

Available online at www.sciencedirect.com

Journal of Combinatorial Theory Series B

Journal of Combinatorial Theory, Series B 96 (2006) 367-373

www.elsevier.com/locate/jctb

On the extreme eigenvalues of regular graphs

Sebastian M. Cioabă¹

Department of Mathematics, Queen's University, Kingston, Ont., Canada, K7L 3N6

Received 7 June 2004 Available online 25 October 2005

To the memory of Dom de Caen

Abstract

In this paper, we present an elementary proof of a theorem of Serre concerning the greatest eigenvalues of *k*-regular graphs. We also prove an analogue of Serre's theorem regarding the least eigenvalues of *k*-regular graphs: given $\varepsilon > 0$, there exist a positive constant $c = c(\varepsilon, k)$ and a non-negative integer $g = g(\varepsilon, k)$ such that for any *k*-regular graph X with no odd cycles of length less than g, the number of eigenvalues μ of X such that $\mu \leq -(2-\varepsilon)\sqrt{k-1}$ is at least c|X|. This implies a result of Winnie Li. © 2005 Elsevier Inc. All rights reserved.

Keywords: Alon-Boppana theorem; Eigenvalues of graphs

1. Preliminaries

Let X be a graph and let v_0 be a vertex of X. A *closed walk* in X of length $r \ge 0$ starting at v_0 is a sequence v_0, v_1, \ldots, v_r of vertices of X such that $v_r = v_0$ and v_{i-1} is adjacent to v_i for $1 \le i \le r$. For $r \ge 0$, let $\Phi_r(X)$ denote the number of closed walks of length r in X. A *cycle* of length r in X is a subgraph of X whose vertices can be labeled v_0, \ldots, v_r such that v_0, \ldots, v_r is a closed walk in X and $v_i \ne v_j$ for all i, j with $0 \le i < j \le r$. The *girth*, denoted girth(X), of X is the length of a smallest cycle in X if such a cycle exists and ∞ otherwise; the *oddgirth*, denoted oddg(X), of X is the length of a smallest odd cycle in X if such a cycle exists and ∞ otherwise. The adjacency matrix of X is the matrix A = A(X) of order |X|, where the (u, v) entry is 1 if the vertices u and v are adjacent and 0 otherwise. It is a well known fact that $\Phi_r(X) = \text{Tr}(A^r)$, for any $r \ge 0$. The eigenvalues of X are the eigenvalues of A. If X is k-regular, then it is easy to see that k is an eigenvalue of X with multiplicity equal to the number of components of X and that any eigenvalue

0095-8956/\$ - see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jctb.2005.09.002

E-mail address: sebi@mast.queensu.ca.

¹ Research partially supported by an Ontario Graduate Scholarship.

 λ of *X* satisfies $|\lambda| \leq k$. For $l \geq 1$, we denote by $\lambda_l(X)$ the *l*th greatest eigenvalue of *X* and by $\mu_l(X)$ the *l*th least eigenvalue of *X*.

2. An elementary proof of Serre's theorem

Serre has proved the following theorem (see [4,5,7,15]) using Chebyschev polynomials. See also [2] for related results. In this section, we present an elementary proof of Serre's result.

Theorem 1. For each $\varepsilon > 0$, there exists a positive constant $c = c(\varepsilon, k)$ such that for any *k*-regular graph *X*, the number of eigenvalues λ of *X* with $\lambda \ge (2 - \varepsilon)\sqrt{k - 1}$ is at least c|X|.

For the proof of this theorem we require the next lemma which can be deduced from McKay's work [11, Lemma 2.1]. For the sake of completeness, we include a short proof here.

Lemma 2. Let v_0 be a vertex of a k-regular graph X. Then the number of closed walks of length 2s in X starting at v_0 is greater than or equal to $\frac{1}{s+1} {\binom{2s}{s}} k(k-1)^{s-1}$.

Proof. The number of closed walks of length 2*s* in *X* starting at v_0 is at least the number of closed walks of length 2*s* starting at a vertex u_0 in the infinite *k*-regular tree. To each closed walk in the infinite *k*-regular tree, there corresponds a sequence of non-negative integers $\delta_1, \ldots, \delta_{2s}$, where δ_i is the distance from u_0 after *i* steps. The number of such sequences is the *s*th Catalan number $\frac{1}{s+1} {s \choose s}$. For each sequence of distances, there are at least $k(k-1)^{s-1}$ closed walks of length 2*s* since for each step away from u_0 there are k-1 choices (*k* if the walk is at u_0).

By Stirling's bound on *s*! or by a simple induction argument it is easy to see that $\binom{2s}{s} \ge \frac{4^s}{s+1}$, for any $s \ge 1$. Hence, for any *k*-regular graph *X* and for any $s \ge 1$, we have by Lemma 2

$$\operatorname{Tr}(A^{2s}) \ge |X| \frac{1}{s+1} {2s \choose s} k(k-1)^{s-1} > |X| \frac{1}{(s+1)^2} (2\sqrt{k-1})^{2s}.$$
 (1)

Proof of Theorem 1. Let *X* be *k*-regular graph of order *n* with eigenvalues $k = \lambda_1 \ge \cdots \ge \lambda_n \ge -k$. Given $\varepsilon > 0$, let *m* be the number of eigenvalues λ of *X* with $\lambda \ge (2 - \varepsilon)\sqrt{k - 1}$. Then n - m of the eigenvalues of *X* are less than $(2 - \varepsilon)\sqrt{k - 1}$. Thus

$$Tr(kI + A)^{2s} = \sum_{i=1}^{n} (k + \lambda_i)^{2s}$$

< $(n - m)(k + (2 - \varepsilon)\sqrt{k - 1})^{2s} + m(2k)^{2s}$
= $m((2k)^{2s} - (k + (2 - \varepsilon)\sqrt{k - 1})^{2s}) + n(k + (2 - \varepsilon)\sqrt{k - 1})^{2s}.$

On the other hand, the binomial expansion and relation (1) give

$$\operatorname{Tr}(kI+A)^{2s} = \sum_{i=0}^{2s} \binom{2s}{i} k^{i} \operatorname{Tr}(A^{2s-i})$$

S.M. Cioabă / Journal of Combinatorial Theory, Series B 96 (2006) 367-373

$$\geq \sum_{j=0}^{s} {2s \choose 2j} k^{2j} \operatorname{Tr}(A^{2s-2j})$$

$$\geq \frac{n}{(s+1)^2} \sum_{j=0}^{s} {2s \choose 2j} k^{2j} (2\sqrt{k-1})^{2s-2j}$$

$$= \frac{n}{2(s+1)^2} \left((k+2\sqrt{k-1})^{2s} + (k-2\sqrt{k-1})^{2s} \right)$$

$$\geq \frac{n}{2(s+1)^2} \left(k+2\sqrt{k-1} \right)^{2s}.$$

Thus,

$$\frac{m}{n} > \frac{\frac{1}{2(s+1)^2} (k+2\sqrt{k-1})^{2s} - (k+(2-\varepsilon)\sqrt{k-1})^{2s}}{(2k)^{2s} - (k+(2-\varepsilon)\sqrt{k-1})^{2s}}$$

for any $s \ge 1$. Since

$$\lim_{s \to \infty} \left(\frac{(k+2\sqrt{k-1})^{2s}}{2(s+1)^2} \right)^{\frac{1}{2s}} = k + 2\sqrt{k-1}$$
$$> k + (2-\varepsilon)\sqrt{k-1} = \lim_{s \to \infty} \left(2(k+(2-\varepsilon)\sqrt{k-1})^{2s} \right)^{\frac{1}{2s}}$$

it follows that there exists $s_0 = s_0(\varepsilon, k)$ such that for all $s \ge s_0$

$$\frac{(k+2\sqrt{k-1})^{2s}}{2(s+1)^2} - (k+(2-\varepsilon)\sqrt{k-1})^{2s} > (k+(2-\varepsilon)\sqrt{k-1})^{2s}$$

Hence, if

$$c(\varepsilon, k) = \frac{(k + (2 - \varepsilon)\sqrt{k - 1})^{2s_0}}{(2k)^{2s_0} - (k + (2 - \varepsilon)\sqrt{k - 1})^{2s_0}}$$

then $c(\varepsilon, k) > 0$ and $m > c(\varepsilon, k)n$. \Box

The proofs of Serre's theorem given in [4,5,7] do not allow an easy estimation of the constant $c(\varepsilon, k)$ in terms of ε and k. We relegate the detailed analysis of the constant obtained by those arguments to a future work [3]. We should mention that Serre's theorem can be also deduced from the work of Friedman [6] or Nilli [13]. Friedman's results imply an estimate of $\left(\frac{1}{2}\right)^{O\left(\frac{\log k}{\sqrt{\varepsilon}}\right)}$ for the proportion of the eigenvalues that are at least $(2 - \varepsilon)\sqrt{k - 1}$. Nilli's work provides a bound of $\left(\frac{1}{2}\right)^{O\left(\frac{\log k}{arcos(1-\varepsilon)}\right)}$. Their methods provide better bounds on $c(\varepsilon, k)$ than ours. From our proof of Serre's theorem, we obtain that a proportion of $\left(\frac{1}{2}\right)^{O\left(\frac{\sqrt{k}}{\varepsilon}\log\left(\frac{\sqrt{k}}{\varepsilon}\right)\right)}$ of the eigenvalues are at least $(2 - \varepsilon)\sqrt{k - 1}$. This is because in Theorem 1 we pick s_0 such that $\frac{s_0}{\log s_0} = \Theta\left(\frac{\sqrt{k}}{\varepsilon}\right)$. Theorem 1 has the following consequence regarding the asymptotics of the greatest eigenvalues

of k-regular graphs.

Corollary 3. Let $(X_i)_{i \ge 0}$ be a sequence of k-regular graphs such that $\lim_{i \to \infty} |X_i| = \infty$. Then for each $l \ge 1$,

 $\liminf_{i\to\infty}\lambda_l(X_i) \ge 2\sqrt{k-1}.$

This corollary has also been proved directly by Serre in an appendix to [8] using the eigenvalue distribution theorem in [16]. When l = 2, we obtain the asymptotic version of the Alon–Boppana theorem (see [1,10,12,14] for more details).

3. Analogous theorems for the least eigenvalues of regular graphs

The analogous result to Theorem 1 for the least eigenvalues of a k-regular graph is not true. For example, the eigenvalues of line graphs are all at least -2. However, by adding an extra condition to the hypothesis of Theorem 1, we can prove an analogue of Serre's theorem for the least eigenvalues of a k-regular graph.

Theorem 4. For any $\varepsilon > 0$, there exist a positive constant $c = c(\varepsilon, k)$ and a non-negative integer $g = g(\varepsilon, k)$ such that for any k-regular graph X with oddg(X) > g, the number of eigenvalues μ of X with $\mu \leq -(2 - \varepsilon)\sqrt{k - 1}$ is at least c|X|.

Proof. Let *X* be a *k*-regular graph of order *n* with eigenvalues $-k \le \mu_1 \le \mu_2 \le \cdots \le \mu_n = k$. Given $\varepsilon > 0$, let *m* be the number of eigenvalues μ of *X* with $\mu \le -(2-\varepsilon)\sqrt{k-1}$. Then n-m of the eigenvalues of *X* are greater than $-(2-\varepsilon)\sqrt{k-1}$. Thus

$$\operatorname{Tr}(kI - A)^{2s} = \sum_{i=1}^{n} (k - \mu_i)^{2s} < (n - m)(k + (2 - \varepsilon)\sqrt{k - 1})^{2s} + m(2k)^{2s}$$
$$= m((2k)^{2s} - (k + (2 - \varepsilon)\sqrt{k - 1})^{2s}) + n(k + (2 - \varepsilon)\sqrt{k - 1})^{2s}.$$

In the previous section, we proved that there exists $s_0 = s_0(\varepsilon, k)$ such that for all $s \ge s_0$

$$\frac{(k+2\sqrt{k-1})^{2s_0}}{2(s_0+1)^2} - (k+(2-\varepsilon)\sqrt{k-1})^{2s_0} > (k+(2-\varepsilon)\sqrt{k-1})^{2s_0}.$$

Let $g(\varepsilon, k) = 2s_0$. If $\text{oddg}(X) > 2s_0$, then for $0 \le j \le s_0 - 1$, the number of closed walks of length $2s_0 - 2j - 1$ in X is 0. Hence, $\text{Tr}(A^{2s_0 - 2j - 1}) = 0$, for $0 \le j \le s_0 - 1$. Using also 1, we obtain

$$\begin{aligned} \operatorname{Tr}(kI-A)^{2s_0} &= \sum_{j=0}^{s_0} \binom{2s_0}{2j} k^{2j} \operatorname{Tr}(A^{2s_0-2j}) - \sum_{j=0}^{s_0-1} \binom{2s_0}{2j+1} k^{2j+1} \operatorname{Tr}(A^{2s_0-2j-1}) \\ &= \sum_{j=0}^{s_0} \binom{2s_0}{2j} k^{2j} \operatorname{Tr}(A^{2s_0-2j}) > \frac{n}{(s_0+1)^2} \sum_{j=0}^{2s_0} \binom{2s_0}{2j} k^{2j} (2\sqrt{k-1})^{2s_0-2j} \\ &> \frac{n}{2(s_0+1)^2} (k+2\sqrt{k-1})^{2s_0}. \end{aligned}$$

From the previous inequalities, it follows that if

$$c(\varepsilon, k) = \frac{(k + (2 - \varepsilon)\sqrt{k - 1})^{2s_0}}{(2k)^{2s_0} - (k + (2 - \varepsilon)\sqrt{k - 1})^{2s_0}}$$

then $c(\varepsilon, k) > 0$ and $m > c(\varepsilon, k)n$. \Box

The next result is an immediate consequence of Theorem 4.

Corollary 5. Let $(X_i)_{i \ge 0}$ be a sequence of k-regular graphs such that $\lim_{i \to \infty} \operatorname{oddg}(X_i) = \infty$. Then for each $l \ge 1$

$$\limsup_{i\to\infty}\mu_l(X_i)\leqslant -2\sqrt{k-1}.$$

When l = 1, we get the main result from [8]. Also, Corollary 5 holds when l = 1 and $\lim_{i\to\infty} \operatorname{girth}(X_i) = \infty$. This special case of Corollary 5 was proved directly in [9] using orthogonal polynomials and is also a consequence of the eigenvalue distribution theorem from [11].

A theorem stronger than Corollary 5 has been proved by Serre in [8] using the eigenvalue distribution results from [16]. We now present an elementary proof of this theorem. For $r \ge 0$, let $c_r(X)$ be the number of cycles of length r in a graph X.

Theorem 6. Let $(X_i)_{i \ge 0}$ be a sequence of k-regular graphs such that $\lim_{i \to \infty} |X_i| = \infty$. If $\lim_{i \to \infty} \frac{c_{2r+1}(X_i)}{|X_i|} = 0$ for each $r \ge 1$, then for each $l \ge 1$ $\limsup \mu_l(X_i) \le -2\sqrt{k-1}$.

Proof. Let $l \ge 1$. For a graph X and $r \ge 1$, let $n_{2r+1}(X)$ denote the number of vertices v_0 in the graph X such that the subgraph of X induced by the vertices at distance at most r from v_0 is bipartite. Thus, $|X| - n_{2r+1}(X)$ is the number of vertices u_0 of X such that the subgraph of X induced by the vertices at distance at most r from u_0 contains at least one odd cycle. Since each such vertex is no further than r from each of the vertices of an odd cycle of length at most 2r + 1, it follows that

.....

$$|X| - n_{2r+1}(X) \leqslant \sum_{l=1}^{r-1} \alpha_{l,r} c_{2l+1}(X),$$

where $0 \leq \alpha_{l,r} \leq 3(2l+1)(k-1)^r$. Thus, we have the following inequalities

$$1 - \sum_{l=1}^{r-1} \alpha_{l,r} \frac{c_{2l+1}(X_i)}{|X_i|} \leqslant \frac{n_{2r+1}(X_i)}{|X_i|} \leqslant 1$$

for all $r \ge 1$, $i \ge 0$. Hence, for each $r \ge 1$

$$\lim_{i \to \infty} \frac{n_{2r+1}(X_i)}{|X_i|} = 1.$$
 (2)

For $i \ge 0$, let $A_i = A(X_i)$. Then, for $i \ge 0$ and $r \ge 1$, we have

$$\operatorname{Tr}(A_i^{2r+1}) = n_{2r+1}(X_i) \cdot 0 + (|X_i| - n_{2r+1}(X_i))\theta_{2r+1}(X_i),$$
(3)

where $0 \leq \theta_{2r+1}(X_i) \leq k^{2r+1}$. From 2 and 3, we obtain that for each $r \geq 1$

$$\lim_{k \to \infty} \frac{\operatorname{Tr}(A_i^{2r+1})}{|X_i|} = 0.$$
(4)

By using relation 1, it follows that for each $r \ge 1$

$$\liminf_{i \to \infty} \frac{\text{Tr}(A_i^{2r})}{|X_i|} \ge \frac{(2\sqrt{k-1})^{2r}}{(r+1)^2}.$$
(5)

Now for each $i \ge 0$, we have

$$\operatorname{Tr}(kI - A_i)^{2s} = \sum_{j=1}^{|X_i|} (k - \lambda_j(X_i))^{2s} \leq (|X_i| - l)(k - \mu_l(X_i))^{2s} + l(2k)^{2s}.$$

Once again, the binomial expansion gives us

$$\operatorname{Tr}(kI - A_i)^{2s} = \sum_{j=0}^{2s} {\binom{2s}{j}} k^j (-1)^{2s-j} \operatorname{Tr}(A_i^{2s-j}).$$

From the previous two relations, we get that

$$(k - \mu_l(X_i))^{2s} + \frac{4^s l k^{2s}}{|X_i| - l} \ge \sum_{j=0}^{2s} {2s \choose j} k^j (-1)^{2s-j} \frac{\operatorname{Tr}(A_i^{2s-j})}{|X_i| - l}.$$

Using relations 4 and 5, it follows that

$$\begin{aligned} k - \limsup_{i \to \infty} \mu_l(X_i) &\ge \left(\sum_{j=0}^s \binom{2s}{2j} k^{2j} \frac{(2\sqrt{k-1})^{2s-2j}}{(s-j+1)^2} \right)^{\frac{1}{2s}} \\ &> \left(\frac{1}{(s+1)^2} \sum_{j=0}^s \binom{2s}{2j} k^{2j} (2\sqrt{k-1})^{2s-2j} \right)^{\frac{1}{2s}} \\ &> \left(\frac{1}{2(s+1)^2} \right)^{\frac{1}{2s}} (k+2\sqrt{k-1}) \end{aligned}$$

for any $s \ge 1$. By taking the limit as $s \to \infty$, we get

$$k - \limsup_{i \to \infty} \mu_l(X_i) \ge k + 2\sqrt{k-1},$$

which implies the inequality stated in the theorem. \Box

Acknowledgements

This paper is part of my Ph.D. Thesis at Queen's University. I am grateful to my thesis advisors: David Gregory, Ram Murty and David Wehlau for their help and support and to Chris Godsil and Shlomo Hoory for their comments. I thank the referees for many useful suggestions.

372

References

- [1] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986) 83-96.
- [2] S. M. Cioabă, Eigenvalues, expanders and gaps between primes, Ph.D. Thesis, Queen's University at Kingston, 2005.
- [3] S. M. Cioabă, R. Murty, Expander Graphs and Gaps between Primes, submitted.
- [4] G. Davidoff, P. Sarnak, A. Vallete, Elementary Number Theory, Group Theory and Ramanujan Graphs, Cambridge University Press, Cambridge, 2003.
- [5] K. Feng, W.-C. Winnie Li, Spectra of hypergraphs and applications, J. Number Theory 60 (1) (1996) 1–22.
- [6] J. Friedman, Some geometric aspects of graphs and their eigenfunctions, Duke Math. J. 69 (1993) 487–525.
- [7] W.-C. Winnie Li, Number Theory with Applications, Series of University Mathematics, vol. 7, World Scientific, Singapore, 1996.
- [8] W.-C. Winnie Li (with an appendix by J.-P. Serre), On negative eigenvalues of regular graphs, C. R. Acad. Sci. 333(10) (2001) 907–912.
- [9] W.-C. Winnie Li, P. Solé, Spectra of regular graphs and hypergraphs and orthogonal polynomials, Europ. J. Combin. 17 (1996) 461–477.
- [10] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8 (3) (1988) 261–277.
- [11] B. McKay, The expected eigenvalue distribution of a large regular graph, Linear Algebra Appl. 40 (1981) 203–216.
- [12] A. Nilli, On the second eigenvalue of a graph, Discrete Math. 91 (1991) 207-210.
- [13] A. Nilli, Tight estimates for eigenvalues of regular graphs, Electron. J. Combin. 11 (2004) N9.
- [14] A. Pizer, Ramanujan graphs, Computational Perspectives on Number Theory, Chicago, IL, 1995, pp. 159–178, AMS/IP Stud. Adv. Math. 7 (1998).
- [15] J.-P. Serre, Private letters to W. Li dated October 8, 1990 and November 5, 1990.
- [16] J.-P. Serre, Répartition asymptotique des valeurs propres de l'opérateur de Hecke T_p , J. Amer. Math. Soc. 10 (1) (1997) 75–102.