# On the extreme eigenvalues of regular graphs 

Sebastian M. Cioabă ${ }^{1}$<br>Department of Mathematics, Queen's University, Kingston, Ont., Canada, K7L 3N6

Received 7 June 2004
Available online 25 October 2005
To the memory of Dom de Caen


#### Abstract

In this paper, we present an elementary proof of a theorem of Serre concerning the greatest eigenvalues of $k$-regular graphs. We also prove an analogue of Serre's theorem regarding the least eigenvalues of $k$-regular graphs: given $\varepsilon>0$, there exist a positive constant $c=c(\varepsilon, k)$ and a non-negative integer $g=g(\varepsilon, k)$ such that for any $k$-regular graph $X$ with no odd cycles of length less than $g$, the number of eigenvalues $\mu$ of $X$ such that $\mu \leqslant-(2-\varepsilon) \sqrt{k-1}$ is at least $c|X|$. This implies a result of Winnie Li.


© 2005 Elsevier Inc. All rights reserved.
Keywords: Alon-Boppana theorem; Eigenvalues of graphs

## 1. Preliminaries

Let $X$ be a graph and let $v_{0}$ be a vertex of $X$. A closed walk in $X$ of length $r \geqslant 0$ starting at $v_{0}$ is a sequence $v_{0}, v_{1}, \ldots, v_{r}$ of vertices of $X$ such that $v_{r}=v_{0}$ and $v_{i-1}$ is adjacent to $v_{i}$ for $1 \leqslant i \leqslant r$. For $r \geqslant 0$, let $\Phi_{r}(X)$ denote the number of closed walks of length $r$ in $X$. A cycle of length $r$ in $X$ is a subgraph of $X$ whose vertices can be labeled $v_{0}, \ldots, v_{r}$ such that $v_{0}, \ldots, v_{r}$ is a closed walk in $X$ and $v_{i} \neq v_{j}$ for all $i, j$ with $0 \leqslant i<j \leqslant r$. The girth, denoted $\operatorname{girth}(X)$, of $X$ is the length of a smallest cycle in $X$ if such a cycle exists and $\infty$ otherwise; the oddgirth, denoted oddg $(X)$, of $X$ is the length of a smallest odd cycle in $X$ if such a cycle exists and $\infty$ otherwise. The adjacency matrix of $X$ is the matrix $A=A(X)$ of order $|X|$, where the $(u, v)$ entry is 1 if the vertices $u$ and $v$ are adjacent and 0 otherwise. It is a well known fact that $\Phi_{r}(X)=\operatorname{Tr}\left(A^{r}\right)$, for any $r \geqslant 0$. The eigenvalues of $X$ are the eigenvalues of $A$. If $X$ is $k$-regular, then it is easy to see that $k$ is an eigenvalue of $X$ with multiplicity equal to the number of components of $X$ and that any eigenvalue

[^0]$\lambda$ of $X$ satisfies $|\lambda| \leqslant k$. For $l \geqslant 1$, we denote by $\lambda_{l}(X)$ the $l$ th greatest eigenvalue of $X$ and by $\mu_{l}(X)$ the $l$ th least eigenvalue of $X$.

## 2. An elementary proof of Serre's theorem

Serre has proved the following theorem (see [4,5,7,15]) using Chebyschev polynomials. See also [2] for related results. In this section, we present an elementary proof of Serre's result.

Theorem 1. For each $\varepsilon>0$, there exists a positive constant $c=c(\varepsilon, k)$ such that for any $k$-regular graph $X$, the number of eigenvalues $\lambda$ of $X$ with $\lambda \geqslant(2-\varepsilon) \sqrt{k-1}$ is at least $c|X|$.

For the proof of this theorem we require the next lemma which can be deduced from McKay's work [11, Lemma 2.1]. For the sake of completeness, we include a short proof here.

Lemma 2. Let $v_{0}$ be a vertex of a $k$-regular graph $X$. Then the number of closed walks of length $2 s$ in $X$ starting at $v_{0}$ is greater than or equal to $\frac{1}{s+1}\binom{2 s}{s} k(k-1)^{s-1}$.

Proof. The number of closed walks of length $2 s$ in $X$ starting at $v_{0}$ is at least the number of closed walks of length $2 s$ starting at a vertex $u_{0}$ in the infinite $k$-regular tree. To each closed walk in the infinite $k$-regular tree, there corresponds a sequence of non-negative integers $\delta_{1}, \ldots, \delta_{2 s}$, where $\delta_{i}$ is the distance from $u_{0}$ after $i$ steps. The number of such sequences is the $s$ th Catalan number $\frac{1}{s+1}\binom{2 s}{s}$. For each sequence of distances, there are at least $k(k-1)^{s-1}$ closed walks of length $2 s$ since for each step away from $u_{0}$ there are $k-1$ choices ( $k$ if the walk is at $u_{0}$ ).

By Stirling's bound on $s$ ! or by a simple induction argument it is easy to see that $\binom{2 s}{s} \geqslant \frac{4^{s}}{s+1}$, for any $s \geqslant 1$. Hence, for any $k$-regular graph $X$ and for any $s \geqslant 1$, we have by Lemma 2

$$
\begin{equation*}
\operatorname{Tr}\left(A^{2 s}\right) \geqslant|X| \frac{1}{s+1}\binom{2 s}{s} k(k-1)^{s-1}>|X| \frac{1}{(s+1)^{2}}(2 \sqrt{k-1})^{2 s} \tag{1}
\end{equation*}
$$

Proof of Theorem 1. Let $X$ be $k$-regular graph of order $n$ with eigenvalues $k=\lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant$ $-k$. Given $\varepsilon>0$, let $m$ be the number of eigenvalues $\lambda$ of $X$ with $\lambda \geqslant(2-\varepsilon) \sqrt{k-1}$. Then $n-m$ of the eigenvalues of $X$ are less than $(2-\varepsilon) \sqrt{k-1}$. Thus

$$
\begin{aligned}
\operatorname{Tr}(k I+A)^{2 s} & =\sum_{i=1}^{n}\left(k+\lambda_{i}\right)^{2 s} \\
& <(n-m)(k+(2-\varepsilon) \sqrt{k-1})^{2 s}+m(2 k)^{2 s} \\
& =m\left((2 k)^{2 s}-(k+(2-\varepsilon) \sqrt{k-1})^{2 s}\right)+n(k+(2-\varepsilon) \sqrt{k-1})^{2 s}
\end{aligned}
$$

On the other hand, the binomial expansion and relation (1) give

$$
\operatorname{Tr}(k I+A)^{2 s}=\sum_{i=0}^{2 s}\binom{2 s}{i} k^{i} \operatorname{Tr}\left(A^{2 s-i}\right)
$$

$$
\begin{aligned}
& \geqslant \sum_{j=0}^{s}\binom{2 s}{2 j} k^{2 j} \operatorname{Tr}\left(A^{2 s-2 j}\right) \\
& >\frac{n}{(s+1)^{2}} \sum_{j=0}^{s}\binom{2 s}{2 j} k^{2 j}(2 \sqrt{k-1})^{2 s-2 j} \\
& =\frac{n}{2(s+1)^{2}}\left((k+2 \sqrt{k-1})^{2 s}+(k-2 \sqrt{k-1})^{2 s}\right) \\
& >\frac{n}{2(s+1)^{2}}(k+2 \sqrt{k-1})^{2 s} .
\end{aligned}
$$

Thus,

$$
\frac{m}{n}>\frac{\frac{1}{2(s+1)^{2}}(k+2 \sqrt{k-1})^{2 s}-(k+(2-\varepsilon) \sqrt{k-1})^{2 s}}{(2 k)^{2 s}-(k+(2-\varepsilon) \sqrt{k-1})^{2 s}}
$$

for any $s \geqslant 1$. Since

$$
\begin{aligned}
\lim _{s \rightarrow \infty}\left(\frac{(k+2 \sqrt{k-1})^{2 s}}{2(s+1)^{2}}\right)^{\frac{1}{2 s}} & =k+2 \sqrt{k-1} \\
& >k+(2-\varepsilon) \sqrt{k-1}=\lim _{s \rightarrow \infty}\left(2(k+(2-\varepsilon) \sqrt{k-1})^{2 s}\right)^{\frac{1}{2 s}}
\end{aligned}
$$

it follows that there exists $s_{0}=s_{0}(\varepsilon, k)$ such that for all $s \geqslant s_{0}$

$$
\frac{(k+2 \sqrt{k-1})^{2 s}}{2(s+1)^{2}}-(k+(2-\varepsilon) \sqrt{k-1})^{2 s}>(k+(2-\varepsilon) \sqrt{k-1})^{2 s} .
$$

Hence, if

$$
c(\varepsilon, k)=\frac{(k+(2-\varepsilon) \sqrt{k-1})^{2 s_{0}}}{(2 k)^{2 s_{0}}-(k+(2-\varepsilon) \sqrt{k-1})^{2 s_{0}}}
$$

then $c(\varepsilon, k)>0$ and $m>c(\varepsilon, k) n$.
The proofs of Serre's theorem given in [4,5,7] do not allow an easy estimation of the constant $c(\varepsilon, k)$ in terms of $\varepsilon$ and $k$. We relegate the detailed analysis of the constant obtained by those arguments to a future work [3]. We should mention that Serre's theorem can be also deduced from the work of Friedman [6] or Nilli [13]. Friedman's results imply an estimate of $\left(\frac{1}{2}\right)^{O\left(\frac{\log k}{\sqrt{\varepsilon}}\right)}$ for the proportion of the eigenvalues that are at least $(2-\varepsilon) \sqrt{k-1}$. Nilli's work provides a bound of $\left(\frac{1}{2}\right)^{O\left(\frac{\log k}{\arccos (1-\varepsilon)}\right)}$. Their methods provide better bounds on $c(\varepsilon, k)$ than ours. From our proof of Serre's theorem, we obtain that a proportion of $\left(\frac{1}{2}\right)^{O\left(\frac{\sqrt{k}}{\varepsilon} \log \left(\frac{\sqrt{k}}{\varepsilon}\right)\right)}$ of the eigenvalues are at least $(2-\varepsilon) \sqrt{k-1}$. This is because in Theorem 1 we pick $s_{0}$ such that $\frac{s_{0}}{\log s_{0}}=\Theta\left(\frac{\sqrt{k}}{\varepsilon}\right)$.

Theorem 1 has the following consequence regarding the asymptotics of the greatest eigenvalues of $k$-regular graphs.

Corollary 3. Let $\left(X_{i}\right)_{i \geqslant 0}$ be a sequence of $k$-regular graphs such that $\lim _{i \rightarrow \infty}\left|X_{i}\right|=\infty$. Then for each $l \geqslant 1$,

$$
\liminf _{i \rightarrow \infty} \lambda_{l}\left(X_{i}\right) \geqslant 2 \sqrt{k-1}
$$

This corollary has also been proved directly by Serre in an appendix to [8] using the eigenvalue distribution theorem in [16]. When $l=2$, we obtain the asymptotic version of the Alon-Boppana theorem (see [1,10,12,14] for more details).

## 3. Analogous theorems for the least eigenvalues of regular graphs

The analogous result to Theorem 1 for the least eigenvalues of a $k$-regular graph is not true. For example, the eigenvalues of line graphs are all at least -2 . However, by adding an extra condition to the hypothesis of Theorem 1, we can prove an analogue of Serre's theorem for the least eigenvalues of a $k$-regular graph.

Theorem 4. For any $\varepsilon>0$, there exist a positive constant $c=c(\varepsilon, k)$ and a non-negative integer $g=g(\varepsilon, k)$ such that for any $k$-regular graph $X$ with $\operatorname{oddg}(X)>g$, the number of eigenvalues $\mu$ of $X$ with $\mu \leqslant-(2-\varepsilon) \sqrt{k-1}$ is at least $c|X|$.

Proof. Let $X$ be a $k$-regular graph of order $n$ with eigenvalues $-k \leqslant \mu_{1} \leqslant \mu_{2} \leqslant \cdots \leqslant \mu_{n}=k$. Given $\varepsilon>0$, let $m$ be the number of eigenvalues $\mu$ of $X$ with $\mu \leqslant-(2-\varepsilon) \sqrt{k-1}$. Then $n-m$ of the eigenvalues of $X$ are greater than $-(2-\varepsilon) \sqrt{k-1}$. Thus

$$
\begin{aligned}
\operatorname{Tr}(k I-A)^{2 s} & =\sum_{i=1}^{n}\left(k-\mu_{i}\right)^{2 s}<(n-m)(k+(2-\varepsilon) \sqrt{k-1})^{2 s}+m(2 k)^{2 s} \\
& =m\left((2 k)^{2 s}-(k+(2-\varepsilon) \sqrt{k-1})^{2 s}\right)+n(k+(2-\varepsilon) \sqrt{k-1})^{2 s} .
\end{aligned}
$$

In the previous section, we proved that there exists $s_{0}=s_{0}(\varepsilon, k)$ such that for all $s \geqslant s_{0}$

$$
\frac{(k+2 \sqrt{k-1})^{2 s_{0}}}{2\left(s_{0}+1\right)^{2}}-(k+(2-\varepsilon) \sqrt{k-1})^{2 s_{0}}>(k+(2-\varepsilon) \sqrt{k-1})^{2 s_{0}} .
$$

Let $g(\varepsilon, k)=2 s_{0}$. If $\operatorname{oddg}(X)>2 s_{0}$, then for $0 \leqslant j \leqslant s_{0}-1$, the number of closed walks of length $2 s_{0}-2 j-1$ in $X$ is 0 . Hence, $\operatorname{Tr}\left(A^{2 s_{0}-2 j-1}\right)=0$, for $0 \leqslant j \leqslant s_{0}-1$. Using also 1 , we obtain

$$
\begin{aligned}
\operatorname{Tr}(k I-A)^{2 s_{0}} & =\sum_{j=0}^{s_{0}}\binom{2 s_{0}}{2 j} k^{2 j} \operatorname{Tr}\left(A^{2 s_{0}-2 j}\right)-\sum_{j=0}^{s_{0}-1}\binom{2 s_{0}}{2 j+1} k^{2 j+1} \operatorname{Tr}\left(A^{2 s_{0}-2 j-1}\right) \\
& =\sum_{j=0}^{s_{0}}\binom{2 s_{0}}{2 j} k^{2 j} \operatorname{Tr}\left(A^{2 s_{0}-2 j}\right)>\frac{n}{\left(s_{0}+1\right)^{2}} \sum_{j=0}^{2 s_{0}}\binom{2 s_{0}}{2 j} k^{2 j}(2 \sqrt{k-1})^{2 s_{0}-2 j} \\
& >\frac{n}{2\left(s_{0}+1\right)^{2}}(k+2 \sqrt{k-1})^{2 s_{0}}
\end{aligned}
$$

From the previous inequalities, it follows that if

$$
c(\varepsilon, k)=\frac{(k+(2-\varepsilon) \sqrt{k-1})^{2 s_{0}}}{(2 k)^{2 s_{0}}-(k+(2-\varepsilon) \sqrt{k-1})^{2 s_{0}}}
$$

then $c(\varepsilon, k)>0$ and $m>c(\varepsilon, k) n$.
The next result is an immediate consequence of Theorem 4.
Corollary 5. Let $\left(X_{i}\right)_{i \geqslant 0}$ be a sequence of $k$-regular graphs such that $\lim _{i \rightarrow \infty} \operatorname{oddg}\left(X_{i}\right)=\infty$. Then for each $l \geqslant 1$

$$
\limsup _{i \rightarrow \infty} \mu_{l}\left(X_{i}\right) \leqslant-2 \sqrt{k-1}
$$

When $l=1$, we get the main result from [8]. Also, Corollary 5 holds when $l=1$ and $\lim _{i \rightarrow \infty} \operatorname{girth}\left(X_{i}\right)=\infty$. This special case of Corollary 5 was proved directly in [9] using orthogonal polynomials and is also a consequence of the eigenvalue distribution theorem from [11].

A theorem stronger than Corollary 5 has been proved by Serre in [8] using the eigenvalue distribution results from [16]. We now present an elementary proof of this theorem. For $r \geqslant 0$, let $c_{r}(X)$ be the number of cycles of length $r$ in a graph $X$.

Theorem 6. Let $\left(X_{i}\right)_{i \geqslant 0}$ be a sequence of $k$-regular graphs such that $\lim _{i \rightarrow \infty}\left|X_{i}\right|=\infty$. If $\lim _{i \rightarrow \infty}$ $\frac{c_{2 r+1}\left(X_{i}\right)}{\left|X_{i}\right|}=0$ for each $r \geqslant 1$, then for each $l \geqslant 1$

$$
\limsup _{i \rightarrow \infty} \mu_{l}\left(X_{i}\right) \leqslant-2 \sqrt{k-1}
$$

Proof. Let $l \geqslant 1$. For a graph $X$ and $r \geqslant 1$, let $n_{2 r+1}(X)$ denote the number of vertices $v_{0}$ in the graph $X$ such that the subgraph of $X$ induced by the vertices at distance at most $r$ from $v_{0}$ is bipartite. Thus, $|X|-n_{2 r+1}(X)$ is the number of vertices $u_{0}$ of $X$ such that the subgraph of $X$ induced by the vertices at distance at most $r$ from $u_{0}$ contains at least one odd cycle. Since each such vertex is no further than $r$ from each of the vertices of an odd cycle of length at most $2 r+1$, it follows that

$$
|X|-n_{2 r+1}(X) \leqslant \sum_{l=1}^{r-1} \alpha_{l, r} c_{2 l+1}(X)
$$

where $0 \leqslant \alpha_{l, r} \leqslant 3(2 l+1)(k-1)^{r}$. Thus, we have the following inequalities

$$
1-\sum_{l=1}^{r-1} \alpha_{l, r} \frac{c_{2 l+1}\left(X_{i}\right)}{\left|X_{i}\right|} \leqslant \frac{n_{2 r+1}\left(X_{i}\right)}{\left|X_{i}\right|} \leqslant 1
$$

for all $r \geqslant 1, i \geqslant 0$. Hence, for each $r \geqslant 1$

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \frac{n_{2 r+1}\left(X_{i}\right)}{\left|X_{i}\right|}=1 \tag{2}
\end{equation*}
$$

For $i \geqslant 0$, let $A_{i}=A\left(X_{i}\right)$. Then, for $i \geqslant 0$ and $r \geqslant 1$, we have

$$
\begin{equation*}
\operatorname{Tr}\left(A_{i}^{2 r+1}\right)=n_{2 r+1}\left(X_{i}\right) \cdot 0+\left(\left|X_{i}\right|-n_{2 r+1}\left(X_{i}\right)\right) \theta_{2 r+1}\left(X_{i}\right), \tag{3}
\end{equation*}
$$

where $0 \leqslant \theta_{2 r+1}\left(X_{i}\right) \leqslant k^{2 r+1}$. From 2 and 3 , we obtain that for each $r \geqslant 1$

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \frac{\operatorname{Tr}\left(A_{i}^{2 r+1}\right)}{\left|X_{i}\right|}=0 \tag{4}
\end{equation*}
$$

By using relation 1, it follows that for each $r \geqslant 1$

$$
\begin{equation*}
\liminf _{i \rightarrow \infty} \frac{\operatorname{Tr}\left(A_{i}^{2 r}\right)}{\left|X_{i}\right|} \geqslant \frac{(2 \sqrt{k-1})^{2 r}}{(r+1)^{2}} \tag{5}
\end{equation*}
$$

Now for each $i \geqslant 0$, we have

$$
\operatorname{Tr}\left(k I-A_{i}\right)^{2 s}=\sum_{j=1}^{\left|X_{i}\right|}\left(k-\lambda_{j}\left(X_{i}\right)\right)^{2 s} \leqslant\left(\left|X_{i}\right|-l\right)\left(k-\mu_{l}\left(X_{i}\right)\right)^{2 s}+l(2 k)^{2 s}
$$

Once again, the binomial expansion gives us

$$
\operatorname{Tr}\left(k I-A_{i}\right)^{2 s}=\sum_{j=0}^{2 s}\binom{2 s}{j} k^{j}(-1)^{2 s-j} \operatorname{Tr}\left(A_{i}^{2 s-j}\right)
$$

From the previous two relations, we get that

$$
\left(k-\mu_{l}\left(X_{i}\right)\right)^{2 s}+\frac{4^{s} l k^{2 s}}{\left|X_{i}\right|-l} \geqslant \sum_{j=0}^{2 s}\binom{2 s}{j} k^{j}(-1)^{2 s-j} \frac{\operatorname{Tr}\left(A_{i}^{2 s-j}\right)}{\left|X_{i}\right|-l} .
$$

Using relations 4 and 5, it follows that

$$
\begin{aligned}
k-\limsup _{i \rightarrow \infty} \mu_{l}\left(X_{i}\right) & \geqslant\left(\sum_{j=0}^{s}\binom{2 s}{2 j} k^{2 j} \frac{(2 \sqrt{k-1})^{2 s-2 j}}{(s-j+1)^{2}}\right)^{\frac{1}{2 s}} \\
& >\left(\frac{1}{(s+1)^{2}} \sum_{j=0}^{s}\binom{2 s}{2 j} k^{2 j}(2 \sqrt{k-1})^{2 s-2 j}\right)^{\frac{1}{2 s}} \\
& >\left(\frac{1}{2(s+1)^{2}}\right)^{\frac{1}{2 s}}(k+2 \sqrt{k-1})
\end{aligned}
$$

for any $s \geqslant 1$. By taking the limit as $s \rightarrow \infty$, we get

$$
k-\limsup _{i \rightarrow \infty} \mu_{l}\left(X_{i}\right) \geqslant k+2 \sqrt{k-1},
$$

which implies the inequality stated in the theorem.

## Acknowledgements

This paper is part of my Ph.D. Thesis at Queen's University. I am grateful to my thesis advisors: David Gregory, Ram Murty and David Wehlau for their help and support and to Chris Godsil and Shlomo Hoory for their comments. I thank the referees for many useful suggestions.

## References

[1] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986) 83-96.
[2] S. M. Cioabă, Eigenvalues, expanders and gaps between primes, Ph.D. Thesis, Queen's University at Kingston, 2005.
[3] S. M. Cioabă, R. Murty, Expander Graphs and Gaps between Primes, submitted.
[4] G. Davidoff, P. Sarnak, A. Vallete, Elementary Number Theory, Group Theory and Ramanujan Graphs, Cambridge University Press, Cambridge, 2003.
[5] K. Feng, W.-C. Winnie Li, Spectra of hypergraphs and applications, J. Number Theory 60 (1) (1996) 1-22.
[6] J. Friedman, Some geometric aspects of graphs and their eigenfunctions, Duke Math. J. 69 (1993) 487-525.
[7] W.-C. Winnie Li, Number Theory with Applications, Series of University Mathematics, vol. 7, World Scientific, Singapore, 1996.
[8] W.-C. Winnie Li (with an appendix by J.-P. Serre), On negative eigenvalues of regular graphs, C. R. Acad. Sci. 333(10) (2001) 907-912.
[9] W.-C. Winnie Li, P. Solé, Spectra of regular graphs and hypergraphs and orthogonal polynomials, Europ. J. Combin. 17 (1996) 461-477.
[10] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8 (3) (1988) 261-277.
[11] B. McKay, The expected eigenvalue distribution of a large regular graph, Linear Algebra Appl. 40 (1981) 203-216.
[12] A. Nilli, On the second eigenvalue of a graph, Discrete Math. 91 (1991) 207-210.
[13] A. Nilli, Tight estimates for eigenvalues of regular graphs, Electron. J. Combin. 11 (2004) N9.
[14] A. Pizer, Ramanujan graphs, Computational Perspectives on Number Theory, Chicago, IL, 1995, pp. 159-178, AMS/IP Stud. Adv. Math. 7 (1998).
[15] J.-P. Serre, Private letters to W. Li dated October 8, 1990 and November 5, 1990.
[16] J.-P. Serre, Répartition asymptotique des valeurs propres de l'opérateur de Hecke $T_{p}$, J. Amer. Math. Soc. 10 (1) (1997) 75-102.


[^0]:    E-mail address: sebi@ mast.queensu.ca.
    ${ }^{1}$ Research partially supported by an Ontario Graduate Scholarship.

