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a b s t r a c t

The nonequilibrium evolution of a Brownian particle, in the presence of a ‘‘heat bath’’
at thermal equilibrium (without imposing any friction mechanism from the outset),
is considered. Using a suitable family of orthogonal polynomials, moments of the
nonequilibrium probability distribution for the Brownian particle are introduced, which
fulfill a recurrence relation. We review the case of classical Brownian motion, in which
the orthogonal polynomials are the Hermite ones and the recurrence relation is a three-
termone. After having performed a long-time approximation in the recurrence relation, the
approximate nonequilibrium theory yields irreversible evolution of the Brownian particle
towards thermal equilibrium with the ‘‘heat bath’’. For quantum Brownian motion, which
is the main subject of the present work, we restrict ourselves to include the first quantum
correction: this leads us to introduce a new family of orthogonal polynomials which
generalize the Hermite ones. Some general properties of the new family are established.
The recurrence relation for the newmoments of the nonequilibrium distribution, including
the first quantum correction, turns out to be also a three-term one, which justifies the
new family of polynomials. A long-time approximation on the new three-term recurrence
relation describes irreversible evolution towards equilibrium for the new moment of
lowest order. The standard Smoluchowski equations for the lowest order moments are
recovered consistently, both classically and quantum-mechanically.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We shall consider a ‘‘heat bath’’, at complete thermal equilibrium at absolute temperature T . We shall treat the
nonequilibrium statisticalmechanics of a Brownian particle ofmassm in one spatial dimension x, in the presence of the ‘‘heat
bath’’ and subject to a real time-independent potential V (=V (x)). By assumption, the particle is not at thermal equilibrium
with the ‘‘heat bath’’ at the initial time t = 0. We shall concentrate on the time evolution of the particle for t > 0, both in
the classical regime and not far from the latter, including the first quantum correction.
Let us recall classical Brownian motion, as described by the irreversible Kramers equation [1]. The latter follows by

assuming either some model for the interaction between the ‘‘heat bath’’ and the particle, or some friction mechanism on
the latter, from the outset. By using suitable Hermite polynomials in the particle momentum (which are orthogonalized
with respect to the equilibrium Boltzmann distribution), moments of the nonequilibrium probability distribution have
been introduced [2]. Those moments fulfill a three-term recurrence relation (or hierarchy) [2], to which various techniques
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can be applied [3,4]. On the other hand, for classical closed large systems (without a ‘‘heat bath’’), a suitable long-time
approximation has been imposed on the three-term hierarchy for the reversible Liouville equation [5,6]: then, the resulting
approximate nonequilibrium theory for themoments yields irreversible behavior towards thermal equilibrium consistently.
The same also holds for a classical Brownian particle in the presence of a ‘‘heat bath’’ [6], without assuming (ab initio) friction
effects on the particle: see Section 2 below.
The generalizations for quantum Brownian motion are more difficult. For those including friction, see, for instance,

[7–9] and references therein. For other related research, see [10–18] and references therein. In [8,9], the quantum particle
is described by the Wigner distribution function [19,20] including friction from the outset, and one employs Hermite
polynomials in the particle momentum, similar to those for the classical case, in order to define the nonequilibrium
moments. Then, the recurrence relation or hierarchy satisfied by the moments is not a three-term one, due to quantum
corrections, which complicates the analysis rather considerably [8,9]. We shall deal with quantum Brownian motion by
including only the first quantum correction. We shall not assume (ab initio) friction effects on the particle. Then, we shall
study possible definitions of new moments, which could lead to three-term recurrence relations, in which the methods of
[5,6] could be employed (at least, in some simple version), so as to have approximate irreversibility for long time. In turn,
the search for those new moments will require the introduction of a new and suitable family of orthogonal polynomials.
This work is organized as follows. Section 2 summarizes the nonequilibrium statistical mechanics of the classical

Brownian particle using the classical Liouville distribution function, the moments of the latter by means of the Hermite
polynomials and the approximate long-time theory and irreversible behavior for the moments [5,6]. Section 3 reminds
the nonequilibrium statistical mechanics of the quantum Brownian particle, using the Wigner distribution function, the
equilibrium Wigner function and the first quantum corrections [19,20], which distinguish the latter from the classical
Liouville distribution function. Section 4 introduces a new family of orthogonal polynomials, Hx,2,n, determined by the
equilibriumWigner functionwith first quantumcorrections. In Section 5, the dynamical equation for theWigner distribution
function is transformed, using the Hx,2,n’s, into a three-term recurrence relation which, in turn, is subject to suitable long-
time approximations. Section 6 contains conclusions and discussions.

2. Classical Brownian particle

Let the classical particle have momentum p and Hamiltonian

H = p2/(2m)+ V (1)

V = V (x) being a real potential. From the outset, we shall not suppose any friction effects on the particle. The classical (c)
probability distributionWc = Wc(x, p; t) for the particle fulfills the reversible Liouville equation:

∂Wc
∂t
= {H,Wc} = −

p
m
∂Wc
∂x
+
dV
dx
∂Wc
∂p

(2)

{H,Wc} stands for the classical Poisson bracket. The initial condition at t = 0 isWc,in.
Any integration will be performed in (−∞,+∞). We shall introduce the following momentsWc,n (n = 0, 1, 2, . . .) of

Wc regarding the p-dependence [2–6]:

Wc,n = Wc,n(x; t) =
∫
dp

Hn(p/qeq)
(π1/22nn!)1/2

Wc (3)

qeq = (2m/β)1/2, β =
1
KBT

(4)

which incorporate the equilibrium temperature T of the ‘‘heat bath’’. Hn is the Hermite polynomial of order n [21]. KB is
Boltzmann’s constant. Eq. (3) and (2) imply the following infinite reversible three-term linear recurrence relation for all
Wc,n’s (n = 0, 1, 2, . . .,Wc,−1 = 0) [2–6]:

∂Wc,n
∂t
= −Mc;n,n+1Wc,n+1 −Mc;n,n−1Wc,n−1 (5)

Mc;n,n+1Wc,n+1 ≡
[
(n+ 1)
mβ

]1/2
∂Wc,n+1
∂x

(6)

Mc;n,n−1Wc,n−1 ≡
[
n
mβ

]1/2 (
∂Wc,n−1
∂x

+ β
dV
dx
Wc,n−1

)
. (7)

The initial conditionWc,in,n for Eq. (5) is obtained by replacingWc byWc,in in (3). A t-independent solution of Eq. (2) is:
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Wc,eq = Wc,eq(x, p) = exp
[
−β

(
p2

2m
+ V (x)

)]
(8)

Wc,eq yields, through (3), momentsWc,eq,0 proportional to exp[−βV ] andWc,eq,n = 0, n > 0.
We introduce the Laplace transform:

W̃c,n(s) ≡
∫
+∞

0
dtWc,n exp(−st). (9)

One difficulty with (5) and with its Laplace transform for the W̃c,n(s)’s is the absence of an explicit relationship between
Mc;n,n+1 andMc;n,n−1, for V 6= 0. To solve that difficulty, we introduce gn = gn(s) ≡ W

−1/2
c,eq,0W̃c,n(s). Then, (5) and (9) yield

the new hierarchy:

sgn = W
−1/2
c,eq,0Wc,in,n −M

′

c;n,n+1gn+1 −M
′

c;n,n−1gn−1 (10)

M ′c;n,n+1gn+1 ≡
[
(n+ 1)
mβ

]1/2 (
∂gn+1
∂x
−
β

2
dV
dx
gn+1

)
(11)

M ′c;n,n−1gn−1 ≡
[
n
mβ

]1/2 (
∂gn−1
∂x
+
β

2
dV
dx
gn−1

)
. (12)

Notice that a relationship now exists between M ′c;n,n+1 and M
′

c;n,n−1: M
′

c;n,n+1 is the adjoint of −M
′

c;n,n−1, for any V . The
hierarchy (10) can be solved formally by applying to it standard procedures for solving numerical three-term linear
recurrence relations in terms of continued fractions (see, for instance, [3,4]). Thus, one neglects gn′+1(s) in (10) for given n′,
solves for gn′(s) in terms of gn′−1(s), proceeds to (10) for n′ − 1, solves for gn′−1(s) in terms of gn′−2(s) and so on. Then, one
infers directly the general formal (continued-fraction) structure of the solution as n′ →+∞. That formal procedure yields
all gn(s), for any n = 1, . . ., in terms of sums of products of certain s-dependent linear operators D[n′; s], n′ ≥ n, acting upon
gn−1(s) and upon allW

−1/2
c,eq,0Wc,in,n′ ’s, with n

′
≥ n. The linear operators D[n; s]’s are defined recurrently through:

D[n; s] = [s−M ′c;n,n+1D[n+ 1; s]M
′

c;n+1,n]
−1. (13)

The successive iterations of (13) generate an infinite continued fraction of operators. The solution for gn(s) is only formal up
to this stage, because theM ′ are linear operators and, hence, the D[n; s]’s are infinite continued fractions of products of the
linear operatorsM ′. Thus, once the formal solution has been obtained, one should try to give a less formal and more precise
meaning to it. This has been done succinctly in [5] for V = 0 (by performing Fourier transforms in x). Compact expressions
for the linear operatorsD’s, as finite fractions, have been given also succinctly in [6], when V represents a harmonic oscillator
potential. See [3,4] for reductions of the D’s (using further expansions into orthonormal basis, regarding x-dependences) to
matrix continued fractions, to be subject later to numerical computations in various cases. For our purposes, the following
outline should suffice in order to give a somewhat more precise characterization of (10) and of (13): see [5,6] for other
presentations and details. The fact that M ′c;n,n+1 is the adjoint of −M

′

c;n,n−1 and the structure of (13) imply the following
crucial properties for suitably fixed real ε > 0 [5,6]: (i) if D[n+ 1; ε]were Hermitian and if all its eigenvalues (which would
be real) were non-negative, then the samewould hold true for D[n; ε], and (ii) through iterative arguments, hermiticity and
impossibility of negative eigenvalues appear to hold true for the successive D[n; ε]’s.
Thus far, no long-time approximation has been performed. We shall analyze the approximate irreversible evolution of

the classical Brownian particle towards thermal equilibrium with the ‘‘heat bath’’. We choose some n0(≥1) and, for n ≥ n0,
set s = ε > 0 in any D[n; s], ε being suitably small. Then, the long-time approximation for n ≥ n0 reads: we replace any
D[n′; s] yielding gn(s), n ≥ n0, in terms of gn−1(s) and ofW

−1/2
c,eq,0Wc,in,n′′ ’s, n

′′
≥ n, by D[n′; ε]. That approximation is not done

for n < n0, and it is the better fulfilled the larger n0 is. For a simpler analysis, we also neglect all W
−1/2
c,eq,0Wc,in,n′ ’s for any

n′ ≥ n0. Then, the general solution for gn0(s) provided by the formal procedure outlined above, becomes approximately, for
small s (say, long time):

gn0(s) ' −D[n0; ε]M
′

c;n0,n0−1gn0−1(s). (14)

By using Eq. (5), as they stand, for n = 0, 1, ., n0 − 1, and the inverse Laplace transform of (14) (recast back in terms of
W̃c,n0(s) and W̃c,n0−1(s)) the hierarchy becomes closed forWc,n, n0 = 0, 1, ., n0−1. The t-independent solution of the closed
approximate hierarchy isWc,eq,0 andWc,eq,n = 0, n = 1, 2, . . . , n0 − 1. The solutions of the closed approximate hierarchy
relax irreversibly, for t � 0 and any reasonable Wc,in, towards the above t-independent solution: the classical Brownian
particle evolves towards thermal equilibriumwith the ‘‘heat bath’’ [5,6]. We still require a procedure for computing D[n0; ε]
or an ansatz for it.
In the simplest case, n0 = 1, we approximate the linear operator D[1; ε] by a real constant γ−1m(>0). γ−1m tries to

approximate somehow, on the average, the set of all eigenvalues (all being real and non-negative) of the linear operator
D[1; ε]. This ansatz for D[1; ε] is a practical simplification, which supplements the above long-time approximation. Then,



1456 R.F. Álvarez-Estrada / Journal of Computational and Applied Mathematics 233 (2010) 1453–1461

we combine (14) for n0 = 1 and (5) for n = 0. The resulting (irreversible) equation for the n = 0 moment Wc,0 of the
classical probability distributionWc is the Smoluchowski one:

∂Wc,0
∂t
=
1
βγ

∂

∂x

[
∂

∂x
+ β

dV
dx

]
Wc,0 (15)

with the initial conditionWc,in,0 at t = 0. Themoment procedure and the long-time approximations in [5,6], without having
assumed friction effects from the outset, lead to the Smoluchowski equation in (15), which is identical to those obtained
by other authors through very different procedures [4,22] (involving ab initio friction). Thus, the positive constant γ in (15)
plays the same role as the friction coefficient in the standard derivations [4,22].

3. Quantum Brownian particle: Background

3.1. Nonequilibrium Wigner function

We shall now consider a quantum Brownian particle of mass m and momentum operator −ih̄(∂/∂x), in one spatial
dimension x, with quantum Hamiltonian:

HQ = −
h̄2

2m
∂2

∂x2
+ V (16)

h̄ being Planck’s constant, and V = V (x) being also a real potential. We shall outline the nonequilibrium quantum statistical
mechanics of the particle in the presence of the ‘‘heat bath’’. The time evolution for t > 0 of the particle is given by the
density operator ρ = ρ(t, 0) (a statistical mixture of states). In the actual quantum case, we shall not suppose any ab initio
friction effects on the particle either. The density operator fulfills the reversible Dirac-von Neumann equation:

∂ρ

∂t
=
1
ih̄
[HQ , ρ] =

1
ih̄
(HQρ − ρHQ ) (17)

with the initial condition ρ(0, 0) = ρin. [HQ , ρ] denotes the commutator. We consider the matrix element 〈x − y|ρ(t, 0)
|x+ y〉 of ρ(t, 0) in generic eigenstates, |x− y〉, |x+ y〉, of the quantum position operator. Any integration will be performed
in (−∞,+∞). The quantumWigner distribution functionW = W (x, q; t), determined by ρ, is [19,20]:

W (x, q; t) =
1
π h̄

∫
dy exp

[
i2qy
h̄

]
〈x− y|ρ(t, 0)|x+ y〉. (18)

The reversible dynamical evolution ofW is given by [19,20]:

∂W (x, q; t)
∂t

= −
q
m
∂W (x, q; t)

∂x
+

∫
dq′W (x, q+ q′; t)

[
i

π h̄2

] ∫
dy[V (x+ y)− V (x− y)] exp

[
−
i2q′y
h̄

]
. (19)

The right-hand-side of the quantum evolution equation (19) gives rise, upon expanding suitably V (x + y) − V (x − y),
to additive corrections of order h̄2 and higher [19]. Corrections of order h̄ vanish exactly, in general. It is well known that
W (x, q; t) could take on negative values in some regions, in principle.

3.2. Equilibrium Wigner function Weq

Let the quantum particle be at thermal equilibrium, at temperature T , with the ‘‘heat bath’’. Recalling Eq. (4), the
equilibrium density operator is ρeq = exp[−βHQ ] which, through Eq. (18), determines the equilibrium (t-independent)
Wigner functionWeq = Weq(x, q). There seems to be no known compact expression forWeq for any V and any β . For high
temperature T (small β) and small h̄ (not far from the classical, h̄→ 0, limit), a systematic expansion forWeq for a general
V , as a power series in h̄2, exists [19,20] (all contributions in odd powers of h̄ vanish identically). We shall quote [19,20]:

Weq(x, q) ' Weq,2(x, q) = Wc,eq

[
1+ h̄2

[
−
β2

8m
d2V
dx2
+

β3

24m

(
dV
dx

)2
+
β3q2

24m2
d2V
dx2

]]
(20)

Wc,eq is given in (8), with p = q. The subscript 2 reminds thatWeq,2(x, q) includes the full contributions up to and including
order h̄2, but all contributions of orders h̄2n

′′

, n′′ ≥ 2 are disregarded.Wc,eq is the classical Liouville probability distribution
for thermal equilibrium. For the one dimensional case, the full contribution of order h̄4 toWeq(x, q) has also been computed
in [19].
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4. Orthogonal polynomials Hx,2,n(q/qeq) for Weq,2

4.1. Construction of Hx,2,n(q/qeq)

It seems natural to rewriteWeq,2(x, q), up to and including order h̄2 [19], in terms of the Hermite polynomials H2n [21],
n = 0, 1:

Weq,2(x, q) = Wc,eq
1∑
n=0

a2n(x)H2n(q/qeq). (21)

In turn, the coefficients a2n(x) are polynomials of second order in h̄2, which depend on first and second derivatives of V (x)
and on β . One has:

a0(x) = 1+
h̄2

8

[
β3

3m

(
dV
dx

)2
−
2β2

3m
d2V
dx2

]
(22)

a2(x) =
β2 h̄2

48m
d2V
dx2

. (23)

We cannot warrant thatWeq(x, q) be non-negative in some regions in general. However, for small β and h̄ (not far from
the classical limit), Eq. (20) indicates thatWeq,2(x, q), up to and including order h̄2, could be non-negative for any x and q,
provided that first and second derivatives of V (x) remain bounded in absolute value. We shall suppose this non-negativity
of Weq,2(x, q) in what follows. As we shall see, it will be interesting to introduce the denumerably infinite family of all
polynomials in q, Hx,2,n(q/qeq) (a kind of generalization of the Hermite polynomials), n = 0, 1, 2, 3, . . ., with the following
properties:

(1) Hx,2,n(q/qeq) equalsHn(q/qeq) (say,without anymultiplicative factor depending onβ , h̄ or x) plus a remainder of order h̄2,
which is another polynomial in q and also depends on β and x: see below. Hence, Hx,2,n(q/qeq) contains no contribution
of order h̄n

′′

, n′′ ≥ 4. Thus, Hx,2,n(q/qeq) depends parametrically on x, as indicated by the subscript, and also on β and on
h̄, but the latter two dependences will not be explicited. The subscript 2 reminds that Hx,2,n(q/qeq) includes up to order
h̄2, but all orders h̄2n

′′

, n′′ ≥ 2 are excluded.
(2) Provided that we integrate in −∞ < q < +∞ with the weight function Weq,2(x, q) given by (21), leaving x
unintegrated, the Hx,2,n(q/qeq)’s constitute a denumerably infinite orthogonal set, up to and including order h̄2. Then,
for n 6= n′ and any x, we impose that:∫

dqWeq,2(x, q)Hx,2,n(q/qeq)Hx,2,n′(q/qeq) = 0 (24)

holds up to and including order h̄2, but contributions of order h̄2n
′′

, n′′ ≥ 2 are disregarded.

One has, trivially:

Hx,2,0(q/qeq) = 1 = H0(q/qeq) (25)

Hx,2,1(q/qeq) =
2q
qeq
= H1(q/qeq). (26)

The determination of Hx,2,n(q/qeq), for n ≥ 2 will be facilitated by the following integral:∫
dy exp(−x2)H2(y)Hn(y)Hl(y) = 2(π2n+ln!l!)1/2[((n+ 1)(n+ 2))1/2δl,n+2 + 2nδl,n + (n(n− 1))1/2δl,n−2] (27)

which can be derived from Eqs. [A.55] and [A.58] in [23]. δl,n is the Kronecker delta. We search for Hx,2,n(q/qeq), n ≥ 2, as

Hx,2,n(q/qeq) = Hn(q/qeq)− bn(x)Hn−2(q/qeq). (28)

The unknown function bn(x), n ≥ 2, is to be determined from:∫
dqWeq,2(x, q)Hx,2,n(q/qeq)Hx,2,n−2(q/qeq) = 0 (29)

disregarding contributions of order h̄n
′′

, n′′ ≥ 3. One finds easily:

bn(x) = 4n(n− 1)a2(x). (30)
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4.2. Properties of Hx,2,n(q/qeq)

TheHx,2,n(q/qeq)’s are not normalizedwith respect to themeasure
∫
dqWeq,2(x, q). The orthonormalized polynomials are

Hx,2,n(q/qeq)/Nn(x), with:

Nn(x) ≡
[∫
dqWeq,2(x, q)Hx,2,n(q/qeq)2

]1/2
. (31)

One finds (disregarding contributions of order h̄n
′′

, n′′ ≥ 3):

Nn(x) = exp[−2−1βV (x)]q1/2eq (π
1/2n!2n)1/2

[
1+

h̄2

16

(
β3

3m

(
dV
dx

)2
−
2β2

3m
d2V
dx2

)
+ 2na2(x)

]
. (32)

The Hx,2,n(q/qeq)’s fulfill the following recurrence relations (again, up to and including order h̄2 and disregarding
contributions of order h̄n

′′

, n′′ ≥ 3), with Hx,2,−1 ≡ 0:

dHx,2,n(y)
dy

= 2nHx,2,n−1(y) (33)

2yHx,2,n(y) = Hx,2,n+1(y)+ 2n(1+ 4a2(x))Hx,2,n−1(y). (34)

The Hx,2,n(q/qeq)’s have the following generating function (z being a real parameter):[
1− a2(x)

∂2

∂y2

]
exp[−z2 + 2zy] =

+∞∑
n=0

zn

n!
Hx,2,n(y). (35)

Recall that the x-dependence of V (x) is quite general. Then, we shall comment about the x-dependences in Eq. (35): that of
a2(x) in its left-hand-sidematches exactly the one in its right-hand-side, fromall polynomialsHx,2,n(y) (through all−bn(x)’s:
recall Eqs. (28) and (30)).
We recall that other generalizations of the Hermite polynomials exist in the literature about orthogonal polynomials: for

instance, the one in [24]. Those generalizations are different (and have differentmotivations) from theHx,2,n(q/qeq)’s (which
arise from the weightWeq,2(x, q)).
The interest of Hx,2,n(q/qeq)will be appreciated when treating the time evolution: see (36) below.

5. Time-dependent Wigner functionW2 up to order h̄2

5.1. Moments of W2 using Hx,2,n and three-term hierarchy

Let W (x, q; t) ' W2(x, q; t), where W2(x, q; t) ≡ W2 contains all contributions up to and including order h̄2, but
disregards corrections of order h̄n

′′

, n′′ ≥ 3. Accordingly, and based upon [19,20], by keeping up to and including order
h̄2 but no more, we shall approximate Eq. (19) as:

∂W2
∂t
= −

q
m
∂W2
∂x
+
dV
dx
∂W2
∂q
−
h̄2

3!22
d3V
dx3

∂3W2
∂q3

. (36)

If the h̄2 contribution (namely, (h̄2 /(3!22)(d3V/dx3)(∂3W2/∂q3)) is neglected, Eq. (36) becomes the classical Liouville
equation (2) withW2 = Wc (and q = p).
By using Hx,2,n(q/qeq), we shall introduce the followingmomentsW2,n (n = 0, 1, 2, . . .) of the quantumWigner function

W2 regarding the q-dependence:

W2,n = W2,n(x; t) =
∫
dq
Hx,2,n(q/qeq)
Nn(x)

W2(x, q; t). (37)

One has the following expansion forW2:

W2 = Weq,2(x, q)
+∞∑
n=0

W2,n(x; t)
Hx,2,n(q/qeq)
Nn(x)

. (38)

ForW2 = Weq,2(x, q), Eq. (37) yieldsWeq,2,n = 0 if n > 0, andWeq,2,0 = N0(x) if n = 0.
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Eq. (37), (36), (33) and (34) imply, through some lengthy algebra, the following infinite reversible three-term linear
recurrence relation or hierarchy for all NnW2,n’s (n = 0, 1, 2, . . . ,N−1W2,−1 ≡ 0, a2 = a2(x), bn = bn(x)):

∂(NnW2,n)
∂t

= −Mn,n+1Nn+1W2,n+1 −Mn,n−1Nn−1W2,n−1 (39)

Mn,n+1Nn+1W2,n+1 ≡
qeq
2m

∂(Nn+1W2,n+1)
∂x

(40)

Mn,n−1Nn−1W2,n−1 ≡
qeqn
m

∂((1+ 4a2)Nn−1W2,n−1)
∂x

+

[
2n
qeq

dV
dx
+
qeq
2m
dbn
dx

]
Nn−1W2,n−1. (41)

Undesirable contributions proportional toW2,n−3 (with x-dependent coefficients) arise from−(q/m)(∂W2/∂x) and from the
quantum correction (d3V/dx3)(∂3W2/∂q3). Fortunately, by using (23), (30) and (32), the two coefficients cancel out with
each other, so that the overall contribution ofW2,n−3 vanishes exactly. This is a consequence of the use of the newmoments
(37) involving the Hx,2,n’s.
The initial quantum density operator is ρin at t = 0 which, through (18), yieldsWin. The initial condition NnWin,2,n for

the recurrence (39) is obtained by replacingW2 byWin in (37) and retaining contributions up to order h̄2. In the classical
limit, a2 = 0, bn = 0 NnW2,n → (π1/22nn!)1/2Wc,n. One sees easily that Eq. (39) becomes Eq. (5).
The moments ofWeq,2, (that is,W2,0 = Weq,2,0 = N0(x) andW2,n = Weq,2,n = 0 for n = 1, 2, . . .) yield a t-independent

solution of Eq. (39).

5.2. Long-time approximations for three-term hierarchy

By extending the reduction of the Laplace transform of (5) to (10), the Laplace transform of (39) can also be transformed
into another three-term hierarchy, which can be formally solved, by extending the procedures in Section 2, in terms of
new infinite continued fractions of linear operators. The latter are more difficult to analyze than (13), due to the quantum
corrections. Arguments aimed to give a more precise sense to the new infinite continued fractions are rather involved, and
we shall omit them. It seems plausible that the classical arguments (leading to (14)) in Section 2 may, at least, give a useful
hint when first quantum corrections are included (for adequately small β and h̄).
In the simplest case, n = 1, we shall accept the approximate validity, for a long time, of:

N1W2,1 ' −
m
γ1
M1,0N0W2,0 (42)

γ1 being a real positive constant. (42) is some approximate counterpart, including first quantum corrections, of the inverse
Laplace transform of (14), and its physical consistency will be confirmed below. By introducing (42) into (39) for n = 0, the
resulting (irreversible) Smoluchowski equation for the distribution function N0W2,0 is:

∂N0W2,0
∂t

=
1
βγ1

∂

∂x

[
∂

∂x
((1+ 4a2)N0W2,0)+ β

dV
dx
N0W2,0

]
(43)

with the initial condition N0Win,2,0 at t = 0. Thus, the long-time approximations in (42), without having assumed friction
effects from the outset, have led to the Smoluchowski equation with first quantum corrections displayed in (43). An
interesting check of consistency, a posteriori, is that (43) coincides with the Smoluchowski equation (also including first
quantum corrections) obtained in [9] through a different procedure (involving ab initio friction effects). Again, the positive
constant γ1 in (43) plays the same role as the friction coefficient in [9].W2,0 = Weq,2,0 yields the t-independent solution of
Eq. (43).
Next, let n0 = 2, and approximate:

N2W2,2 ' −
m
γ2
M2,1N1W2,1 (44)

γ2 being a real positive constant. We replace (44) in Eq. (39) for n = 1. One finds:

∂N1W2,1
∂t

=
qeqγ2
2

∂

∂x
(M2,1N1W2,1)−M1,0N0W2,0 (45)

togetherwith Eq. (39) for n = 0. Now, the initial condition is obtained fromWin,2,n, n = 0, 1, at t = 0.Weq,2,0 andWeq,2,1 = 0
yield the t-independent solution of the set formed by (45) and (39) for n = 0.
The solutions of the above two simpler approximate closed hierarchies (namely, either (43) or (45) together with (39) for

n = 0) relax irreversibly, for t � 0 and any reasonableWin,2,n, towards the t-independent solutions, discussed above. This
can be interpreted as the approximate irreversible evolution of the Brownian particle towards thermal equilibriumwith the
‘‘heat bath’’ for long time, with first quantum corrections included.
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6. Conclusions and discussions

New results have been reported for the dynamics of a quantum Brownian particle in a ‘‘heat bath’’ and an external
potential, including the first quantum corrections. We have not assumed ab initio friction effects on the particle. Rather,
we have extended methods previously reported for closed systems and for a classical Brownian particle [5,6], which yield
approximate irreversible thermalization for a long time. For that purpose, using the equilibrium distribution as a weight
function, we have introduced and analyzed a new family of orthogonal polynomials (the Hx,2,n(q/qeq)’s), which generalize
the Hermite ones, and employed them to define new moments of the nonequilibrium distribution function. The standard
Smoluchowski equations are recovered consistently for the lowest order moment, classically and quantum-mechanically. A
possible applicability of the Hx,2,n(q/qeq)’s for quantum Brownian motion, when one includes a friction mechanism due to
the ‘‘heat bath’’ from the outset, lies outside our scope here.
The following remarks (or, more properly, open questions) seem in order:

(a) The very fact that the Hx,2,n(q/qeq)’s fulfill the three-term recurrence relation (34) suggest that general techniques [25]
could be applied to characterize the distributions of their zeroes. Such an analysis, as well as those of other properties
of the Hx,2,n(q/qeq)’s, lie outside our scope here.

(b) The stationary states of the quantum-mechanical harmonic oscillator have information entropies, which are related to
entropies involving the Hermite polynomials [26,27]. One could ask whether the Hermite polynomials and the above
generalizations (including the first quantum corrections) and the associated moments are related to some information
entropy in the actual Brownian motion framework.

From the contributions of orders h̄2 and h̄4 [19], it seems natural to infer that, to all orders in h̄2, Weq(x, q) can also be
expressed as a series in Hermite polynomials H2n of even order:

Weq(x, q) = Wc,eq
+∞∑
n=0

an(x)H2n(q/qeq). (46)

In turn, the coefficients an(x) are power series in h̄2, which depend on derivatives of V (x) and on β . By generalizing what
has been done in this work with the family of orthogonal polynomials Hx,2,n(q/qeq) forWeq,2, it could also be interesting to
introduce the family of all orthogonal polynomials in q which have Weq(x, q), given by the infinite series (46) (including
all orders in h̄2) as weight function, provided that one also integrates in −∞ < q < +∞) and leaves x unintegrated. It is
implicitly supposed that β and h̄ are sufficiently small (and derivatives of V adequately smooth) for Weq(x, q) to be non-
negative for any x and q. We denote those generalized polynomials as Hx,n(q/qeq), n = 0, 1, 2, 3, . . . . Hx,n(q/qeq) depend
parametrically on x, β and h̄. Then, for n 6= n′ and any x:∫

dqWeq(x, q)Hx,n(q/qeq)Hx,n′(q/qeq) = 0. (47)

By using the Hx,n(q/qeq)’s in order to define new moments (by generalizing (37)), Eq. (19) could be reduced to an exact
linear recurrence relation for the new moments. All these also lie outside our scope here.
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