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Abstract

The physical sources of sound are expressed in terms of the non-radiating part of the flow. The non-radiating
part of the flow can be obtained from convolution filtering, as we demonstrate numerically by using an axi-symmetric
jet satisfying the Navier–Stokes equations. Based on the frequency spectrum of the source, we show that the sound
sources exhibit more physical behaviour than sound sources based on acoustic analogies. To validate the sources
of sound, one needs to let them radiate within the non-radiating flow field. However, our results suggest that the
traditional Euler operator linearized about the time-averaged part of the flow should be sufficient to compute the
sound field.
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1. Introduction

Despite more than 50 years of research in aeroacoustics, controlling the sound radiated by turbulent jets remains
difficult. One reason is that no definite answer has been found on how turbulent flows generate sound. A major
obstacle is the lack of understanding of the physical sources of sound in a jet.

One way to derive the aerodynamic noise sources is to use an acoustic analogy. In an acoustic analogy, the
hydrodynamic field is assumed to be independent from the acoustic field. This allows to rearrange the Navier-Stokes
equations to have a linear wave-propagation operator on the left-hand side; the remaining terms are grouped as sources
on the right hand side. In general, the operator is obtained by deriving the governing equations for the flow fluctuations
about a steady mean-flow. Goldstein [1] provides a good generalisation of such approaches. The fluctuating variables
on the left-hand-side are the dependent variables of the problem and represent both acoustic and hydrodynamic waves.
This implies that the sources on the right-hand side cannot be identified as just sound sources. Furthermore, we expect
the sound field to be a small by-product of the hydrodynamic field. Therefore, the sound source should be a function
of the hydrodynamic field only. This property is not satisfied by traditional acoustic analogies.

An attempt to overcome these difficulties and to define the physical sources of sound is made by Goldstein [2]. He
shows that if a flow field can be separated into its radiating and non-radiating components, then the resulting sound
sources are mainly a function of the non-radiating components and should approach the physical sources of sound.
The present paper is inspired by Goldstein’s work. Our objective is to show that it is indeed possible to separate
radiating acoustic components from non-radiating components in nonlinear flows.

We show that, following such a decomposition, the sound sources depend only on the non-acoustic field. The
source terms do not contain the dependent acoustic variables and should therefore represent the true sources of sound.
We present a simple expression for the source terms. It is similar to the one derived by Goldstein. However, we
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do not use Favre averaging and our result is only approximate because we ignore entropy sources and terms which
are quadratic in the acoustic variables. These choices simplify the derivation of the sources and should have little
consequence for the flows we are studying here.

The paper is organised as follows. In §2, we derive the aerodynamic noise sources based on a non-radiating
unsteady base flow. We restrict ourselves to isentropic flows, in which temperature effects are negligible. We show
that the linear propagation operator can be approximated by the linearised Euler operator. In § 3, we decompose an
axisymmetric jet into its radiating part and non-radiating part by using a convolution filter [3]. The axisymmetric jet
is excited at the inflow by two frequencies and satisfies an inhomogeneous version of the Navier-Stokes equations.
The non-radiating base flow is used to compute the corresponding sound sources. We use these results to validate the
assumptions made in § 1.

2. Aerodynamic sound sources

2.1. Flow decomposition

We decompose the flow field into its radiating and non-radiating components. The radiating components are those
which satisfy the dispersion relation |k| = |ω|/c∞ in the frequency–wavenumber domain, where k is the wavenumber,
ω the angular frequency and c∞ the far field speed of sound ([4, 2]). Physically, the non-radiating components are
made of:

• the steady mean flow,

• the hydrodynamic fluctuations about the mean flow.

The radiating components correspond to acoustic waves. In this paper, we use the terms “acoustic field” and “radiating
field” interchangeably.

For a given flow variable q, the non-radiating part q can be obtained by using a convolution filter g, i.e.

q(x, t) ≡
∫ +∞

−∞

∫

V
g(y, τ)q(x − y, t − τ) d3y dτ, (1)

whereV denotes the entire spatial domain. To achieve this, the convolution filter must satisfy

G(k, ω) =

⎧⎪⎨⎪⎩
0 if |k| = |ω|/c∞,
1 if |k| � |ω|/c∞,

(2)

where G is the four-dimensional Fourier transform of g, defined as

G(k, ω) ≡
∫ +∞

−∞

∫

V
g(x, t)ei(ωt−k·x) d3x dt. (3)

The flow variable q can then be written as
q = q + q′, (4)

where q′ represents the radiating components of the flow.

2.2. Source definition

The flow variables satisfy the Navier–Stokes equations:

∂ρ

∂t
+
∂ρv j

∂x j
= 0, (5)

∂ρvi

∂t
+
∂ρviv j

∂x j
+
∂p
∂xi
=
∂σi j

∂x j
, (6)
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where ρ, p and v = (vi) denote the density, pressure and flow velocity, and σi j the viscous stress tensor. If we assume
that the flow is isentropic and is a perfect gas, then (from Goldstein [5])

∂p
∂t
+ u j
∂p
∂x j
+ γp

∂u j

∂x j
= 0. (7)

Introducing the variable π = (p/p∞)1/γ, in which p∞ is the pressure in the ambient medium, allows us to rewrite (6)
and (7) in conservative form (Lilley[6]):

∂ρvi

∂t
+
∂ρviv j

∂x j
+ p∞

∂πγ

∂xi
= 0 (8)

∂π

∂t
+ γ
∂πu j

∂x j
= 0. (9)

LetL denote the linear operator associated with the convolution filter of (1). For each term in the above equations,
the radiating part can be obtained by applying the linear filter L′ ≡ I − L, where I denotes the identity operator.
Applying L′ to (5), (8) and (9) gives the governing equations for the radiating components:

∂ρ′

∂t
+
∂(ρv j)′

∂x j
= 0, (10)

∂(ρvi)′

∂t
+
∂(ρviv j)′

∂x j
+ p∞

∂(πγ)′

∂xi
=
∂σ′i j

∂x j
, (11)

∂π′

∂t
+ γ
∂(πu j)′

∂x j
= 0. (12)

The viscous term in (11) does not play a significant role in sound generation for the type of flows we are interested in.
It provides a very small amount of dissipation that can be neglected.

We rewrite each of the above equations to obtain: (a) an operator that is linear in the radiating variables (ρ′, v′i and
π′) on the left hand side, (b) a source term on the right hand side. For example, in (11), the term ρviv j can be expanded
as

ρviv j = ρ vi v j + vi v j ρ
′ + ρ v j v′i + ρ vi v′j + O(ρ′2), (13)

where O(ρ′2) represents terms that are quadratic in acoustic quantities. Because the radiating part of the flow is
normally several orders of magnitude smaller than the non-radiating part, these quadratic components are expected to
be small. Applying L′ to (13) gives

(ρviv j)′ = (ρ vi v j)′︸���︷︷���︸
(a)

+ (vi v j ρ
′ + ρ v j v′i + ρ vi v′j)

′
︸�����������������������������︷︷�����������������������������︸

(b)

+ O(ρ′2)′. (14)

We assume a one-way coupling between hydrodynamics and acoustics: the hydrodynamic field is responsible for the
production of sound but the sound field does not affect the hydrodynamic field. The source of sound must therefore be
independent of the fluctuating components. The only terms satisfying this requirement are those in group (a), which
are non-linear in hydrodynamic quantities. The terms in group (b) involve an acoustic component interacting with the
non-radiating base flow. These terms represent propagation effects such as refraction and should be excluded from the
source. Similarly, the other non-linear terms in equations (10–12) are decomposed as follows:

( ρvi )′ ≈ ( ρ vi )′ + ( vi ρ
′ + ρ v′i )′, (15)

( πv j )′ ≈ ( π v j )′ + ( v j π
′ + π v′j )′, (16)

( πγ )′ ≈ ( πγ )′ + γ( πγ−1π′ )′ = γ( πγ−1π′ )′. (17)
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In each of the above equations, the first term on the right hand side is the source of sound. The higher order terms
have been neglected. We can now rewrite equations (10–12) by pushing the sound sources to the right hand side:

∂ρ′

∂t
+
∂

∂x j
( v j ρ

′ + ρ v′j )′ = m, (18)

∂

∂t
( vi ρ

′ + ρ v′i )′ +
∂

∂x j
(vi v j ρ

′ + ρ v j v′i + ρ vi v′j)
′ + γp∞

∂

∂xi
( πγ−1π′ ) = fi, (19)

∂π′

∂t
+ γ
∂

∂x j
( π v′j + π

′ v j )′ = e, (20)

where the continuity equation source term l, the momentum equation source term fi and the energy equation source
term e are defined as

m ≡ − ∂
∂x j

( ρ v j )′, (21)

fi ≡ − ∂
∂t

( ρ vi )′ − ∂
∂x j

( ρ vi v j )′, (22)

e ≡ −γ ∂
∂x j

( π v j )′. (23)

These equations show that the sound sources m, fi and e are all radiating quantities; this is what we expect because
the operator on the left hand side of (18–20) is a linear function of the radiating variables. It means that these sources
produce only acoustic waves. Also, as we expect from the sound sources, they are expressed as (nonlinear) functions
of only the non-radiating components: they are free of the dependant (acoustic) variables. Therefore, these sources
should represent the true sources of aerodynamically generated sound. These key features distinguish the present
source from past representations based on acoustic analogies.

2.3. Physical interpretation for the propagation operator

The the left hand side of equations (10–12) contain terms of the form ( f (ρ′, v′i , π
′))′, where the f is a linear function

of the radiating variables. These terms depend of the filter that is used which prevents us to provide a general physical
interpretation for the left hand side of equations (10–12).

However, each non radiating term q, (e.g π), can be decomposed into a steady mean part q0 and an unsteady part
q̃, i.e.

q = q0 + q̃. (24)

The unsteady part q̃ represents hydrodynamic components. If we assume that

q′ � q̃ � q0, (25)

then we can derive the dominant terms on the left hand side of equations (10–12). For example, the term (viρ
′)′ can

be decomposed as
(viρ

′)′ = (vi0ρ
′)′ + (ṽiρ

′)′ = vi0ρ
′ + (ṽiρ

′)′. (26)

The second equality is true because the vi0ρ
′ is a purely radiating term. Furthermore, the radiating term “(ṽiρ

′)′” can
be neglected because, from (25),

(ṽiρ
′)′ � ṽiρ

′ � vi0ρ
′. (27)

Therefore
(viρ

′)′ ≈ vi0ρ
′. (28)

This example shows that the interaction terms between radiating and non-radiating components reduce to interac-
tions between the radiating components and the steady mean flow. Using this reasoning, equations (10–12) can be
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approximated by

∂ρ′

∂t
+
∂

∂x j
( v j0 ρ

′ + ρ0 v′j )′ = m, (29)

∂

∂t
( vi0 ρ

′ + ρ0 v′i )′ +
∂

∂x j
(vi0 v j0 ρ

′ + ρ0 v j0 v′i + ρ0 vi0 v′j)
′ + γp∞

∂

∂xi
( πγ−1π′ ) = fi, (30)

∂π′

∂t
+ γ
∂

∂x j
( π0 v′j + π

′ v j0 )′ = e, (31)

which are inhomogeneous Euler equations linearised about a steady base flow. The source terms remain unchanged
and are those defined in (21–23). This result suggests that, once the sources of sound have been derived, the sound
can be propagated by using an inhomogeneous version of the linearised Euler equations.

2.4. Wave equation
The sound source we have obtained takes the form of a vector whose components are m, fi and e. It is also

possible to write the source in the form of a scalar expression. We can obtain an inhomogeneous wave equation by
computing ∂L′(18)/∂xi − ∂L′(19)/∂t, which gives

γp∞
∂2(πγ−1π′)
∂xi∂xi

− ∂
2ρ′

∂t2
+
∂2

∂xi∂x j
( vi v j ρ

′ + ρ v j v′i + ρ vi v′j )′ =
∂2

∂xi∂x j
si j (32)

where si j is defined as

si j ≡ −(ρ vi v j)′ = −
(
ρ vi v j − ρ vi v j

)
. (33)

As we expect from the physical source of sound, si j is a function of the non-radiating variables only and is itself
purely radiating. Secondly we note that equation (A.2) reduces to the homogeneous second order wave equation in
the ambient medium.

The terms of the form (ρvi)′, which are present in both m and fi, cancel out in si j.

3. Sources of sound in an axi-symmetric jet flow

3.1. Problem description
We now consider a nonlinear problem in which an axi-symmetric jet is excited by two discrete-frequency axi-

symmetric disturbances at the jet exit. The frequencies are chosen to trigger some instability waves in the flow. These
instability waves grow downstream and interact non-linearly, generating acoustic waves. The Mach number of the jet
is 0.9 and the Reynolds number is 3600. The base mean flow is chosen to match the experimental data of Stromberg
et al. [7].

Suponitsky and Sandham [8] performed direct numerical simulations of the compressible Navier–Stokes equations
for this problem. In their simulations the mean flow was prescribed by imposing time-independent forcing terms. They
ran simulations with different combinations of excitation frequencies and amplitudes. The data used here corresponds
to the combination with the largest acoustic radiation. The two excitation frequencies are ω1 = 2.4 and ω2 = 3.4. The
results presented in this section have been normalised by using the jet diameter D, jet exit speed U j and the ambient
density as the length, velocity and density scales, respectively.

3.2. Flow decomposition
In order to apply the convolution filtering technique for flow decomposition, we first need to obtain the Fourier

transform (FT) of the flow field. In general this involves transforming in four (time and 3 space) dimensions. However,
given the axi-symmetric nature of the present problem, we are able to do the spatial transforms in two dimensions: by
applying a Hankel transform (HT) in the radial direction and a Fourier transform in the axial direction. The Hankel
transform is carried out numerically by using the quasi-discrete Hankel transform described by Guizar-Sicairos and
Guitiérrez-Vega [9].

For a given flow variable q, the algorithm for obtaining the non-radiating variable q is as follows:

98 S. Sinayoko, A. Agarwal / Procedia Engineering 6 (2010) 94–103



S. Sinayoko, A. Agarwal / Procedia Engineering 00 (2010) 1–10 6

• interpolate and zero pad the data (to avoid aliasing) in the physical space,

• compute and remove the time-averaged variable q0

• compute the FT in the axial direction and the HT in the radial direction,

• multiply by the filter window G,

• compute the inverse Hankel transform and the inverse Fourier transform,

• unpad the data and add back q0.

Mathematically, the filtering procedure can be written as

q = q0 + HT−1 ◦ FT−1
(
HT ◦ FT(q − q0) ×G

)
(34)

The window G should satisfy equation (2). For a given frequency ω, we want G to have a value of 0 in a narrow
band around |k| = |ω|/c∞ = kco and of 1 everywhere else. We use a narrow Butterworth band-reject filter to achieve
this:

G(k) =
(
1 +

|k|σ
|k|2 − k2

co

)−4

, (35)

where σ controls the width of the stop-band and kco is the cut-off frequency. In the present problem, the noise radiates
mainly at the difference frequency, Δw = ω2 − ω1. For this frequency, kco = 1.2. We choose a value of 0.25 for σ.

Results and discussion
The success of the filtering operation is verified by examining the fluctuating part of the pressure field (p′ =

p − p̄), which should contain no hydrodynamic components. Figures 1(a) and 1(b) respectively show total pressure
p (excluding low frequency components p0), and fluctuating pressure p′. They demonstrate that a clear identification
of the radiating components has been achieved since p′ contains no hydrodynamic component. This shows that
using this filtering procedure we are able to obtain the filtered field to a very high order of accuracy because we
are subtracting two large quantities (p and p) to obtain a much smaller quantity (p′). More precisely, we find that
p′ is three orders of magnitude smaller than p along the jet centerline, and p̃ = p − p0 is two orders of magnitude
smaller than p0. Similar results have been obtained using the same filter for the other flow variables. This validates
the hypotheses that acoustics are much smaller than hydrodynamics, and hydrodynamics are much smaller than time-
averaged components. These hypotheses are commonly used in the aeroacoustics community and are used in the
derivation of (28).

The above filtering procedure is equivalent to convolving the flow with a mask. In the vicinity of the boundary,
a part of the mask will lie outside the computational domain where the flow is set to zero due to zero-padding. This
leads to inaccuracies near boundaries. To restrict this effect to small regions, the filter must be narrow in the space–
time domain. Unfortunately, optimal non-radiating filters must also be narrow in the wavenumber–frequency domain,
which is impossible. A trade-offmust be made between these two requirements. As can be seen in figure 1, p′ is over-
estimated in the first 4 jet diameters. One possible solution would be to extend the computational domain upstream in
the simulations.

3.3. Sound sources

The source s1 ≡ ∂2S i j/∂xi∂x j associated with the non-radiating filter defined in the previous section is computed
using the double divergence of (33). Figure 2(a) shows the source for 0 ≤ r ≤ 2.0 and 0 ≤ z ≤ 18. For comparison, the
source s2 associated with a classic decomposition using a time-averaged base flow is given in figure 2(b). As shown
in appendix A,

s2 ≡ − ∂2

∂xi∂x j
(ρ0 v′′i v′′j + vi0 ρ

′′v′′i + v j0 ρ
′′v′′i )′′ (36)

where the double primes denote fluctuations about the mean.
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(a) Total pressure p
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(b) Fluctuating pressure p′ = p − p

Figure 1: Pressure fields for a single time frame. In (a), low frequency components p0 have been removed for plotting.
The linear contour scale ranges from −5 · 10−6 (black) to 5 · 10−6 (white).
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(a) Sound source s1 associated with a non-radiating base
flow.
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(b) Sound source s2 associated with a time-averaged base
flow.

Figure 2: Sound sources for a single time frame. The contour scale ranges from −2 · 10−5 (black) to 2 · 10−5 (white)
in (a) and −5 · 10−2 (black) to 5 · 10−2 (white) in (b).

The source distribution is different in the two cases. With the non-radiating base flow, the source s1 is spread
over the first 4 jet diameters in the radial direction, and peaks around z = 6 in the axial direction, which corresponds
to the end of the potential core. The source decays for z >= 10. With the time averaged base flow, the source (s2)
is spread along the shear layer (r = 0.5). In terms of amplitude, the peak value of s2 is three orders of magnitude
greater than that of s1. This can be explained as follows: since s1 is purely radiating (from (33)), it does not contain
any hydrodynamic component, which is not the case for s2. These hydrodynamic components are also three orders of
magnitude greater than the acoustic components, as explained in § 3.2. The source s2 drives both hydrodynamics and
acoustics, whereas s1 only generates acoustics.

Further physical insight can be obtained by looking at the power spectral density (PSD) of those sources. Fig-
ure 3(a) shows the PSD of source s1 for r = 0, where s1 is maximum as can be seen in figure 2(a). Figure 3(b)
shows the PSD of s2 for r = 0.5, where s2 is dominant. These figures indicate that s1 is dominated by the frequency
Δω = 1.2, whereas s2 contains several other frequencies, e.g. ω1 = 2.2, ω2 = 3.4, 2ω1 = 4.4 and ω1 + ω2 = 5.6.
We expect the true source of sound to have the frequency of acoustic waves, i.e. Δω. In that respect, the source s1

based on a non-radiating base flow is more physical than s2 which is based on a time-averaged base flow. Only a small
portion of s2 generates acoustic waves.

3.4. Validation

Equations (29–31) was assumed to be a good approximation for equations (18–20). This is tested by comparing
the divergence terms on the left hand side of these equations. We use the L∞–norm, |q|∞ = max |q(x)|, where q(x) is
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Figure 3: Power spectral density for: (a) Source s1 (non-radiating base flow) along r = 0, (b) Source s2 (time-averaged
base flow) along r = 0.5. The contour scale ranges from 0 (black) to 2 × 10−5 (white) in (a) and 0 (black) to 5 × 10−3

(white) in (b).

evaluated over the entire grid, and we compute the relative error E as

E(qexact, qapprox) =

∣∣∣qexact − qapprox

∣∣∣∞
|qexact |∞ (37)

Continuity equation
Table 1 shows the relative error E for the continuity equation, for the terms involving velocity v1 (left) and v2

(right). It shows that the error is less than 0.3% for all the terms which do not involve v2. This means that (25) does
not hold for q = v2. This is because the jet mean flow in the radial direction, v20, is very small. However, in terms of
amplitude, v2ρ

′ is negligible compared to ρv′2 so that the ρ0v′2 + v20ρ
′ is a good approximation for ρv′2 + v2ρ

′.
The error introduced by approximating (18) by (29) is small:

E
(
∂

∂x j
( v j ρ

′ + ρ v′j )′,
∂

∂x j
( v j0 ρ

′ + ρ0 v′j )
)
= 2.7 × 10−3. (38)

Exact Approximation Error
v1ρ
′ v10ρ

′ 1.8 × 10−3

ρv′1 ρ0v′1 2.1 × 10−3

v1ρ
′ + ρv′1 v10ρ

′ + ρ0v′1 2.0 × 10−3

Exact Approximation Error
v2ρ
′ v20ρ

′ 1.0
ρv′2 ρ0v′2 2.7 × 10−3

v2ρ
′ + ρv′2 v20ρ

′ + ρ0v′2 2.7 × 10−3

Table 1: Linearised Euler approximation: divergence terms in the continuity equation

Axial momentum equation
For the axial momentum equation (i = 1 in (19)), the error is shown in table 2 for the terms involving the velocity

and density fields. The top table shows the terms that have to be differentiated in the axial direction and the bottom one
the terms that have to be differentiated in the radial direction. We observe similar results as for the continuity equation:
the approximation is accurate except for the two terms involving v2. However these terms are small compared to other
terms.

The error introduced by approximating (19) by (30), for i = 1, is given by

E
(
∂

∂x j
(v1 v j ρ

′ + ρ v j v′1 + ρ v1 v′j)
′,
∂

∂x j
(v10 v j0 ρ

′ + ρ0 v j0 v′1 + ρ0 v10 v′j)
′+
)
= 3.3 × 10−3 (39)
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Exact Approximation Error
ρ v1v′1 ρ0v10v′1 2.8 × 10−3

v1
2ρ′ v2

10ρ
′ 8.7 × 10−3

2ρ v1v′1 + v1
2ρ′ 2ρ0v10v′1 + v2

10ρ
′ 2.7 × 10−3

Exact Approximation Error
ρ v1v′2 ρ0v10v′2 2.8 × 10−3

ρ v2v′1 ρ0v20v′1 1.02
v1 v2ρ

′ v10v20ρ
′ 1.02

ρ v1v′2 + ρ v2v′1 ρ0v10v′2 + ρ0v20v′1 3.3 × 10−3
+v1 v2ρ

′ +v10v20ρ
′

Table 2: Linearised Euler approximation: divergence terms in the axial momentum equation

Radial momentum equation
For the radial momentum equation (i = 2 in (19)), the error is shown in table 3 for the terms involving the velocity

and density fields. The top table shows the terms that have to be differentiated in the axial direction and the bottom
one the terms that have to be differentiated in the radial direction. In the bottom table, all terms involve v2 which
cannot be approximated properly by v20: in this case, the approximation does not give a satisfactory result.

Indeed, the error introduced by approximating (19) by (30) for i = 2 is given by

E
(
∂

∂x j
(v2 v j ρ

′ + ρ v j v′2 + ρ v2 v′j)
′,
∂

∂x j
(v20 v j0 ρ

′ + ρ0 v j0 v′2 + ρ0 v20 v′j)
′
)
= 0.57 (40)

The above error is large. However, the divergence term in the axial momentum equation is much larger than the
divergence term in the radial direction:

∣∣∣∣∣∣
∂

∂x j
(v1 v j ρ

′ + ρ v j v′1 + ρ v1 v′j)
′
∣∣∣∣∣∣∞
= 1.4 × 10−4 (41)

∣∣∣∣∣∣
∂

∂x j
(v2 v j ρ

′ + ρ v j v′2 + ρ v2 v′j)
′
∣∣∣∣∣∣∞
= 2.1 × 10−6 (42)

This means that, although our approximation is inaccurate for the radial momentum equation, the propagation effects
are strongest in the axial direction where our approximation is very good. Therefore, we expect the sound field
obtained by using the approximate equations (29–31) to be close to the original sound field.

Exact Approximation Error
ρ v2v′1 ρ0v20v′1 1.02
ρ v1v′2 ρ0v10v′2 2.8 × 10−3

v1 v2ρ
′ v10v20ρ

′ 1.02
ρ v2v′1 + ρ v1v′2 ρ0v20v′1 + ρ0v10v′2 3.3 × 10−3

+v1 v2ρ
′ +v10v20ρ

′

Exact Approximation Error
ρ v2v′2 ρ0v20v′2 1.01
v2

2ρ′ v2
20ρ
′ 1.00

2ρ v2v′2 + v2
2ρ′ 2ρ0v20v′2 + v2

20ρ
′ 1.01

Table 3: Linearised Euler approximation: divergence terms in the radial momentum equation

4. Conclusion

We find that it is possible to decompose the flow field of a jet into its radiating and non-radiating parts. This
can be done by using convolution filters implemented in the Fourier domain. We can thereafter obtain the physical
sources of sound, which depend only on the non-radiating part of the flow. We find these sources of sound to be
very different from the sources based on acoustic analogies. In particular, their amplitude is much smaller and is
close to the amplitude of the sound waves in the near-field. In addition, the frequency content of the physical sources
reflects that of the sound field. We find that the Euler operator linearized about the steady part of the flow can be
used to propagate the physical sound sources with reasonable accuracy. This will avoid the need to solve the exact
propagation equations to validate the physical sources of sound.
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Appendix A. Sources of sound for a time-averaged base flow

A classic flow decomposition method is to use a time averaged base flow. Sources based on a time-averaged base
flow can be derived as follows. The flow variable q is decomposed as

q = q0 + q′′ (A.1)

where q0 and q′′ denote respectively the steady and unsteady part of q.
Since taking the time average is a linear operation, following the procedure of section 2.2 leads to

∂2 p′′

∂xi∂xi
− ∂

2ρ′′

∂t2
+
∂2(ρviv j)′′

∂xi∂x j
= 0, (A.2)

where we have neglected the viscous term. The term (ρviv j)′′ can be decomposed as

(ρviv j)′′ = (ρ0 vi0 v j0)′′︸��������︷︷��������︸
(a)

+ (vi0 v j0 ρ
′′ + ρ0 v j0 v′′i + ρ0 vi0 v′′j )′′

︸���������������������������������������︷︷���������������������������������������︸
(b)

+ (vi0v′′j ρ
′′ + v j0v′′i ρ

′′ + ρv′′i v′′j )′′
︸���������������������������������︷︷���������������������������������︸

(c)

+O(ρ′′3) (A.3)

Term (a) vanishes whereas term (b) describes interactions between the mean flow and the unsteady components, i.e.
propagation effects. The sources must lie within the quadratic terms in (c). The terms in (c) are therefore considered
to be the sound sources and are pushed to the right hand side of the wave equation:

∂2 p′′

∂xi∂xi
− ∂

2ρ′′

∂t2
+
∂2

∂xi∂x j
( vi0 v j0 ρ

′′ + ρ0 v j0 v′′i + ρ0 vi0 v′′j ) =
∂2Ti j

∂xi∂x j
, (A.4)

where

Ti j ≡ −(ρ0v′′i v′′j + vi0ρ
′′v′′j + v j0ρ

′′v′′i )′′ (A.5)
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