
Advances in Applied Mathematics 39 (2007) 477–489

www.elsevier.com/locate/yaama

Reverse-engineering of polynomial dynamical systems

Abdul Salam Jarrah a, Reinhard Laubenbacher a,∗, Brandilyn Stigler b,
Michael Stillman c

a Virginia Bioinformatics Institute, Polytechnic Institute and State University, Blacksburg, VA 24061-0477, USA
b Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA

c Mathematics Department, Cornell University, Ithaca, NY 14853, USA

Received 19 May 2006; accepted 1 August 2006

Available online 24 October 2006

Abstract

Multivariate polynomial dynamical systems over finite fields have been studied in several contexts,
including engineering and mathematical biology. An important problem is to construct models of such
systems from a partial specification of dynamic properties, e.g., from a collection of state transition mea-
surements. Here, we consider static models, which are directed graphs that represent the causal relationships
between system variables, so-called wiring diagrams. This paper contains an algorithm which computes all
possible minimal wiring diagrams for a given set of state transition measurements. The paper also contains
several statistical measures for model selection. The algorithm uses primary decomposition of monomial
ideals as the principal tool. An application to the reverse-engineering of a gene regulatory network is in-
cluded. The algorithm and the statistical measures are implemented in Macaulay 2, and are available from
the authors.
© 2006 Elsevier Inc. All rights reserved.

MSC: 93A10; 13P10

Keywords: Finite dynamical system; Finite field; Monomial ideal; Primary decomposition; Reverse-engineering; Gene
regulatory network

* Corresponding author.
E-mail addresses: ajarrah@vbi.vt.edu (A.S. Jarrah), reinhard@vbi.vt.edu (R. Laubenbacher), bstigler@mbi.osu.edu

(B. Stigler), mike@math.cornell.edu (M. Stillman).
0196-8858/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.aam.2006.08.004

478 A.S. Jarrah et al. / Advances in Applied Mathematics 39 (2007) 477–489
1. Introduction

A polynomial dynamical system (PDS) over a finite field k is a function

f = (f1, . . . , fn) : kn → kn,

with the coordinate functions fi ∈ k[x1, . . . , xn]. Iteration of f results in a time-discrete dynam-
ical system. PDSs are special cases of finite dynamical systems, which are maps Xn → Xn over
arbitrary finite sets X. Such systems arise in applications in engineering (see, e.g., [3,6,15,17–
19,25] as well as in biology [2,13,14]). They include in particular the class of Boolean networks
(k = F2) and cellular automata, which are studied and applied extensively in computer science,
engineering, and life science disciplines [5,8,11,12,22,23]. The problem of finding systems with
specified dynamic properties has arisen in several contexts, e.g., [14,19].

The main result in this paper is an algorithm that identifies minimal sets of variables for which
a model exists that explains the data. That is, the output consists of all possible minimal “wiring
diagrams” of dynamic networks that fit the data. This paper also relates to the algorithm in [13].
There, the question is considered what can be inferred about a biological network from a set of
experiments. The network is represented by a mapping f :Xn → Xn, where n is the number of
variables and X is a finite set of state values for the variables. It is shown in [13] that the problem
of finding a minimal wiring diagram for the network from a set of observations is NP-hard. The
author then describes a greedy algorithm that finds a wiring diagram which is “close” to minimal
and as sparse as possible in polynomial time. The algorithm in this paper can be interpreted as
a deterministic method that finds ALL possible minimal wiring diagrams. This is accomplished
by imposing an algebraic structure on the set X and using tools from symbolic computation.
The main idea is to construct a square-free monomial ideal from the given observations, whose
minimal primes are generated by the desired minimal variable sets. This method is quite effective
for networks arising from biological systems, even though the general problem is NP-hard.

2. Reverse-engineering of polynomial dynamical systems

We first describe briefly the algorithm in [14] and how it can be applied to the reverse-
engineering of biochemical networks, in order to create a context for the algorithm in the present
paper. Recent technological advances, such as DNA microarray chips, have made it possible
to make large system-level measurements of chemical species in cell extracts, such as gene
transcripts from large numbers of genes. It would be desirable to have efficient computational
methods to extract information about regulatory interactions between genes from repeated mea-
surements of gene transcript concentrations. The relatively high cost of gene chip technology
makes it infeasible to collect sufficient time-course measurements to uniquely determine the net-
work. A further complication is that the variance in gene chip data is still significant, adding
additional complexity to the problem.

Any approach to network reconstruction must in principle proceed in three steps: (1) choose a
model type, e.g., systems of differential equations or Bayesian networks. (2) Describe the space
of models that are consistent with the given data set. (3) Choose a “most likely” model that
generated the given data set, based on predefined selection criteria. From this model, one can
then determine the structure of the network, or its dynamic behavior.

In [14] the authors proposed as choice in Step (1) the class of polynomial dynamical systems
over finite fields. This choice was motivated by several considerations. Molecular data sets such

A.S. Jarrah et al. / Advances in Applied Mathematics 39 (2007) 477–489 479
as DNA microarray measurements are still sufficiently noisy to justify qualitative models that dis-
tinguish only finitely many possible states. Furthermore, biologists typically interpret such data
as giving a relatively small number of regulatory states, e.g. fold-change over control measure-
ments. Finally, discrete models for biochemical networks have a long and successful tradition,
beginning with the work of S. Kauffman [12], the logical models of Snoussi and Thomas [24],
and, more recently, Bayesian network models [7].

Once this model class is chosen, we need to address Step (2), the description of the model
space corresponding to a given data set. To be precise, suppose we are considering n variables
x1, . . . , xn, e.g., gene transcript concentrations for n genes. Suppose that we have measured m

real-valued state transition pairs (s1, t1), . . . , (sm, tm) with

si = (si1, . . . , sin), ti = (ti1, . . . , tin), i = 1, . . . ,m,

where sij , tij ∈ R. That is, if the system is in state si , then it transitions to state ti at the next time
step. The first task is to choose a suitable finite field k and associated discrete state transition
pairs si , ti in kn. This is a difficult and very important step. Most existing clustering algorithms
are not suitable for this purpose, and a new algorithm is proposed in [4]. An admissible model
then is a function f : kn → kn such that

f (si) = ti . (1)

Since any function kn → k can be represented as a polynomial function [16, p. 369], the model
space under consideration is the collection of all PDSs f = (f1, . . . , fn) such that Eq. (1) holds.

Note that, if f and g are two such models, then f − g is a polynomial function that van-
ishes identically on the given data set. Hence we can compute the model space by computing a
particular model f 0 = (f 0

1 , . . . , f 0
n), where the coordinate function f 0

i ∈ k[x1, . . . , xn], and the
ideal I of the variety given by the points si . This ideal of points can be computed efficiently by
the Buchberger–Möller algorithm (see [21] for a description of the algorithm). The model space
is given by the tuple of cosets (f 0

1 + I, . . . , f 0
n + I). It is clearly sufficient to solve the network

reconstruction problem for each network node separately.
Step (3) then consists of the selection of a “most likely” model from the space h + I , where

h ∈ k[x1, . . . , xn]. In [14], it was proposed to choose the normal form (reduction) of any particular
model h with respect to a Gröbner basis for the ideal I . The motivation for this choice was
that the model should be minimal, in the sense that it should not contain any terms that vanish
identically on the data. Inclusion of such terms may affect the inference of network structure by
introducing interactions in the network that are not supported by the data. However, this choice
is unsatisfactory for several reasons. In particular, the normal form depends on the choice of a
particular term order to compute a Gröbner basis, and there is no canonical choice for such a
term order. The algorithms in this paper are partially motivated by an effort by the fourth author
to make the model selection criterion less dependent on the choice of term order.

In the next section we describe an algorithm that finds all sets of variables xi1, . . . , xir for
which

k[xi1, . . . , xir] ∩ (h + I) �= ∅,

and such that the intersection is empty whenever one of the variables is removed. That is, this
algorithm finds all minimal sets of variables for which there exists a model consistent with the

480 A.S. Jarrah et al. / Advances in Applied Mathematics 39 (2007) 477–489
given data. One advantage is that this algorithm does not depend on the choice of a term order. In
a later section we will describe how it can be used for the purpose of model selection in Step (3).

3. Minimal variable sets via primary decomposition

We restrict our attention to the data for a single coordinate. That is, we have the given data set

(s1, t1), . . . , (sm, tm),

where si ∈ kn and ti ∈ k (notice that this is a value in k and not an n-tuple). We are interested in
functions f ∈ k[x1, . . . , xn] such that f (si) = ti . For a ∈ k, let

Xa = {si | ti = a},

and X = {Xa | a ∈ k}. Write the model space h + I for the given data set as

Y = {
f ∈ k[x1, . . . , xn] | f (p) = a, for all p ∈ Xa, a ∈ k

}
.

We are interested in the elements f of Y which involve a minimal number of the variables, in the
sense that there exists no g ∈ Y such that the support of g is properly contained in the support
of f . To compute these minimal variable sets, we encode them in a simplicial complex.

Definition 1. For F ⊂ {1, . . . , n}, let RF = k[xi | i /∈ F]. Let

ΔX := {
F ⊂ {1, . . . , n} | Y ∩ RF �= ∅}

.

Notice that ΔX is a simplicial complex, since if G ⊂ F , then RF ⊂ RG. We now associate a
square-free monomial ideal to ΔX .

Definition 2. Given X as above, let MX ⊂ k[x1, . . . , xn] be the square-free monomial ideal gen-
erated by

W = {
m(p,q) | p ∈ Xa, q ∈ Xb, and a �= b ∈ k

}
,

where

m(p,q) :=
∏

pi �=qi

xi .

Note that the monomial m(p,q) encode the coordinates in which p and q differ. Note that MX

is the same as the face ideal for the Alexander dual of ΔX . The following fact is the key technical
result underlying the algorithm.

Proposition 3. For a given subset F ⊂ {1, . . . , n}, F ∈ ΔX if and only if the ideal 〈xi | i /∈ F 〉
contains the monomial ideal MX .

A.S. Jarrah et al. / Advances in Applied Mathematics 39 (2007) 477–489 481
Proof. First, assume that F ∈ ΔX . Then Y ∩ RF �= ∅. Let p ∈ Xa , q ∈ Xb , with a �= b. Then
there exists f ∈ k[xi | i /∈ F] such that f (p) = a and f (q) = b. This implies that p and q must
differ in some coordinate j /∈ F . Hence, the monomial m(p,q) must contain xj as a factor, and
is therefore contained in 〈xi | i /∈ F 〉. This proves one direction.

For the other direction, assume that MX ⊂ 〈xi | i /∈ F 〉. Then all m(p,q) are contained in this
ideal, which implies that p ∈ Xa and q ∈ Xb,a �= b, differ in a coordinate i /∈ F . Let f be a func-
tion which sends all p ∈ Xa to a for all a. This function can be represented as a polynomial f ,
and, since p ∈ Xa and q ∈ Xb differ in coordinates i /∈ F , this polynomial can be expressed using
only variables xi, i /∈ F . Hence f ∈ Y ∩ RF . This completes the proof of the proposition. �

The following corollary is immediate.

Corollary 4. The minimal subsets F such that Y ∩ RF �= ∅ are precisely the generating sets for
the minimal primes in the primary decomposition of the ideal MX .

This corollary forms the basis for Algorithm 5.

Algorithm 5 (Minimal Sets).

Input: {(s1, t1), . . . , (sm, tm)}, with si ∈ kn, ti ∈ k.
Output: All minimal subsets F ⊂ {1, . . . , n} such that there exists a

polynomial function f ∈ k[{xi | i /∈ F }] with f (si) = ti .

Step 1. Compute the ideal MX .
Step 2. Compute the primary decomposition of MX .
Step 3. Compute the generating sets of all minimal primes of MX .

Example 6. Consider the following set of state transition pairs, with entries in the field F5 with
five elements:

s1 = (
(3,0,0,0,0),3

)
,

s2 = (
(0,1,2,1,4),1

)
,

s3 = (
(0,1,2,1,0),0

)
,

s4 = (
(0,1,2,1,1),0

)
,

s5 = (
(1,1,1,1,3),4

)
.

Then X0 = {s3, s4}, X1 = {s2}, X2 = ∅, X3 = {s1}, and X4 = {s5}. Recall that the ideal MX is
generated by all monomials m(p,q) with p ∈ Xa and q ∈ Xb for every a �= b ∈ k. For a = 1 and
b = 3, the monomial m((0,1,2,1,4), (0,1,2,1,0)) = x5 since the two points differ in the fifth
coordinate, whereas m((0,1,2,1,4), (1,1,1,1,3)) = x1x3x5. The ideal MX is generated by the
monomials {x1x2x3x4, x5} and has associated primes 〈x1, x5〉, 〈x2, x5〉, 〈x3, x5〉, 〈x4, x5〉. The
minimal sets of variables required to define a function for the data given above are:

{x1, x5}, {x2, x5}, {x3, x5}, {x4, x5}.

We now discuss the complexity of Algorithm 5.

482 A.S. Jarrah et al. / Advances in Applied Mathematics 39 (2007) 477–489
Lemma 7. Let |k| = q and let W be the generating set of the ideal MX as in Definition 2. Then

|W | � 1

2

(
1 − 1

q

)
m2.

Proof. Suppose that X = ⋃j

l=1 Xil , where il ∈ k, for all l. Suppose |Xil | = ril for all l. Then

|W | �
j∑

g,h=1;g �=h

rig rih �
(

q

2

)(
m

q

)2

= 1

2

(
1 − 1

q

)
m2. �

There are two well-known methods for finding the primary decomposition of a monomial
ideal like MX , and the most efficient one uses the Alexander dual of MX [10]. This is the method
used in our implementation in Macaulay 2 [9] of the algorithms presented in this paper. Using
the notion of a monomial tree in the Alexander dual approach, it is conjectured [20] that the
irreducible primes of MX can be found with order O(|W |2 log(n)).

4. Model selection

The algorithm described in the previous section produces a potentially very large number of
possible models for a given data set. If additional information about the network is available,
e.g., the existence or absence of certain interactions, then this can be used for model selection.
This is the case for the application discussed in the next section. In this section we describe
a small collection of statistical measures for model selection in the case where no additional
information about the network is available. Each of the measures has a different set of underlying
assumptions, ranging from a bias toward small sets to a bias toward large sets containing variables
that appear in many of the minimal sets. Which measure is appropriate to use depends on the type
of network under consideration.

Let {x1, . . . , xn} be the set of variables and let

F = {F1, . . . ,Ft } ⊂ P
({x1, . . . , xn}

)
,

be the output of Algorithm 5 for a given data set. We will construct several statistical measures
on this output that allow the choice of one or more subsets/models with highest probability.

For 1 � s � n, let Zs be the number of sets Fj in F of length s, and for xi ∈ {x1, . . . , xn}, let
Wi(s) be the number of sets Fj in F of length s such that xi ∈ Fj . That is,

Zs = ∣∣{j : Fj ∈ F and |Fj | = s
}∣∣ and

Wi(s) = ∣∣{j : Fj ∈F , xi ∈ Fj and |Fj | = s
}∣∣.

We propose three different methods to score each variable xi ∈ {x1, . . . , xn}. Let

S1(xi) =
n∑

s=1

Wi(s)

s · Zs

,

S2(xi) =
n∑ Wi(s)

s
,

s=1

A.S. Jarrah et al. / Advances in Applied Mathematics 39 (2007) 477–489 483
S3(xi) =
n∑

s=1

Wi(s).

Next we propose two different methods to compute a score for each set Fj ∈F . Define

T1(Fj) =
∏

xi∈Fj

S(xi),

T2(Fj) =
∑

xi∈Fj
S(xi)

|Fj | ,

where S(xi) is the score of xi using any of the three variable-scoring methods. If we now nor-
malize the set scores by dividing by D = ∑

j Ti(Fj), i = 1,2, then we obtain a probability
distribution on the set F .

Example. Let n = 6, and let

F = {
F1 = {x1}; F2 = {x2, x3}; F3 = {x2, x4}; F4 = {x3, x5, x6}

}
.

Then

S1 S2 S3

x1 1 1 1

x2
1
2

1
2 2

x3
7
12

5
6 2

x4
1
4

1
2 1

x5
1
3

1
3 1

x6
1
3

1
3 1

The following table lists set scores using different combinations of the scoring methods Si and Tj .

S1, T1 S1, T2 S2, T1 S2, T2 S3, T1 S3, T2

F1 1 1 1 1 1 1

F2
7
24

13
24

10
24

16
24 4 2

F3
1
8

3
8

2
8

4
8 2 6

8

F4
7

108
45
108

10
108

54
108 2 4

3

Using either T1 or T2 to score sets, we would choose F1 if we use S1 or S2, and F2 if we
use S3.

484 A.S. Jarrah et al. / Advances in Applied Mathematics 39 (2007) 477–489
Note that using S1 or S2 to score variables does not always pick the singleton sets as one
might suspect from the example above. Suppose we have the collection of sets

{x1}, {x13}, {x2, x3}, {x2, x4, x5}, {x2, x6, x7}, {x2, x8, x9}, {x2, x10, x11, x12}.

Then T ({x2, x3}) > T ({x1}), where T is either T1 or T2, using any of the variable-scoring meth-
ods above.

Algorithm 8 (Model Selection).

Input: A collection of subsets F1, . . . ,Ft of {x1, . . . , xn}.
Output: Return the set(s) with highest probability score.

Step 1. For each xi , compute S(xi).
Step 2. For each Fj , compute T (Fj)/D.
Step 3. Return the set(s) Fj with the highest score T (Fj)/D.

The user may now make a further selection to obtain a single model, based either on ad-
ditional information about the network to be modeled or other criteria, such as choosing the
simplest model. This is typically a heuristic process. Alternatively one may use this information
to obtain appropriate additional data points for further model selection. For applications to bio-
logical systems, in particular biochemical networks, certain molecules may have well-understood
properties, such as their role in a signaling pathway or in transcription regulation. This type of
information can be used in the model selection process, and is generated by the following modi-
fication of Algorithm 8.

Algorithm 9 (Model Selection–Additional Information).

Input: A collection of subsets F1, . . . ,Ft of {x1, . . . , xn}.
Output: Return all singleton sets and the variable(s) and set(s) of highest score.

Step 1. For each xi , compute S(xi).
Step 2. For each Fj , compute T (Fj)/D.
Step 3. Return the set(s) Fj with the highest probability T (Fj)/D and all variables that have

scores equal to or higher than the lowest score of variables that appear in the Fj cho-
sen by Algorithm 8.

5. Network reconstruction

As described in Section 2, the algorithm in [14] chooses a reduced polynomial dynamical
system that fits the given data set. The main advantage of the algorithm described in Sec-
tion 3 is that it allows the restriction of the model space from which this choice is made to
polynomials that include only essential collections of variables. This improves model selection
substantially. We demonstrate this improvement with a simulated biochemical network in the
fruit fly D. melanogaster.

A.S. Jarrah et al. / Advances in Applied Mathematics 39 (2007) 477–489 485
5.1. Network reconstruction using multiple term orders

Let f = (f1, . . . , f21) be the PDS with coordinate functions in F2[x1, . . . , x21] defined in the
appendix. This dynamical system was first introduced in [1] as a Boolean network model for
the segment polarity genes expressed in a developmental cycle of the fruit fly embryo. There
the authors assembled the Boolean functions from the known connectivity structure, depicted as
a graph in [1, Fig. 1]. The authors in [14] aimed to reconstruct the Boolean model, as well as
the connectivity graph, from data generated by f (see Section 5.2). They applied the reverse-
engineering method described above to the generated data and constructed a minimal PDS. (For
reasons outside the scope of this discussion, we focus on the reconstruction of the first 15 func-
tions; the remaining ones are associated to “dummy” variables introduced by the authors of [14]
and are not considered here.) To test the accuracy of their polynomial model, they associated a
directed graph to the PDS, which they used to compare with the wiring diagram of the Boolean
model.

Definition 10. Let g ∈ k[x1, . . . , xn]. The support of g, denoted supp(g), is the set of variables
that appear in g.

Definition 11. Let f be an n-dimensional PDS; that is, f = (f1, . . . , fn) and fi ∈ k[x1, . . . , xn].
The dependency graph of f , denoted D(f), is a directed graph (V ,E) with vertex set V :=
{x1, . . . , xn} and edge set E := {(t, xi) | t ∈ supp(fi), i = 1, . . . , n}.

The terms “wiring diagram,” “static model” and “dependency graph” are different names for
the same concept and will be used interchangeably.

In the reconstruction process, the authors of [14] used 4 graded reverse lexicographical orders
(grevlex) and produced a consensus dependency graph. They reported 46 edges in the graph of
their polynomial model, of which 37 are correct. As the network graph has 44 edges, their method
has a false-positive rate (FPR) of 46−37

46 ≈ 0.20 and a false-negative rate (FNR) of 44−37
46 ≈ 0.15.

While the authors demonstrated favorable performance of the reverse-engineering method, it
relies heavily on the choice(s) of term order. In fact, if we repeat the exercise outlined above for
only one term order, say grevlex with x1 > · · · > xn, then we get a dependency graph with 58
edges, 37 being correct, an FPR of 58−37

58 ≈ 0.36 and a FNR of 44−37
58 ≈ 0.12. In [2], this approach

was improved by using a large number of term orders, and applied to the reverse-engineering of
a protein network.

We show next that we can improve the performance of the reverse-engineering method pro-
posed in [14] by using the minimal sets algorithm described in Section 3.

5.2. Network reconstruction using minimal variable sets

The data set consists of 24 sets of 7 state transition pairs, each generated by applying f to 24
initializations s0, taken from [14]. So, each data set is comprised of pairs

(
si , f (si+1)

)
, for i = 0,(

f (si), f (si+1)
)
, for 1 � i � 7.

There are 6 different experimental conditions represented: WT = f and KOi = f (i) :=
(f1, . . . , fi−1,0, fi+1, . . . , fn) for i = 2,4,6,8,12. The condition WT represents data from the

486 A.S. Jarrah et al. / Advances in Applied Mathematics 39 (2007) 477–489
wildtype, that is, observations of a biological process in its natural state. We call f (i) the knock-
out for node i, as it simulates the “knocking out” or silencing of one biochemical, namely a gene
product.

For each experimental condition, there are 4 initializations, in which a small number of entries
are set to 1 and the rest are set to 0. For example, the third initialization in the WT experiments
has a 1 in the first, 8th, and 12th coordinates and 0s everywhere else. The table below summarizes
this information.

s0 WT KO2 KO4 KO6 KO8 KO12
1 4, 6 4, 6 6 4 4, 6 4, 6
2 8, 12, 20 8, 12, 20 8, 12, 20 8, 12 12, 20 8, 20
3 1, 8, 12 1, 8, 12 1, 8, 12 1, 8, 12 1, 12 1, 8
4 1, 2, 8, 12, 21 1, 8, 12, 21 1, 2, 8, 12, 21 1, 2, 8, 12 1, 2, 12, 21 1, 2, 8, 21

We applied Algorithm 5 to the generated data and computed the minimal sets for each node.
We note that minimal sets are not unique (see Example 6). In fact, for only 9 of the 15 functions
is there a unique minimal set of variables. Let us restrict our attention to the following coordinate
functions of the true network for which there is more than one choice:

f8 = (x4 + 1)(x13)
[
(x11 + 1)(x20x21 + x20 + x21) + x11

]
,

f9 = (x19 + 1)(x8x9x18 + x8x9 + x9x18 + x9) + x8,

f10 = f9(x20x21 + x20 + x21),

f11 = f9 + f10 + 1.

There are 30, 19, 2, and 5 choices of minimal sets, respectively. In each case, we chose the set that
coincided with basic biological properties of the network. To see this, consider the subgraph G

of the dependency graph of f generated by the support of f8, . . . , f11. This graph has 21 edges
and is given in Fig. 1.

The functions f8, f10 and f11 are associated to biochemicals known to not directly regulate
their own synthesis, so we selected those sets that do not contain x8, x10, and x11, respectively.
We made similar selections for the reconstruction of f9. This resulted in identification of 19
of the 21 expected edges, all of which are correct. The 2 edges not discovered correspond to

Fig. 1.

A.S. Jarrah et al. / Advances in Applied Mathematics 39 (2007) 477–489 487
variables that are in the support of f10, namely x18 and x19. Upon inspection, we find that the
part of f10 involving these two variables is identically 0 on the given data set. Consequently, the
corresponding interactions in the network are not identifiable using this data set.

For the entire network, we identified 39 edges, all of which are correct, using Algorithms 5
and 9. While we failed to discover the remaining 5 edges, all have been identified as correspond-
ing to elements of the ideal of the inputs.

6. Discussion

We have presented an algorithm that identifies all possible minimal dependency graphs of
polynomial dynamical systems that fit a given data set of state transition pairs. The algorithm
does not share the shortcoming of dependence on the choice of a term order, present in the
algorithm in [14], which, on the other hand, generates an actual dynamical system model that
reproduces the data. And we have compared the two algorithms by applying them to the same
data set, generated from a Boolean model of fruit fly embryonic development. Furthermore,
Algorithms 5 and 8 improve on the greedy algorithm described in [13].

As with all other system identification methods of this type, a rigorous validation requires
techniques to measure the quality of the given input data. No such methods have been proposed
at this time for this modeling framework, an important open problem, so validation rests on
individual case studies.

Acknowledgments

The authors thank Miguel Colón-Velez for the implementation of the statistical measures. The
first and second authors were supported partially by NSF Grant DMS-0511441. The second and
third authors were supported partially by NIH Grant RO1 GM068947-01, a joint computational
biology initiative between NIH and NSF. The fourth author was supported partially by NSF Grant
DMS-0311806.

Appendix A

Following is the PDS consisting of 21 functions in F2[x1, . . . , x21] used as an example in
Section 5.

f1 = x1,

f2 = x1x2x15 + x1x14x15 + x2x14x15 + x1x2 + x1x14 + x2x14,

f3 = x2,

f4 = x1x16x17 + x1x16 + x1x17 + x16x17 + x16 + x17,

f5 = x4,

f6 = x5x15 + x5,

f7 = x6,

f8 = (x4 + 1)(x13)
[
(x11 + 1)(x20x21 + x20 + x21) + x11

]
,

f9 = (x19 + 1)(x8x9x18 + x8x9 + x9x18 + x9) + x8,

488 A.S. Jarrah et al. / Advances in Applied Mathematics 39 (2007) 477–489
f10 = f9(x20x21 + x20 + x21),

f11 = f9 + f10 + 1,

f12 = x5 + 1,

f13 = x12,

f14 = (x11 + 1)(x13x20x21 + x13x20 + x13x21 + x13) + x13,

f15 = f14 + x13,

fi = xi for 16 � i � 21.

References

[1] R. Albert, H. Othmer, The topology of the regulatory interactions predicts the expression pattern of the segment
polarity genes in Drosophila Melanogaster, J. Theoret. Biol. 223 (2003) 1–18.

[2] E. Allen, J. Fetrow, L. Daniel, S. Thomas, D. John, Algebraic dependency models of protein signal transduction
networks from time-series data, J. Theoret. Biol. 238 (2006) 317–330.

[3] P. Cull, Linear analysis of switching nets, Kybernetik 8 (1971) 31–39.
[4] E. Dimitrova, R. Laubenbacher, J. McGee, Discretization of time series data, 2005, under review.
[5] A. Doeschl, M. Davison, H. Rasmussen, G. Reid, Assessing cellular automata based models using partial differential

equations, Math. Comput. Modelling 40 (2004) 977–994.
[6] B. Elspas, The theory of autonomous linear sequential networks, IRE Trans. Circuit Theory CT-6 (1959) 45–60.
[7] N. Friedman, M. Linial, I. Nachman, D. Pe’er, Using Bayesian networks to analyze expression data, J. Comput.

Biol. 7 (2000) 601–620.
[8] A. García-Olivares, M. Villarroel, P. Marijuán, Enzymes as molecular automata: A stochastic model of self-

oscillatory glycolytic cycles in cellular metabolism, BioSystems 56 (2000) 121–129.
[9] D. Grayson, M. Stillman, Macaulay 2, a software system for research in algebraic geometry, available at

http://www.math.uiuc.edu/Macaulay2/.
[10] S. Hoşten, G. Smith, Monomial ideals, in: Computations in Algebraic Geometry with Macaulay 2, in: Algorithms

Comput. Math., vol. 8, Springer, Berlin, 2002, pp. 73–100.
[11] M.-Th. Hütt, R. Neff, H. Busch, F. Kaiser, Method for detecting the signature of noise-induced structures in spa-

tiotemporal data sets, Phys. Rev. E 66 (2) (2002) 26117–26127.
[12] S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theoret. Biol. 22 (1969)

437–467.
[13] B. Krupa, On the number of experiments required to find the causal structure of complex systems, J. Theoret.

Biol. 219 (2002) 257–267.
[14] R. Laubenbacher, B. Stigler, A computational algebra approach to the reverse engineering of gene regulatory net-

works, J. Theoret. Biol. 229 (2004) 523–537.
[15] M. LeBorgne, A. Benveniste, P. LeGuernic, Polynomial dynamical systems over finite fields, in: G. Jacob, F.

Lamnabhi-Lagarrigue (Eds.), Algebraic Computing in Control (New York), in: Lecture Notes in Control and In-
form. Sci., vol. 165, Springer, 1991, pp. 212–222.

[16] R. Lidl, H. Niederreiter, Finite Fields, second ed., Encyclopedia Math. Appl., vol. 20, Cambridge Univ. Press, New
York, 1997.

[17] H. Marchand, M. LeBorgne, On the optimal control of polynomial dynamical systems over Z/pZ, in: Proceedings
of the Fourth Workshop on Discrete Event Systems, Cagliari, Italy, IEEE, 1998, pp. 385–390.

[18] H. Marchand, M. LeBorgne, Partial order control of discrete event systems modeled as polynomial dynamical
systems, in: Proceeding of the 1998 IEEE International Conference on Control Applications, Trieste, Italy, IEEE,
1998, pp. 817–822.

[19] D. Milligan, M. Wilson, The behavior of affine Boolean sequential networks, Connection Science 5 (2) (1993)
153–167.

[20] R.A. Milowski, Computing Irredundant Irreducible Decompositions of Large Scale Monomial Ideals, ISSAC, 2004,
pp. 235–242.

A.S. Jarrah et al. / Advances in Applied Mathematics 39 (2007) 477–489 489
[21] L. Robbiano, Gröbner bases and statistics, in: Gröbner Bases and Applications, Linz, 1998, London Math. Soc.
Lecture Note Ser., vol. 251, Cambridge Univ. Press, Cambridge, 1998, pp. 179–204.

[22] I. Shmulevich, E. Dougherty, S. Kim, W. Zhang, Probabilistic Boolean networks: A rule-based uncertainty model
for gene regulatory networks, Bioinformatics 18 (2) (2002) 261–274.

[23] G. Sirakoulis, I. Karafyllidis, Ch. Mizasa, V. Mardirisa, A. Thanailakis, P. Tsalides, A cellular automaton model for
the study of DNA sequence evolution, Comput. Biol. Medicine 33 (2003) 439–453.

[24] E. Snoussi, R. Thomas, Logical identification of all steady states: The concept of feedback loop characteristic states,
Bull. Math. Biol. 55 (1993) 973–991.

[25] M. Wilson, D. Milligan, Cyclic behavior of autonomous synchronous Boolean networks: Some theorems and con-
jectures, Connection Science 4 (2) (1992) 143–154.

