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Abstract

In this paper, we present an elementary proof of a theorem of Serre concerning the greatest eigenvalues of
k-regular graphs. We also prove an analogue of Serre’s theorem regarding the least eigenvalues of k-regular
graphs: given � > 0, there exist a positive constant c = c(�, k) and a non-negative integer g = g(�, k) such
that for any k-regular graph X with no odd cycles of length less than g, the number of eigenvalues � of X
such that �� − (2 − �)

√
k − 1 is at least c|X|. This implies a result of Winnie Li.
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1. Preliminaries

Let X be a graph and let v0 be a vertex of X. A closed walk in X of length r �0 starting at v0 is a
sequence v0, v1, . . . , vr of vertices of X such that vr = v0 and vi−1 is adjacent to vi for 1� i�r .
For r �0, let �r (X) denote the number of closed walks of length r in X. A cycle of length r in X
is a subgraph of X whose vertices can be labeled v0, . . . , vr such that v0, . . . , vr is a closed walk
in X and vi �= vj for all i, j with 0� i < j �r . The girth, denoted girth(X), of X is the length of
a smallest cycle in X if such a cycle exists and ∞ otherwise; the oddgirth, denoted oddg(X), of
X is the length of a smallest odd cycle in X if such a cycle exists and ∞ otherwise. The adjacency
matrix of X is the matrix A = A(X) of order |X|, where the (u, v) entry is 1 if the vertices u
and v are adjacent and 0 otherwise. It is a well known fact that �r (X) = Tr(Ar), for any r �0.
The eigenvalues of X are the eigenvalues of A. If X is k-regular, then it is easy to see that k is an
eigenvalue of X with multiplicity equal to the number of components of X and that any eigenvalue

E-mail address: sebi@mast.queensu.ca.
1 Research partially supported by an Ontario Graduate Scholarship.

0095-8956/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jctb.2005.09.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82381695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jctb
mailto:sebi@mast.queensu.ca
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� of X satisfies |�|�k. For l�1, we denote by �l (X) the lth greatest eigenvalue of X and by �l (X)

the lth least eigenvalue of X.

2. An elementary proof of Serre’s theorem

Serre has proved the following theorem (see [4,5,7,15]) using Chebyschev polynomials. See
also [2] for related results. In this section, we present an elementary proof of Serre’s result.

Theorem 1. For each � > 0, there exists a positive constant c = c(�, k) such that for any
k-regular graph X, the number of eigenvalues � of X with ��(2 − �)

√
k − 1 is at least c|X|.

For the proof of this theorem we require the next lemma which can be deduced from McKay’s
work [11, Lemma 2.1]. For the sake of completeness, we include a short proof here.

Lemma 2. Let v0 be a vertex of a k-regular graph X. Then the number of closed walks of length
2s in X starting at v0 is greater than or equal to 1

s+1

(2s
s

)
k(k − 1)s−1.

Proof. The number of closed walks of length 2s in X starting at v0 is at least the number of closed
walks of length 2s starting at a vertex u0 in the infinite k-regular tree. To each closed walk in the
infinite k-regular tree, there corresponds a sequence of non-negative integers �1, . . . , �2s , where
�i is the distance from u0 after i steps. The number of such sequences is the sth Catalan number

1
s+1

(2s
s

)
. For each sequence of distances, there are at least k(k − 1)s−1 closed walks of length 2s

since for each step away from u0 there are k − 1 choices (k if the walk is at u0). �

By Stirling’s bound on s! or by a simple induction argument it is easy to see that
(2s

s

)
� 4s

s+1 ,
for any s�1. Hence, for any k-regular graph X and for any s�1, we have by Lemma 2

Tr(A2s)� |X| 1

s + 1

(
2s

s

)
k(k − 1)s−1 > |X| 1

(s + 1)2
(2

√
k − 1)2s . (1)

Proof of Theorem 1. Let X be k-regular graph of order n with eigenvalues k = �1 � · · · ��n �
− k. Given � > 0, let m be the number of eigenvalues � of X with ��(2 − �)

√
k − 1. Then n − m

of the eigenvalues of X are less than (2 − �)
√

k − 1. Thus

Tr(kI + A)2s =
n∑

i=1

(k + �i )
2s

< (n − m)(k + (2 − �)
√

k − 1)2s + m(2k)2s

= m((2k)2s − (k + (2 − �)
√

k − 1)2s) + n(k + (2 − �)
√

k − 1)2s .

On the other hand, the binomial expansion and relation (1) give

Tr(kI + A)2s =
2s∑

i=0

(
2s

i

)
kiTr(A2s−i )
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�
s∑

j=0

(
2s

2j

)
k2j Tr(A2s−2j )

>
n

(s + 1)2

s∑
j=0

(
2s

2j

)
k2j (2

√
k − 1)2s−2j

= n

2(s + 1)2
((k + 2

√
k − 1)2s + (k − 2

√
k − 1)2s)

>
n

2(s + 1)2
(k + 2

√
k − 1)2s .

Thus,

m

n
>

1
2(s+1)2 (k + 2

√
k − 1)2s − (k + (2 − �)

√
k − 1)2s

(2k)2s − (k + (2 − �)
√

k − 1)2s

for any s�1. Since

lim
s→∞

(
(k + 2

√
k − 1)2s

2(s + 1)2

) 1
2s

= k + 2
√

k − 1

> k + (2 − �)
√

k − 1 = lim
s→∞

(
2(k + (2 − �)

√
k − 1)2s

) 1
2s

it follows that there exists s0 = s0(�, k) such that for all s�s0

(k + 2
√

k − 1)2s

2(s + 1)2
− (k + (2 − �)

√
k − 1)2s > (k + (2 − �)

√
k − 1)2s .

Hence, if

c(�, k) = (k + (2 − �)
√

k − 1)2s0

(2k)2s0 − (k + (2 − �)
√

k − 1)2s0

then c(�, k) > 0 and m > c(�, k)n. �

The proofs of Serre’s theorem given in [4,5,7] do not allow an easy estimation of the constant
c(�, k) in terms of � and k. We relegate the detailed analysis of the constant obtained by those
arguments to a future work [3]. We should mention that Serre’s theorem can be also deduced from

the work of Friedman [6] or Nilli [13]. Friedman’s results imply an estimate of
(

1
2

)O
(

log k√
�

)
for

the proportion of the eigenvalues that are at least (2 − �)
√

k − 1. Nilli’s work provides a bound

of
(

1
2

)O
(

log k
arccos(1−�)

)
. Their methods provide better bounds on c(�, k) than ours. From our proof of

Serre’s theorem, we obtain that a proportion of
(

1
2

)O
(√

k
� log

(√
k

�

))
of the eigenvalues are at least

(2 − �)
√

k − 1. This is because in Theorem 1 we pick s0 such that s0
log s0

= �
(√

k
�

)
.

Theorem 1 has the following consequence regarding the asymptotics of the greatest eigenvalues
of k-regular graphs.
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Corollary 3. Let (Xi)i �0 be a sequence of k-regular graphs such that lim
i→∞ |Xi | = ∞. Then for

each l�1,

lim inf
i→∞ �l (Xi)�2

√
k − 1.

This corollary has also been proved directly by Serre in an appendix to [8] using the eigenvalue
distribution theorem in [16]. When l = 2, we obtain the asymptotic version of the Alon–Boppana
theorem (see [1,10,12,14] for more details).

3. Analogous theorems for the least eigenvalues of regular graphs

The analogous result to Theorem 1 for the least eigenvalues of a k-regular graph is not true.
For example, the eigenvalues of line graphs are all at least −2. However, by adding an extra
condition to the hypothesis of Theorem 1, we can prove an analogue of Serre’s theorem for the
least eigenvalues of a k-regular graph.

Theorem 4. For any � > 0, there exist a positive constant c = c(�, k) and a non-negative integer
g = g(�, k) such that for any k-regular graph X with oddg(X) > g, the number of eigenvalues �
of X with �� − (2 − �)

√
k − 1 is at least c|X|.

Proof. Let X be a k-regular graph of order n with eigenvalues −k��1 ��2 � · · · ��n = k. Given
� > 0, let m be the number of eigenvalues � of X with �� − (2 − �)

√
k − 1. Then n − m of the

eigenvalues of X are greater than −(2 − �)
√

k − 1. Thus

Tr(kI − A)2s =
n∑

i=1

(k − �i )
2s < (n − m)(k + (2 − �)

√
k − 1)2s + m(2k)2s

= m((2k)2s − (k + (2 − �)
√

k − 1)2s) + n(k + (2 − �)
√

k − 1)2s .

In the previous section, we proved that there exists s0 = s0(�, k) such that for all s�s0

(k + 2
√

k − 1)2s0

2(s0 + 1)2
− (k + (2 − �)

√
k − 1)2s0 > (k + (2 − �)

√
k − 1)2s0 .

Let g(�, k) = 2s0. If oddg(X) > 2s0, then for 0�j �s0 −1, the number of closed walks of length
2s0 − 2j − 1 in X is 0. Hence, Tr(A2s0−2j−1) = 0, for 0�j �s0 − 1. Using also 1, we obtain

Tr(kI − A)2s0 =
s0∑

j=0

(
2s0

2j

)
k2j Tr(A2s0−2j ) −

s0−1∑
j=0

(
2s0

2j + 1

)
k2j+1Tr(A2s0−2j−1)

=
s0∑

j=0

(
2s0

2j

)
k2j Tr(A2s0−2j ) >

n

(s0 + 1)2

2s0∑
j=0

(
2s0

2j

)
k2j (2

√
k − 1)2s0−2j

>
n

2(s0 + 1)2
(k + 2

√
k − 1)2s0 .
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From the previous inequalities, it follows that if

c(�, k) = (k + (2 − �)
√

k − 1)2s0

(2k)2s0 − (k + (2 − �)
√

k − 1)2s0

then c(�, k) > 0 and m > c(�, k)n. �

The next result is an immediate consequence of Theorem 4.

Corollary 5. Let (Xi)i �0 be a sequence of k-regular graphs such that limi→∞ oddg(Xi) = ∞.
Then for each l�1

lim sup
i→∞

�l (Xi)� − 2
√

k − 1.

When l = 1, we get the main result from [8]. Also, Corollary 5 holds when l = 1 and
limi→∞ girth(Xi) = ∞. This special case of Corollary 5 was proved directly in [9] using or-
thogonal polynomials and is also a consequence of the eigenvalue distribution theorem from
[11].

A theorem stronger than Corollary 5 has been proved by Serre in [8] using the eigenvalue
distribution results from [16]. We now present an elementary proof of this theorem. For r �0, let
cr(X) be the number of cycles of length r in a graph X.

Theorem 6. Let (Xi)i �0 be a sequence of k-regular graphs such that lim
i→∞ |Xi | = ∞. If lim

i→∞
c2r+1(Xi)

|Xi | = 0 for each r �1, then for each l�1

lim sup
i→∞

�l (Xi)� − 2
√

k − 1.

Proof. Let l�1. For a graph X and r �1, let n2r+1(X) denote the number of vertices v0 in the
graph X such that the subgraph of X induced by the vertices at distance at most r from v0 is
bipartite. Thus, |X| − n2r+1(X) is the number of vertices u0 of X such that the subgraph of X
induced by the vertices at distance at most r from u0 contains at least one odd cycle. Since each
such vertex is no further than r from each of the vertices of an odd cycle of length at most 2r + 1,
it follows that

|X| − n2r+1(X)�
r−1∑
l=1

�l,r c2l+1(X),

where 0��l,r �3(2l + 1)(k − 1)r . Thus, we have the following inequalities

1 −
r−1∑
l=1

�l,r

c2l+1(Xi)

|Xi | � n2r+1(Xi)

|Xi | �1

for all r �1, i�0. Hence, for each r �1

lim
i→∞

n2r+1(Xi)

|Xi | = 1. (2)
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For i�0, let Ai = A(Xi). Then, for i�0 and r �1, we have

Tr(A2r+1
i ) = n2r+1(Xi) · 0 + (|Xi | − n2r+1(Xi))�2r+1(Xi), (3)

where 0��2r+1(Xi)�k2r+1. From 2 and 3, we obtain that for each r �1

lim
i→∞

Tr(A2r+1
i )

|Xi | = 0. (4)

By using relation 1, it follows that for each r �1

lim inf
i→∞

Tr(A2r
i )

|Xi | � (2
√

k − 1)2r

(r + 1)2
. (5)

Now for each i�0, we have

Tr(kI − Ai)
2s =

|Xi |∑
j=1

(k − �j (Xi))
2s �(|Xi | − l)(k − �l (Xi))

2s + l(2k)2s .

Once again, the binomial expansion gives us

Tr(kI − Ai)
2s =

2s∑
j=0

(
2s

j

)
kj (−1)2s−j Tr(A2s−j

i ).

From the previous two relations, we get that

(k − �l (Xi))
2s + 4s lk2s

|Xi | − l
�

2s∑
j=0

(
2s

j

)
kj (−1)2s−j Tr(A2s−j

i )

|Xi | − l
.

Using relations 4 and 5, it follows that

k − lim sup
i→∞

�l (Xi)�

⎛
⎝ s∑

j=0

(
2s

2j

)
k2j (2

√
k − 1)2s−2j

(s − j + 1)2

⎞
⎠

1
2s

>

⎛
⎝ 1

(s + 1)2

s∑
j=0

(
2s

2j

)
k2j (2

√
k − 1)2s−2j

⎞
⎠

1
2s

>

(
1

2(s + 1)2

) 1
2s

(k + 2
√

k − 1)

for any s�1. By taking the limit as s → ∞, we get

k − lim sup
i→∞

�l (Xi)�k + 2
√

k − 1,

which implies the inequality stated in the theorem. �
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