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Cardiac conduction is the process by which electrical excitation is communicated from cell to cell
within the heart, triggering synchronous contraction of the myocardium. The role of conduction
defects in precipitating life-threatening arrhythmias in various disease states has spurred scientific
interest in the phenomenon. While the understanding of conduction has evolved greatly over the
last century, the process has largely been thought to occur via movement of charge between cells
via gap junctions. However, it has long been hypothesized that electrical coupling between cardiac
myocytes could also occur ephaptically, without direct transfer of ions between cells. This review
will focus on recent insights into cardiac myocyte intercalated disk ultrastructure and their impli-
cations for conduction research, particularly the ephaptic coupling hypothesis.
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Cardiac conduction is the process by which electrical excitation
is communicated from cell to cell within the heart, triggering the
synchronous contraction of the myocardium. Since being first
demonstrated by Engelmann in 1874, [20] conduction has been
the subject of intense scientific inquiry. Interest in the phenome-
non stems mainly from the link between aberrant conduction
and potentially lethal arrhythmias in a variety of pathologies.

1. Historical background

The current understanding of conduction is based largely upon
the core conductor model [45]. The roots of this theoretical para-
digm can be traced back to the application of continuous cable the-
ory to cardiac conduction by Silvio Weidmann in the 1950s [75].
Subsequent experimental results, while numerous, have largely
fit into the framework of this model, which envisions conduction
as having two functional components: Membrane excitability
and intercellular coupling. Membrane excitability, or the ability
of an excitable membrane to depolarize in response to a given
stimulus, is thought to be the province of membrane ion channels,
particularly voltage-gated sodium channels. Intercellular coupling
is seen as occurring via the passive, electrotonic flow of positive
charge between cells via low resistance pathways afforded by
gap junction (Gj) channels. However, emerging experimental evi-
dence suggests that this view, while perhaps tidy, may not offer
a complete and accurate description of cardiac conduction. For a
detailed discussion of the electrotonic model of cardiac conduction,
the reader is referred to the previous reviews by Spach et al. [58]
and Kleber & Rudy [29].

The challenge to the electrotonic model of cardiac conduction
comes in the form of ephaptic coupling, a process by which electri-
cal excitation is communicated between cells via an extracellular
electric field or ion accumulation/depletion without involvement
of Gjs [61,65]. This mechanism, known to occur in other excitable
tissues such as the brain, the retina and the uterine myometrium,
[28,74,76] has long been hypothesized to play a role in cardiac
conduction by Nicholas Sperelakis and others [12,33,40,42,63,64].
However, the lack of direct experimental evidence and a well-de-
fined functional unit, i.e., an ephapse, has meant that the investiga-
tion of ephaptic coupling has remained almost exclusively the
province of mathematical models. In this article, we will focus
emerging evidence for ephaptic coupling in the heart and their
theoretical implications – in particular, new functions for Gjs and
voltage-gated sodium channels, blurring the boundary between
excitability and intercellular coupling.
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Fig. 1. Schematic cartoon illustrating the mechanism of ephaptic coupling. (A)
Sodium channels (shown in blue) on the depolarized myocyte’s membrane activate,
withdrawing positively charged sodium ions (Na+) from the restricted extracellular
cleft at the intercalated disk. This raises the intracellular potential (Ui,1) of the first
myocyte. (B) Concomitantly, the depletion of positive charge from the restricted
extracellular cleft lowers the local extracellular potential (Ue). There is a resultant
increase in the transmembrane potential across the membrane of the second
myocyte which is defined as the difference between its intracellular potential (Ui,2)
and the extracellular potential (Ue). In turn sodium channels located at or near the
intercalated disk of the second myocyte activate. (C) Entry of sodium ions into the
second myocyte via its sodium channels further depolarize it, triggering an action
potential. Thus activation is communicated ‘ephaptically’ from cell-to-cell without
the direct transfer of ions between them.

R. Veeraraghavan et al. / FEBS Letters 588 (2014) 1244–1248 1245
2. Intercellular coupling: gap junctions and beyond

Over the last century, our understanding of cardiac intercellular
coupling has gone through a series of revisions. In the early days of
conduction research, the cytoplasms of cardiac myocytes were
thought to be contiguous, thus accounting for electrical coupling.
However, with the identification of high resistance membrane
bounding each myocyte, [56] it was postulated that there had to
exist low resistance pathways coupling neighboring myocytes
[13]. Using electron microscopy to study the intercalated disk at
high resolution, Dewey, Sjostrand and Andersson suggested that
it may constitute a connecting surface between myocytes [55].
Subsequently, in the early 1960’s, using electron microscopy, Lloyd
Barr and colleagues identified ‘fused membrane’ structures
connecting adjacent myocytes, which they dubbed the nexus [18].
Around the same time, Van der Kloot and Dane proposed the
intercalated disk as the likely site of low resistance electrical
contact between myocytes [72]; shortly thereafter, Barr, Dewey
and Berger provided direct evidence of the nexus’s involvement
in conduction [5]. In 1967, Revel and Karnovsky demonstrated
the nexus to be membranes separated by a gap rather than fused
and coined the term ‘gap junctions’ [46]. The resistance of Gj was
initially considered to be low enough to render coupled myocytes
electrically continuous, thus conferring a syncitial nature upon the
myocardium. However, experimental studies of action potential
propagation at high temporal resolution revealed Gj resistance to
be high enough to render cardiac conduction discontinuous at
the cellular level [60].

Cardiac Gjs have long been recognized to undergo remodeling
in developmental [3,23] and disease scenarios [36,43,57]. In this
regard, one key question has been the precise relationship
between the degree of Gj uncoupling and the resulting level of
conduction slowing. While conduction slowing in response to
pharmacological uncoupling has been well characterized,
[4,7,15,17,26,30,52] the electrophysiological impact of pathophys-
iologic Gj remodeling is less clear [2,8]. Experiments in transgenic
mice with 50% reduced expression of connexin43 (Cx43), the
principal ventricular Gj protein, have yielded mixed results:
Some studies reported slower conduction compared to wild-type
(WT) littermates [19,24] while others found no difference
[6,41,67,68,70,71]. Even more perplexingly, conduction, albeit slo-
wed and susceptible to failure, still occurs in mice with a cardiac-
specific conditional knockout of Cx43 resulting in a severe (>80%)
loss of Cx43 [14].

All these findings point back to a question first posed by Sperel-
akis during the 1960’s [62]: Can ephaptic coupling sustain cardiac
conduction in the absence of Gjs? While initially viewed as an
alternative to Gj coupling, more recent in silico studies have sug-
gested the possibility of so-called mixed-mode coupling involving
both mechanisms [31–33,40]. These models envision intercellular
coupling as occurring as follows: A depolarized myocyte
withdraws sodium ions from the restricted junctional cleft via its
intercalated disk-localized Nav1.5 channels (Fig. 1A). The resulting
depletion of positive charge from the junctional cleft would render
the local extracellular electrical potential more negative. Conse-
quently, the transmembrane potential across the apposed mem-
brane of the neighboring myocyte becomes more positive,
causing the activation of Nav1.5 channels (Fig. 1B). Thus electrical
activation is communicated from myocyte to myocyte without di-
rect transfer of ions between them (Fig. 1C). Based on this view, the
models almost unanimously predict that ephaptic coupling would
require that:

(a) the membranes of adjacent myocytes are closely apposed
(<10 nm apart) and,
(b) the closely apposed membranes are rich in cardiac sodium
channels (Nav1.5) [12,31–33,40,63,64,66].

3. Ion channels at the intercalated disk: functional implications

Recent insights into the ultrastructural organization of ion
channels within cardiac myocytes have sparked interest in the
ephaptic coupling hypothesis, particularly when interpreted in
the context of the aforementioned model predictions. The first evi-
dence that cardiac sodium channels are preferentially localized at
the intercalated disks of cardiac myocytes came in 1996, when
Dr. Sidney Cohen published immunofluorescence images of rat
TTX-resistant sodium channels (rH1) [11]. Since then there has
been mounting evidence for the intercalated disk localization of
ion channels, long predicted by mathematical models as a require-
ment for ephaptic coupling [12,31,39,40,61,65,77]. Since then,
other studies have recapitulated the preferential localization of
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cardiac sodium channels (Nav1.5) to the intercalated disk [31,37].
More importantly, Dr. Kucera and colleagues demonstrated in a
1D strand model of cardiac conduction that the high density of
sodium channels at the intercalated disk could impact cardiac
conduction in previously un-appreciated ways: Specifically, they
concluded that Gj are still likely the principal mechanism of
electrical transmission between cells, however, sodium channels
at the intercalated disk could couple myocytes ephaptically, partic-
ularly when Gj coupling is compromised.

Since then a more detailed picture of proteins at the intercalate
disk has emerged, revealing the existence of a macromolecular
complex containing Cx43, cardiac sodium channels (Nav1.5) and
various cytoskeletal proteins. Cx43 and Nav1.5 have been demon-
strated to co-immunoprecipitate from mouse heart lysates [38]
and to colocalize at the intercalated disk [44]. Dr. Mario Delmar
and colleagues have provided evidence suggesting that Cx43 and
Nav1.5 participate in a macromolecular complex at the intercalated
disk which includes the desmosomal protein plakophilin-2 (PKP2)
as well as ankyrin-G, a sub-membrane adapter protein involved in
localizing cardiac sodium channels (Nav1.5) in the membrane. In
primary cultures of neonatal rat ventricular myocytes, they found
that Cx43 gap junctions and ankyrin-G (AnkG) are recruited to sites
of cell-to-cell contact following the localization of mechanical
adhesion proteins [22]. Subsequently, they demonstrated regula-
tion of the sodium current by both PKP2 and AnkG [10,53,54]
and mutations in both proteins have been associated with Brugada
syndrome, an inherited arrhythmia syndrome characterized by de-
creased sodium current density [9,25]. Recently, Dr. Delmar and
colleagues reported loss of Nav1.5 from the membrane in condi-
tional Cx43 knockout mice [27] and suggested that Cx43 play a role
in the recruitment of Nav1.5 channels into the intercalated disk
membrane [1,16]. Further support for this hypothesis comes from
their observation of decreased sodium and potassium current lev-
els as well as loss of Nav1.5 from the intercalated disk without any
concomitant loss of Gj coupling in mice lacking the last 5 C-termi-
nal amino acids of Cx43 [35]. In all, emerging evidence both struc-
tural [44] and functional [34] suggests the existence of two distinct
pools of Nav1.5 located at the intercalated disk and at the lateral
membrane.

These observations resonate with computer models which sug-
gest that intercalated disk localized sodium channels may be in-
volved in ephaptic coupling [31–33], while those on the lateral
membrane are important for maintaining the stability of conduc-
tion [69], particularly when Gj coupling is reduced. In all there is
mounting support for the hypothesis that microdomains could ex-
ist within the intercalated disk that have the necessary density of
sodium channels for ephaptic coupling to occur. Close apposition
between cell membranes, the other criterion for ephaptic coupling
predicted by models, could help identify specific structures that
might function as a cardiac ephapse.

4. Ephaptic coupling: experimental traces

The functional observations suggesting a role for ephaptic cou-
pling in the heart come from investigation of conduction depen-
dence on interstitial volume. Under the electrotonic view of
conduction, the interstitial space provides the return path for elec-
trical current flowing between myocytes, thus completing the
circuit. Based on this notion, conduction velocity should be directly
proportional to interstitial volume, [45,59] and observations in
cable-like papillary muscle have been consistent with this notion
[21]. However, we recently demonstrated that increasing intersti-
tial volume in a heart slows conduction and vice versa, i.e. an
inverse relationship between conduction velocity and interstitial
volume [73]: These observations are inconsistent with a purely
electrotonic view of cardiac conduction. Additionally, we found
that levels of Gj uncoupling too small to alter conduction normally,
significantly slowed conduction when the interstitial volume was
increased. These findings are consistent with the hypothesis that
increased interstitial volume impairs ephaptic coupling, thus slow-
ing conduction and increasing its dependence on Gj coupling.
These results underscore the importance of interstitial volume,
i.e. the spacing between membranes of adjacent myocytes, as a
determinant of conduction and offer further impetus for a critical
reassessment of the role ephaptic coupling may play in cardiac
conduction. Additionally, they dovetail with the predictions made
by computer models of ephaptic coupling [31,32,40]. However, as
previously stated, any attempt to directly assess whether ephaptic
coupling plays a role in cardiac conduction must first contend with
the question of its structural underpinnings. In other words, a func-
tional unit of ephaptic coupling, an ephapse, will need to be
identified.

5. Ultrastructural breadcrumbs leading to the ephapse?

Taking together the aforementioned structural and functional
insights in the context of the in silico predictions, it could be
hypothesized that the cardiac ephapse is likely to be a microdo-
main within the intercalated disk with a high density of cardiac
sodium channels (Nav1.5) and close apposition between the
membranes of adjacent myocytes.

One structure that emerges as a promising candidate for the
ephapse is the perinexus – a specialized membrane microdomain
surrounding Gj plaques and rich in undocked connexon hemichan-
nels [47,48]. While previous studies identified the interaction be-
tween Cx43 and Nav1.5 at the intercalated disk [35,37,38,53],
proximity ligation assays (PLA – e.g., Duolink) of protein–protein
association enabled imaging of Cx43–Nav1.5 interaction at the
perinexus [49,50]. By virtue of its location at the periphery of Gj
plaques, the perinexus features close apposition between the
membranes of adjacent myocytes [51]. This feature, together with
the focal concentrations of sodium channels generated by a scaf-
fold that includes Cx43 hemichannels, indicates that the perinexus
potentially meets both criteria identified by mathematical models
to function as an ephapse between cardiac myocytes.

Further studies utilizing emerging modalities such as superres-
olution microscopy and the PLA interaction assay, combined with
the high resolution of electron microscopy will be critical to flesh-
ing out the structure of the macromolecular complex located at the
intercalated disk. As the constituents of this complex are identified,
functional experiments in intact myocardium will be needed in or-
der to elucidate their roles in forming and maintaining the machin-
ery of cardiac conduction. And, identifying the ephapse will only be
the first step in formulating a new theory of cardiac conduction.
Fuller appreciation of the role of ephaptic coupling, will require a
two-pronged approach: (a) Further experiments to investigate
the relationship between the molecular ultrastructure of the
intercalated disk and the electrophysiology of the heart; and (b)
Structurally detailed, multi-dimensional mathematical models
which incorporate ephaptic coupling to probe the mechanisms
underlying the new experimental observations.

6. Conduction: a new multi-factorial understanding

Continuing the trend of the last 130 years, our understanding of
cardiac conduction appears to be on the verge of yet another revi-
sion – and perhaps a shift in paradigm. The primary driver of this
change is the new picture that we are obtaining of the intercalated
disk – the prime locus of the machinery of cardiac conduction.
With respect to its role in cellular contact and communication,



R. Veeraraghavan et al. / FEBS Letters 588 (2014) 1244–1248 1247
the intercalated disk is an intricate, dynamically regulated machine
rather than a simple, naïve structure. Continuing a trend that
began a decade or so ago, we are beginning to see connexins not
just as channels, but as multi-functioned constituents of macromo-
lecular complexes, heralding a new chapter in the biology of these
molecules. As we understand myocyte structure at finer and finer
resolution, so are we also are beginning to appreciate the impor-
tance of biophysical phenomena that occur at the scale of nanome-
ters. The erosion of existing conceptual boundaries, such as that
between tissue excitability and intercellular coupling, is leading
to a new, multi-factorial view of conduction where the same
molecules appear to play several roles and multiple mechanisms
work in tandem to achieve a single function. This deeper under-
standing could help explain the processes underlying pathological
conduction defects and open up novel avenues for therapy.
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