(20) with respect ta4.

Analogously to Proposition 2.7 and in the light of Lemma 3.4 and the modified RL-
condition (20) we restate [12, Theorem 8, Corollary 9] for the case of an arbitrary commu-
tative ground ring:

Proposition 3.6. Let H be a HopfR-algebra, A #, H be a right H-crossed product with
invertible cocyclelJ € H* a left H-module subalgebra and consider tRepairing P :=

(H, U). Assume there exists a@rsubmoduleV C H*, such that(V, U) is compatible. If
the canonicalR-linear map

di=aly 4 (A®g H)®g U — Homg(H, A ®g H)
is injective, then there exists atralgebra isomorphism
(A#ty H)#PU >~ A®p (H#PU).

Proof. By [12, Lemma 7] we have a commutative diagramReélgebra morphisms

(A#, HY#PU

S T

HOP(H, A#, H) Ends_(A ®g H)OP (22)

AQgr (H#PU)
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where

a((a#h)#P f)(k) = (a#h) f k),
X(a® (h#P f))(@a®k)=aa® (f —=kh,
7((a# ) #P £)@aok) = alkialo (ko ® h1) ® (f — ka)ha,

5(a® (h#P £)) (k)= o (S(ka) ® ks) [S(kz)a]o (S(k2) ® keh1)
#S(k)(f — kn)h2,
7@ @a®k) =) (a# ki)g(ka).

By assumptionx _a£® 5 is injective, hencey is by Lemma 3.4 injective and con-
sequentlys is injective. Moreoverw is an R-algebra isomorphism by [23, Proposi-
tion 4.1], hencey is injective. It remains then to show that (i < Im(jx) and Im§) C
Im(@). For arbitrarya ® h € A ®g H, there exists) a, ® g, € A ®g V such that
@(h1 ® a) = J(3_a, ® g,) and moreover there exisfs; h,; #Pg,j € HQ®p U with
p(gu) =A(3_hy,j#°Pgu;). Soforalla,ac A, h,ke Handf € U:
P(@#h) #P f)(a@k) = _alkialo (ka ® h1) ® (f — ka)hz

=Y alknalo (k12® h1) ® (f — k2)h2

=Y ap(h1®@a)(k1) ® (f — k2)h2

=Y s (Y ® gu) (k) & (f = khz

= aaygu(ky) ® (f — ka)h2

= aa, ® gu(kn)ka f (ka)h2

=Y day ® (kn < gu) f (k2)hz

=Y aay ® (gu.j — k1)hu,j f (k2)ha

=Y da, ®kigu,j(ka) f (k3)hu, jh2

=Y da, ® ((gu.j* f) = k)hu,jh2

= X(au ® (hu, jh2#® (g0, * 1)) (@ @K),

i.e., Im(y) € Im()). For arbitrarya ® h € A ® H, there exists)_a,, @ g € AQr V
such tha(h1 ® a) = J (3_ay ® gw) and moreover there exisys hy,; #°P g,; € H @r U
with 5(gu) =AY hwj #°P gyj). Sowe have foralh € A, h,k e Handf e U:

5(a® (h#P f))(k) = Zd_l (S(ka) ® ks)[S(kz)a]o (S(k2) ® keh1) # S(k1)(f — k7)h2
= ZU (S(k23) ® koa)[S(k22)a o (S (k21) ® kashi)
#S(k)(f — k3)h2
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=Y " (h1®a)(ka) # S(ka)(f — k3)h2
=7 (Xaw®gu ) (k) #Shka) (f = ka)hz
=" awgu(ka) #S(k1) (f — ka)h2
= ay #S(kn) g (k)ka f (ka)hz
=Y aw#S(k) (k2 — gu) f (ka)ha
= aw# Sk (gu,j = k2w, ; f (ka)h2
=Y ay #S(knkagu, j(k3) f (ka)hy, jho
=Y aw#gu k) fk2)hy jh2
= aw#(gu,j* 0y, jh2
= ((aw #hu, h2) #P gu j * f) (k)

i.e., Im(8) < Im(&@) and we are done. O

As a consequence of Lemma 2.8 and Proposition 3.6 we get a theorem, analogous to
Theorem 2.9, which generalizes [12, Corollary 9] (respectively [12, Corollary 10]) from the
case of a base field (respectively a Dedekind domain) to the case of an arbitrary Noetherian
ground ring:

Theorem 3.7. Let R be Noetherian,H a Hopf R-algebra, A #, H a right H-crossed
product with invertible cocyclel/) € H* a left H-module subalgebra and consider the
R-pairing P := (H, U). Assume there exists atrsubmodule/ € H*, such that(V, U)

is compatible. iU ¢ R is A ® H-pure(e.g.,H is a Hopfa-algebra andU € H° is an
R-subbialgebrg, then we have aR-algebra isomorphism

(A#, H)P#U ~ A@g (H#PU).

Corollary 3.8. Let H be a projective Hopk-algebra, A #, H a right H-crossed product
with invertible cocyclely € H* a left H-module subalgebra and consider tiReparing
P :=(H, U). Assume there exists @rsubmoduleV € H*, such that(V, U) is compat-
ible. If U € H* is dense and the canonic&-linear mapa/ﬁ’@RH is injective(e.g., R is
Noetherian andJ € R¥ is A-pure), then there is a dengesubalgebral < Endg (H)°P
and anR-algebra isomorphism

(A#, HY#PU ~A Q@R L.

This is the case in particular, iR is a QF ring, H is a residually finite Hop#-algebra and
U C H° is a denseR-subbialgebra.
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Proof. If U € H* is dense, thelf := H #°° U ri> Endgr (H)°P is by Lemma 3.3 a dense
R-subalgebra. Iij;’@RH is injective, then the isomorphism follows by Theorem 3.7. If
R is a QF ring andH is a residually finite Hopt-algebra, therH°® ¢ H* is dense by
[4, Proposition 2.4.19]. If moreovey C H° is a denseR-subbialgebra, thely € H* is
denseq ), is injective and we are done.0

Similar argument to those in the proof of Corollary 2.12 can be used to prove

Corollary 3.9. Let H be a HopfR-algebra andA #, H a right H-crossed product with
invertible cocycle. Then we have an isomorphismt aflgebras

(At HY#PH* ~ A®p (H#P H")
at least when

(1) rH isfinitely generated projective, or
(2) rA is finitely generatedh_l iS cocommutative andfg@RH is injective (e.g., R is
Noetherian and?* — R¥ is A @ g H-pure).

Thesubalgebra H® € H*

In what follows letH be alocally projectiveHopf R-algebra and consider the mea-
suringa-pairing P := (H*, H) (notice that the canonica-linear mapag H— H**is
injective).

3.10. ConsiderH* with the right H*-action
(f < g)(h) := Z f(h2)g(S(hyhs) forall f,g e H* andh € H.

Then H* is a right H*-module andH® := HRat(H;’;*) is analogously to Theorem 1.5 a
left H-comodule with structure map: H® — H Qr H®.
Analogously to [23, Propositions 3.2, 3.3] we have

Proposition 3.11. Consider the leff{-comodule( H?, w).

(1) If f e H®, thenw(f) =) fi—1y ® fio) satisfies the following conditions
@) fxg=2 fi-ng~* fio forall g€ H*;
(b) h— f=3 (fioo—~h) f—y forall h e H;
(©) X f(h2)S(hhs =" fio(h) f—1, forall h e H.
(2) Let f € H*. If there existst =" fi—1) ® fi0) € H ®r H* that satisfies any of the
conditions in(1), thenf € H® andw(f) =¢.
(3) H® C H* is an R-subalgebra and moreover a leff-comodule algebra.
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(4) H® C H* is a left H-module subalgebra with
w(hf) = Zh1f<,1>S(h3) ®hafo forallhe Handfe H”.

As a consequence of Proposition 3.6 and Theorem 3.7 we get the following generaliza-
tion of [23, Theorem 4.2]:

Theorem 3.12. Let H be a locally projective Hopfr-algebra, U € H* a left H-
module subalgebraP := (H, U) the inducedR-pairing and assume thai(H Qz A),
V(HQrA) CJARrw YHQgU)). If afg.x 1S injective(e.g., R is Noetherian and
U c R is A-pure), then there is arR-algebra iIsomorphism

(A#, H)P#U ~ A@g (H#PU).

Proof. Consider theR-submoduleV := w~1(H ®& U). SinceV C H®, it is clear by
Proposition 3.11(1)(b) thatV, U) satisfies the RL-condition (20) with respect .
ConsequentlyV, U) is compatible. Ifozf;@RH is injective, then we are done by Propo-
sition 3.6. O

Corollary 3.13. Let H be a locally projective HopR-algebra,U € H® a left H-module
subalgebra,P := (H, U) the inducedR-pairing and assume thab (U) C H ® U and

P(HQRrA), W(HRr A CJ(AQrU). If a§®RH is injective(e.g., R is Noetherian and
U c R is A-pure), then there is arR-algebra isomorphism

(A#, H)P#U ~ A@g (H#PU).

Remark 3.14. If the Hopf algebraH has a bijective antipode then it has a twisted antipode,
namelyS := S~ In the proofs (by different authors) of several duality theorems for smash
products assuming the bijectivity of the antipode, no use was madeodf~1 = id =
S~1o §; instead there was a heavy use of the main properti&s bf namely that it is an
algebra and coalgebra anti-morphism, and that

> 57 ho)hy =e()ly =y haS (k1) foreveryh e H.

A twisted antipode has also these main properties and this is why the original versions
(in [4]) of the results in section two remain true after replacing the bijectivity of the an-
tipode by the weaker condition of the existence of a twisted antipode!!

3.15. (Compare [22, Lemma 5.3].) Lé{ be a HopfR-algebra with a twisted antipode
S andA #, H aright H-crossed product with invertible cocyale Then/s%Pq°P := S(h)a
induces oM °P a weak leftH °P-action andA®P#, HOP is a rightH°P-crossed product with
invertible cocycle

T:H®r H— A, (b, o *(S(h), S(K)).

MoreoverA #, H ~ (A°P#, HOP)P as rightH -comodule algebras.
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Remark 3.16. As indicated earlier, the original versions [4] of the main duality theorems
for smash products were proved under the assumption of the bijectivity of the antipode of
H and it was not clear why such an assumption is not needed in the corresponding results
for opposite smash products. Upon suggestion of the referee this condition is replaced in
this paper with the weaker condition théthas a twisted antipode which clarifies, to some
extent, this issue (notice that the ruleféfis played in the third section h§/°P which has a
twisted antipode!!). However, it should be noted that the results in the third section cannot
be deduced directly from the corresponding results in the second section, since (in light
of 3.15) we have to assume thdthas a twisted antipode!!

However, some of duality theorems for smash products can be deduced from the cor-
responding ones for opposite smash products under the assumptidi teet a twisted
antipode. In what follows we give one of these results.

3.17. Let R be NoetherianH a Hopfa-algebra with twisted antipodé/ € H° an

R-subbialgebra and consider tiResubbialgebra/°P C (H°P)°. Assume there exists an
R-submoduleV € (H°P)*, such that

foreveryg e V, there exist{(h;,g;)} CH x U,
st. h—g=> hj(gj—~h) forallheH (23)

and that for everyh, a) € H x A there exist subclassés,, g,,}, {bw, gw} C A x V with

> o7 (S(h2) ® S()[ Zaugu
> o7k, S(ish)) [hza]o (h3®S wagw

Combining [23, Corollary 2.4] and Theorem 3.7 we get halgebra isomorphisms

(A#y HY#U =~ ((A%#; HP) #P UP) P~ A @ (HOP#P UP)P
~ (AP @ (HPH#PUP) P~ A (H#U).
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