On the Fujita exponent for a semilinear heat equation with a potential term

Kazuhiro Ishige

Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan

Received 15 November 2007
Available online 7 March 2008
Submitted by A. Cianchi

Abstract
We consider the existence and nonexistence of positive global solutions for the Cauchy problem,
\[
\begin{aligned}
\partial_t u &= \Delta u - V(x)u + u^p \quad \text{in } \mathbb{R}^N \times (0, \infty), \\
u(x, 0) &= \phi(x) \geq 0 \quad \text{in } \mathbb{R}^N,
\end{aligned}
\]
where \(p > 1 \) and \(V \) behaves like \(\omega |x|^{-2}(1 + o(1)) \) with \(\omega > 0 \), as \(|x| \to \infty \). In this paper we determine the so-called Fujita exponent \(p_* \) for this Cauchy problem. Furthermore, for the critical case \(p = p_* \), we prove that the Cauchy problem has no global positive solutions.

© 2008 Elsevier Inc. All rights reserved.

Keywords: Blow-up problem; Fujita exponent; Semilinear heat equation

1. Introduction

We consider the Cauchy problem for a semilinear heat equation with a potential,
\[
\begin{aligned}
\partial_t u &= \Delta u - V(x)u + u^p \quad \text{in } \mathbb{R}^N \times (0, \infty), \\
u(x, 0) &= \phi(x) \geq 0 \quad \text{in } \mathbb{R}^N,
\end{aligned}
\]
where \(p > 1 \), \(N \geq 2 \), \(\partial_t = \partial/\partial t \), \(\phi \in L^\infty(\mathbb{R}^N) \cap C(\mathbb{R}^N) \), and the potential \(V \) is nonnegative and behaves like \(\omega |x|^{-2}(1 + o(1)) \) with \(\omega > 0 \), as \(|x| \to \infty \).

In 1966, Fujita [3] considered the Cauchy problem
\[
\begin{aligned}
\partial_t u &= \Delta u + u^p \quad \text{in } \mathbb{R}^N \times (0, \infty), \\
u(x, 0) &= \phi(x) \geq 0 \quad \text{in } \mathbb{R}^N,
\end{aligned}
\]
and proved that
(A) if $1 < p < p_*$, the problem (1.2) has no positive global solutions;
(B) if $p > p_*$, the problem (1.2) has a positive global solution for some initial data ϕ,

where $p_* = 1 + 2/N$. We call this critical number $p_* = 1 + 2/N$ the Fujita exponent. The statement (A) also holds for the case $p = p_*$, which was proved by Hayakawa [4], Kobayashi, Sirao, and Tanaka [7] and alternative proofs were given by Aronson and Weinberger [1] and Weissler [11]. Subsequently the Fujita result has been extended by many mathematicians in several directions. For the details, see two survey papers [2] and [8] to this problem and references therein.

As stated in [10], for the Cauchy problem (1.1), the potential V has a strong influence on the Fujita exponent. Zhang [10] considered the problem of the existence and nonexistence of global positive solutions for the Cauchy problem (1.1) on an $N(\geq 3)$-dimensional complete noncompact Riemannian manifold M. He studied the relation between the Fujita exponent and the potentials V behaving like $\omega/(1 + d(x)^a)$, by using global bounds for the fundamental solutions of the heat equations with a potential. Here $\omega \in \mathbb{R}$, $a > 0$, and $d(x)$ is the distance between a point $x \in M$ and a reference point $O \in M$. In particular, for the case $M = \mathbb{R}^N$ with $N \geq 3$ and $a \neq 2$, he proved that the Fujita exponent p_* for the Cauchy problem (1.1) is $1 + 2/N$ if $a > 2$, ∞ if $1 < a < 2$ and $\omega < 0$, and 1 if $1 < a < 2$ and $\omega > 0$. Furthermore, for the case $a = 2$, he also proved that $1 < p_* \leq 1 + 2/N$ if $\omega > 0$ and $p_* \geq 1 + 2/N$ if $\omega < 0$. In particular, the case $a = 2$ is a border line case where the Fujita exponent may vary from 1 to ∞, and it would be interesting to study the relation between the Fujita exponent p_* and the constant ω.

In this paper we study the existence and nonexistence of global positive solutions of (1.1) with a potential V behaving like $\omega|x|^{-2}(1 + o(1))$ with $\omega > 0$, as $t \to \infty$, and give the Fujita exponent p_* for the Cauchy problem (1.1), explicitly. Furthermore we prove that the problem (1.1) for the critical case $p = p_*$ has no positive global solutions.

Throughout this paper we assume that
\begin{equation}
V \in C^1(\mathbb{R}^N), \quad V \geq 0 \text{ in } \mathbb{R}^N.
\end{equation}
We say that u is a solution of (1.1) if u satisfies (1.1) in the classical sense and $\|u(t)\|_{L^\infty(\mathbb{R}^N)} < \infty$ for each time $t > 0$. If the solution u does not exist globally in time, then
\[
\limsup_{t \to T} \|u(t)\|_{L^\infty(\mathbb{R}^N)} = \infty
\]
for some $T > 0$, and we say that the solution u blows-up at the time T. For any $\omega > 0$, let $\alpha = \alpha(\omega)$ be the positive root of the algebraic equation $\alpha(\alpha + N - 2) = \omega$, that is,
\[
\alpha(\omega) = \frac{-(N - 2) + \sqrt{(N - 2)^2 + 4\omega}}{2} > 0,
\]
and put
\[
p_*(\omega) \equiv 1 + \frac{2}{N + \alpha(\omega)}.
\]
Then we have the following results, which are the main results of this paper.

Theorem 1.1. Assume (1.3) and that there exist positive constants ω, θ, and R such that
\begin{equation}
V(x) \geq \omega|x|^{-2}(1 - |x|^{-\theta}) \quad (1.4)
\end{equation}
for all $x \in \mathbb{R}^N$ with $|x| \geq R$. Then the Cauchy problem (1.1) has a global positive solution for some initial data ϕ if $p > p_*(\omega)$.

Theorem 1.2. Assume (1.3) and that there exist positive constants ω, θ, and R such that
\begin{equation}
V(x) \leq \omega|x|^{-2}(1 + |x|^{-\theta}) \quad (1.5)
\end{equation}
for all $x \in \mathbb{R}^N$ with $|x| \geq R$. Then the Cauchy problem (1.1) has no global positive solution if $1 < p \leq p_*(\omega)$.

By Theorems 1.1 and 1.2, if $V \geq 0$ in \mathbb{R}^N and
\begin{equation}
V(x) = \omega|x|^{-2}(1 + O(|x|^{-\theta})) \quad \text{as } |x| \to \infty \quad (1.6)
\end{equation}
for some $\theta > 0$, the Cauchy problem (1.1) has a global positive solution for some initial data if and only if $p > p_*(\omega)$.

Our proofs of Theorems 1.1 and 1.2 depend on a result of the author and Kabeya [5], which is related to the large time behavior of solutions of the heat equation with a potential. Here we assume that the potential \(V \) is a nonnegative, smooth, and radially symmetric function behaving like (1.6), and explain the ideas of the proofs of Theorems 1.1 and 1.2. Then we may take a positive radially symmetric solution \(U \) of
\[
\Delta U - V(x) U = 0 \quad \text{in } \mathbb{R}^N
\]
such that \(U(|x|) = |x|^\alpha(1 + o(1)) \) as \(|x| \to \infty \). Furthermore the \(L^\infty \)-norm of the solution \(v \) of the linear heat equation \(\partial_t v = \Delta v - V(x)v \) behaves like \(CMt^{-(N+\alpha)/2} \) as \(t \to \infty \), where \(C \) is a constant independent of the initial data and
\[
M = \int_{\mathbb{R}^N} v(x, 0) U(|x|) \, dx
\]
(see Proposition 2.1). Then this asymptotic behavior of \(v \) together with the similar argument as in [6] gives upper bounds of the solution \(u \) of (1.1), and prove Theorem 1.1. In the proof of Theorem 1.2, we assume that there exists a global positive solution \(u \) of (1.1) as some initial data, and apply the same argument as in [9] to the solution \(u \). Then the asymptotic behavior of the solution \(v \) of \(\partial_t v = \Delta v - V(x)v \) gives Theorem 1.2 for the case \(1 < p < p_*(\omega) \). For the critical case \(p = p_*(\omega) \), we consider the asymptotic behavior of the quantity
\[
M(t) \equiv \int_{\mathbb{R}^N} u(x, t) U(|x|) \, dx,
\]
which is a crucial ingredient in the proof for the case \(p = p_*(\omega) \). We prove unboundedness of \(M(t) \), and this unboundedness of \(M(t) \) together with the same argument as in the case \(1 < p < p_*(\omega) \) gives Theorem 1.2.

The rest of this paper is organized as follows: In Section 2 we give some notation and recall one proposition, which is related to the large time behavior of the linear heat equation with a potential. In Sections 3 and 4, we prove Theorems 1.1 and 1.2, respectively.

2. Preliminaries

In this section we introduce some notation and recall a result of [5], which is related to the large time behavior of solutions of the heat equation with a potential.

For \(R > 0 \), let \(B(0, R) = \{ x \in \mathbb{R}^N : |x| \leq R \} \). Let \(\phi \in L^\infty(\mathbb{R}^N) \cap C(\mathbb{R}^N) \) such that \(\phi \geq 0 \) in \(\mathbb{R}^N \). We denote by \(S(t)\phi \) the bounded solution of (1.1) with the initial data \(\phi \).

Assume the same conditions as in Theorem 1.1. Let \(V^* \) be a smooth function on \([0, \infty)\) such that
\[
0 \leq V^*(|x|) \leq V(x) \quad \text{on } B(0, R + 1),
\]
\[
V^*(r) = \omega(r + 1)^{-2}(1 - |x|^{-\theta}) \quad \text{on } [R + 1, \infty).
\]
Then we denote by \(S^*(t)\phi \) the solution of
\[
\begin{cases}
\partial_t u = \Delta u - V^*(|x|)u + u^p & \text{in } \mathbb{R}^N \times (0, T), \\
u(x, 0) = \phi(x) & \text{in } \mathbb{R}^N,
\end{cases}
\]
satisfying \(\|u(t)\|_{L^\infty(\mathbb{R}^N)} < \infty \) for all \(0 < t < T \), where \(\phi \in L^\infty(\mathbb{R}^N) \cap C(\mathbb{R}^N) \) and \(0 < T \leq \infty \). Since \(V(x) \geq V^*(|x|) \) in \(\mathbb{R}^N \), by the comparison principle, we see that
\[
0 \leq (S(t)\phi)(x) \leq (S^*(t)\phi)(x)
\]
(2.2)
for all \(x \in \mathbb{R}^N \) and \(0 < t < T \).

Next we assume the same conditions as in Theorem 1.2, instead of Theorem 1.1. Let \(V_* \) be a smooth function on \([0, \infty)\) such that
\[
V_*(|x|) \geq V(x) \quad \text{on } B(0, R + 1),
\]
\[
V_*(r) = \omega(r - 1)^{-2}(1 + |x|^{-\theta}) \quad \text{on } [R + 1, \infty).
\]
Then we denote by $S_a(t)\phi$ the solution of
\[
\begin{cases}
\partial_t u = \Delta u - V_a(|x|)u + u^p & \text{in } \mathbb{R}^N \times (0, T), \\
u(x, 0) = \phi(x) \geq 0 & \text{in } \mathbb{R}^N,
\end{cases}
\tag{2.3}
\]
satisfying $\|u(t)\|_{L^\infty(\mathbb{R}^N)} < \infty$ for all $0 < t < T$, where $\phi \in L^\infty(\mathbb{R}^N) \cap C(\mathbb{R}^N)$ and $0 < T \leq \infty$. Since $V(x) \leq V_a(|x|)$ in \mathbb{R}^N, by the comparison principle, we see that
\[
0 \leq (S_a(t)\phi)(x) \leq (S(t)\phi)(x)
\tag{2.4}
\]
for all $x \in \mathbb{R}^N$ and $0 < t < T$. In order to prove Theorems 1.1 and 1.2, we consider the Cauchy problems (2.1) and (2.3), instead of (1.1).

Next, in order to give a result on the large time behaviors of the solutions of the linear heat equations $\partial_t v = \Delta v - V^*v$ and $\partial_t v = \Delta v - V_e v$, we introduce the condition (V_ω) on the radially symmetric potential. We say that the radial function $\hat{V} = \hat{V}(r)$ satisfies the condition (V_ω) for some $\omega > 0$ if there exists a positive constant θ such that
\[
(V_\omega)
\begin{align*}
\text{(i)} & \quad \hat{V}(|x|) \in C^1(\mathbb{R}^N), \\
\text{(ii)} & \quad \hat{V}(r) \geq 0 \quad \text{on } [0, \infty), \\
\text{(iii)} & \quad \sup_{r \geq 1} \frac{r^2}{2+\theta} \frac{d}{dr} \hat{V}(r) - \omega \frac{\omega}{r^2} < \infty, \\
\text{(iv)} & \quad \sup_{r \geq 1} \frac{r^3}{d} \frac{d}{dr} \hat{V}(r) < \infty.
\end{align*}
\]
Under the condition (V_ω), there exists a unique positive solution $U_{\hat{V}}$ of the ordinary differential equation
\[
(O) \quad U'' + \frac{N-1}{r} U' - \hat{V}(r) U = 0 \quad \text{in } (0, \infty)
\]
with
\[
\lim_{r \to 0} \sup |U(r)| < \infty, \quad \lim_{r \to \infty} r^{-\alpha(\omega)} U(r) = 1
\tag{2.5}
\]
(see [5]). Let $L_{\hat{V}}(t)\phi$ be the bounded solution of the Cauchy problem
\[
\begin{cases}
\partial_t v = \Delta v - \hat{V}(|x|)v & \text{in } \mathbb{R}^N \times (0, \infty), \\
v(x, 0) = \phi(x) & \text{in } \mathbb{R}^N,
\end{cases}
\tag{2.6}
\]
where $\phi \in L^2(\mathbb{R}^N, e^{\frac{|x|^2}{4}} dx)$. Then, under the condition (V_ω), we have the following proposition (see Theorem 1.1 in [5]).

Proposition 2.1. Let $\phi \in L^2(\mathbb{R}^N, e^{\frac{|x|^2}{4}} dx)$ and consider the Cauchy problem (2.6) under the condition (V_ω) for some $\omega > 0$. Then the solution $v = L_{\hat{V}}(t)\phi$ of (2.6) satisfies
\[
\lim_{t \to \infty} (1 + t)^{\frac{N+\alpha(\omega)}{2}} v((1 + t)^{\frac{1}{2}} y, t) = cM |y|^\alpha(\omega) e^{-\frac{|y|^2}{4}}
\]
in $L^2(\mathbb{R}^N, e^{\frac{|y|^2}{4}} dy)$ and $L^\infty(\mathbb{R}^N)$, where
\[
M \equiv \int_{\mathbb{R}^N} \phi(x) U_{\hat{V}}(|x|) dx, \quad c = \left(\int_{\mathbb{R}^N} |x|^{2\alpha(\omega)} e^{-\frac{|x|^2}{4}} dx \right)^{-1}.
\]

Since the functions V^* and V_e satisfy the condition (V_ω), we may define the functions U_{V^*} and U_{V_e} satisfying (2.5), and see that Proposition 2.1 holds with \hat{V} replaced by V^* or V_e.
3. Proof of Theorem 1.1

Let \(p > p_* (\omega) \) and \(\epsilon \) be a sufficiently small constant to be chosen later such that \(0 < \epsilon < 1 \). Let \(\phi \in C_0 (\mathbb{R}^N) \) such that \(\phi \geq 0 \) and \(\phi \neq 0 \) in \(\mathbb{R}^N \), and put \(u^* (t) = S^* (t) (\epsilon \phi) \). Following the argument in [6], we define

\[
T = \sup \{ t > 0 : \| u^* (t) \|_{L^\infty (\mathbb{R}^N)} \leq (1 + \tau)^{- \frac{N + q (\omega)}{2}} \text{ for all } \tau \in (0, t) \} > 0,
\]

and prove \(T = \infty \). For this aim, we assume \(T < \infty \). Then we have

\[
\| u^* (T) \|_{L^\infty (\mathbb{R}^N)} = (1 + T)^{- \frac{N + q (\omega)}{2}} \tag{3.1}
\]

and \(u^* \) satisfies

\[
\partial_t u^* = \Delta u^* - V^* (|x|) u^* + (u^*)^p \leq \Delta u^* - V^* (|x|) u^* + (1 + t)^{- \frac{N + q (\omega)}{2}} (p - 1) u^* \tag{3.2}
\]

for all \((x, t) \in \mathbb{R}^N \times (0, T) \).

On the other hand, let \(v = L^* (t) (\epsilon \phi) \) and put

\[
w (x, t) = v (x, t) \exp \left[- \int_0^t (1 + \tau)^{- \frac{N + q (\omega)}{2}} (p - 1) d \tau \right].
\]

Then \(w \) satisfies

\[
\begin{aligned}
\partial_t w &= \Delta w - V^* (|x|) w + (1 + t)^{- \frac{N + q (\omega)}{2}} (p - 1) w & \text{in } \mathbb{R}^N \times (0, \infty), \\
w (x, 0) &= \epsilon \phi (x) & \text{in } \mathbb{R}^N.
\end{aligned} \tag{3.3}
\]

Furthermore, by Proposition 2.1 and \(p > p_* (\omega) \), there exist constants \(C_1 \) and \(C_2 \), independent of \(\epsilon \), such that

\[
0 \leq w (x, t) \leq C_1 v (x, t) \leq C_2 \epsilon (1 + t)^{- \frac{N + q (\omega)}{2}} \int_{\mathbb{R}^N} \phi (x) U V^* (|x|) \, dx < \infty
\]

for all \((x, t) \in \mathbb{R}^N \times (0, \infty) \). So we may take a sufficiently small \(\epsilon \) so that

\[
0 \leq w (x, t) \leq \frac{1}{2} (1 + t)^{- \frac{N + q (\omega)}{2}} \tag{3.4}
\]

for all \((x, t) \in \mathbb{R}^N \times (0, \infty) \). Therefore, by the comparison principle (3.2)–(3.4), we have

\[
0 \leq u^* (x, t) \leq w (x, t) \leq \frac{1}{2} (1 + t)^{- \frac{N + q (\omega)}{2}} \text{ in } \mathbb{R}^N \times (0, T).
\]

This contradicts (3.1), and we have \(T = \infty \), that is, \(u^* \) is a positive global solution of the Cauchy problem (2.1). Therefore, by (2.2), the Cauchy problem (1.1) has a positive global solution, and the proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2

We assume that there exists a global positive solution of (1.1) for some initial data \(\phi \). By the comparison principle, we may assume, without loss of generality, that \(\phi \) has a compact support in \(\mathbb{R}^N \). Furthermore, since \(\phi \geq 0 \) and \(\phi \neq 0 \) in \(\Omega_2 \), we see that

\[
M_* \equiv \int_{\mathbb{R}^N} \phi (x) U V_* (|x|) \, dx > 0. \tag{4.1}
\]

Let \(\lambda \) be the first eigenvalue of the problem

\[
- \Delta \psi = \lambda \psi \text{ in } D, \quad \psi = 0 \text{ on } \partial D \equiv \{ x \in \mathbb{R}^N : 1 < |x| < 2 \}
\]

and \(\psi \) the eigenfunction corresponding to \(\lambda \) such that \(\psi \geq 0 \) in \(D \) and \(\| \psi \|_{L^1 (D)} = 1 \). Put \(\psi_n (x) = n^{-N} \psi (n^{-1} x) \).
Then \(\psi_n \) satisfies
\[
-\Delta \psi_n = \frac{\lambda}{n^2} \psi_n \quad \text{in} \quad D_n = nD, \quad \psi_n = 0 \quad \text{on} \quad \partial D_n, \quad \| \psi_n \|_{L^1(D_n)} = 1.
\]

Let \(u_*(t) = S_*(t) \phi \) and put
\[
F_n(t) = \int_{D_n} u_*(x, t + n^2) \psi_n(x) \, dx.
\]

Then, by (2.4), we may define the function \(F_n(t) \) for all \(t \geq 0 \) and \(n = 1, 2, \ldots \). Furthermore, by (1.1), (V), and the Jensen inequality, there exists a positive constant \(C_1 \) such that
\[
F'_n(t) = \int_{D_n} \left[\Delta u_* - V_*(|x|) u_* + u_*^p \right] \psi_n(x) \, dx \geq -\frac{\lambda}{n^2} F_n(t) - \frac{C_1}{n^2} F_n(t) + F_n(t)^p = -\frac{\lambda + C_1}{n^2} F_n(t) + F_n(t)^p
\]
for all \(t > 0 \) and all sufficiently large \(n \). If
\[
F_n(0)^{p-1} \geq 2 \frac{\lambda + C_1}{n^2},
\]
we have \(F_n(t) \geq F_n(0) \) and
\[
F'_n(t) \geq \frac{1}{2} F_n(t)^p, \quad t \geq 0.
\]

This together with \(p > 1 \) implies that \(F_n(t) \) tends to \(\infty \) in a finite time, and we have a contradiction. Therefore we see that
\[
F_n(0)^{p-1} \leq 2 \frac{\lambda + C_1}{n^2}, \quad (4.2)
\]
for all sufficiently large \(n \).

Let \(v = L_{V_*}(t) \phi \). Then, by Proposition 2.1 and (4.1), there exists a constant \(C_2 = C_2(N) \) such that
\[
\min_{t^{1/2} \leq |x| \leq 2t^{1/2}} v(x, t) \geq C_2 M_0 t^{-\frac{N+\alpha(\omega)}{2}}
\]
for all sufficiently large \(t \). Then, by (2.4), we have
\[
F_n(0) \geq \int_{D_n} v(x, n^2) \psi_n(x) \, dx \geq \min_{n \leq |x| \leq 2n} v(x, n^2) \geq C_2 M_0 n^{-\frac{(N+\alpha(\omega))}{2}}
\]
for all sufficiently large \(n \). Therefore there exists a constant \(L \) such that if either
\[
1 < p < p_* \quad \text{or} \quad p = p_*, \quad M_0 > L,
\]
(4.4) contradicts (4.2). Therefore the proof of Theorem 1.2 for the case \(1 < p < p_*(\omega) \) is complete. Let \(p = p_*(\omega) \). By (2.4), (2.5) and (4.3), there exists a constant \(C_3 \) such that
\[
\frac{d}{dt} \int_{\mathbb{R}^N} u_*(t) U_{V_*}(|x|) \, dx = \int_{\mathbb{R}^N} u_*(t)^p U_{V_*}(|x|) \, dx \geq \int_{\mathbb{R}^N} v(t)^p U_{V_*}(|x|) \, dx
\]
\[
\geq \int_{\{t^{1/2} \leq |x| \leq 2t^{1/2}\}} v(x, t)^p U_{V_*}(|x|) \, dx
\]
\[
\geq C_3 M_0^p \left(t^{-\frac{N+\alpha(\omega)}{2}} \right)^p + \frac{N}{2} = C_3 M_0^p t^{-1}
\]
for all sufficiently large \(t \). So we obtain
\[
\lim_{t \to \infty} \int_{\mathbb{R}^3} u_*(x, t) U_{V_*}(|x|) \, dx = \infty.
\]
Therefore there exist a constant $T > 0$ and a function $\zeta \in C^\infty_0(\mathbb{R}^N)$ with $0 \leq \zeta \leq 1$ in \mathbb{R}^N such that

$$\int_{\mathbb{R}^N} u_*(x, T)\zeta(x)U_1(|x|) \, dx > L.$$

Then $u(T)\zeta \in L^2(\mathbb{R}^N, \rho \, dx)$ and by (4.5), we see that the solution $S_*(t)(u_*(T)\zeta)$ blows-up in a finite time. Since

$$u_*(x, t + T) \geq [S_*(t)(u_*(T)\zeta)](x), \quad x \in \mathbb{R}^N, \quad t > 0,$$

we see that the solution u_* blows-up in a finite time, and have a contradiction for the case $p = p_*(\omega)$. Therefore, for the case $1 < p \leq p_*(\omega)$, there exists no global positive solution of (1.1), and the proof of Theorem 1.2 is complete.

Acknowledgments

The author wishes to thank Professors Marek Fila and Takayoshi Ogawa for their useful suggestions. The author also wishes to thank the referee for his valuable comments.

References