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Abstract 

This article investigates the cohomology of a finite group relative to a collection of sub- 
groups. In particular a new spectral sequence abutting to relative cohomology is given and is 
used to deduce that relative cohomology has polynomial growth. 

1. Introduction 

In the following all groups will be assumed finite. 

Between 1964 and 1965 Snapper defined the cohomology of a group relative to 

permutation of that group [S-9]. In [9] he used this cohomology theory to give 

a proof of the Frobenius theorem. Later Harris simplified many of his proofs by 

defining the cohomology of a group relative to a collection of subgroups of that group 

[4]. The cohomology of a group relative to a permutation representation is then 

realized as the cohomology relative to the collection of stabiliser subgroups of the 

permutation representation. 

In [3] Blowers discussed a relatively projective resolution of a field k for the join of 

two permutation representations. Given two permutation representations (G, X) and 

(L, Y) their join, denoted (G, X) *(L, Y), is given by the permutation representation 

(G x L, X LI Y) with the natural action of G x L on X LI Y. Alternatively if XI and yi”z 

are the stabiliser subgroups of (G, X) and (L, Y) respectively then Blowers’ resolution 

is relatively projective for the stabiliser set {G x Hz, HI x LI Hi E pi} Using this 

resolution he gave examples of relative cohomology rings in which all of the cup 

products are zero. 

* This material is based upon work supported under a National Science Foundation Graduate 
Fellowship. 

0022.4049/94/$07.00 ~0 Elsevier Science B.V. All rights reserved 
SSDI 0022-4049(93)EOl 17-M 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82381649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 D.G. Brown~Journal of Purr and Applied Algebra 97 ( 1994) I 13 

In this paper I will generalize Blowers resolution to the situation of a single group 

G with two collections of subgroups. The resolution will be relatively projective for the 

union of the two collections. Then I will use it to derive a spectral sequence abutting to 

relative cohomology which gives some insight into the structure of the relative 

cohomology ring under cup product. In particular it immediately gives Blowers’ 

results on cup products. As an application of this spectral sequence I will also prove 

that the relative cohomology ring has polynomial growth. 

If M is an RG module and H I G then M 1 I, will denote the restriction of M to an 

RH module. Likewise if N is an RH module for then N 7 ’ will denote the induced 

module. All modules will be assumed to be finitely generated. 

2. Relative cohomology 

Given H < G recall the definition of a relatively H projective module. 

Definition 2.1. An RG module M is said to be relatively H projective if whenever we 

are given modules M, and MZ, RG module maps /1: M --f Ml, and p : M2 + Ml, 

p a surjection such that there exists a map v: M + M2 of RH modules with p 0 v = 2 as 

RH module maps then there exists a map of RG modules v’: M -+ M2 with i = ,u~v’. 

A short exact sequence is said to be H split if it splits on restriction to H. 

An RG module M is said to be relatively 2 projective for a collection of subgroups 

SC’ of G if each direct summand of M is a relatively H projective module for some 

H E A?. A short exact sequence is said to be SF’ split if it splits on restriction to all 

subgroups H E 2’. 

A contracting H homotopy of an RG module chain complex is an RH module map 

of degree + 1 which is a contracting homotopy on the restriction of the chain 

complex to H. A contracting Y? homotopy is a collection of contracting 

H homotopies one for each H E 2. If a contracting ~9 homotopy of a resolution 

X exists we say that X is Z’ split. 

Definition 2.2. A relatively SF projective resolution of an RG module M is a long exact 

sequence X, 

. . . I:x,i:x,ifx,, 

of RG modules such that 

(i) X,/Im(3,) z M, 

(ii) each Xi is relatively .% projective, 

(iii) X is 2 split. 
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Remarks. (i) Since OH EXI M 1 H r ’ + M is always Z split, relatively Z projective 

resolutions always exist. 

(ii) Since an RG module N is relatively Z projective if its indecomposable sum- 

mands are relatively H projective for some HE 2’ but there is not necessarily 

a summand for every H E Z, relatively 2 projective resolutions depend only on the 

maximal non-conjugate subgroups H contained in 2 and not on all of the subgroups. 

To make this a useful construction we need the following theorem. 

Theorem 2.3 (The relative comparison theorem). Given a map ofmodules M + M’ and 

relatively 2 projective resolutions X and x’ of M and M’ respectively, we can extend to 

a map of chain complexes { fn} : X, + XL and given any two such maps, { fn} and { ,f,‘$ 

there is a contracting chain homotopy h,: X, -+ Xk+ 1 such that fn - fi = 
d n+l"hn + h,+,O&. 0 

As in the proof of the non-relative comparison theorem the proof of the relative 

comparison theorem only depends upon the relative projectivity of the X, and the 

2 splitting of 3Y’. This gives us enough machinery to set up relative 2 cohomology. If 

M’ is an RG module and 

. . sxx,I:x,Ifx, 

is a relatively Z projective resolution of M, define 

Ext”c.Ju(M, M’) = H”(Hom,c(.Y, M’), 6*) 

and the relative Z cohomology of G 

H”(%‘; G, M) = Ext;;,,(R, M). 

As in the non-relative case we can define cup product in the usual way via 

a diagonal map. This gives a associative graded commutative multiplication, 

Ext’$,(M’, M”) x Ext”cJM, M’) -+ Ext;+$(M, M”). 

For more information about relative cohomology and cup products see [4-61. 

3. Two relatively projective resolutions 

Assume from now that R is a hereditary ring of coefficients. 

For the following let %? be a relatively yi” projective resolution of MI with 

boundary map 6,-, and 9 be a relatively ,yi”z projective resolution of M2 with 

differential do where %‘i and x2 are collection of subgroups of a group G and MI 

and M2 are RG modules. Assume also that %‘i and Z2 are closed under conjugation 



and use E to denote the augmentations for both %Y and 9. To prove the relative 

projectivity of the resolutions we need the following: 

Lemma 3.1. If M is a relatively 2, projective module and N is a relatively yi”z 

projective module then M @ N is a relatively 2 = {XI n”H, 1 HI E ;ri”l, 

H, E .%f2, y E G} projective module. 

Proof. Use Mackey’s tensor product theorem. 0 

Proposition 3.2. If 2 = {H, ngH21H,~Xl, H,,EX~,~EG~ tken%@Oiisarela- 

tively 2 projective resolution of Ml @ MZ. 

Proof. By the above lemma %? @ 9 is an exact sequence of relatively 2 projective 

modules and as in the group cohomology case, Q? @ 9 resolves M, @ MZ. What 

remains to be shown is that ‘?Z @ 9 is X split. Let HI E Y?‘~, H2 E ,yi”z (as yi”z can be 

assumed to be closed under conjugation we can allow y = 1). We know that ‘47 @ M2 

is HI homotopy equivalent to Ml @ M z and likewise V@ 9 is H2 homotopy 

equivalent to %? @ MI. Therefore 92 @ 9 is H, n Hz homotopy equivalent to 

MI @ M2 or equivalently %’ @ 9 is HI n H2 split. 0 

The second resolution is a generalization of a resolution of Blowers. Given 

an augmented chain complex X over M let s(X) denote the suspension of 3 

with ~(57)~ = M. Define the join of two augmented chain complexes 5Y and g/, 

written X*g, by s(%*?V) = s(X)@ s(g). Notice for ?Z and 9 as above we can write 

%?*9 as 

for n > 0. I will use the sign convention a(ci @ dj) = 6cci @ dj + ( - 1)” ’ Ci 63 cS,dj for 

ci @ dj E Ci @ Dj. Elements of Mi are considered as having degree - 1. 

Proposition 3.3. %?*6B is a relatively 2 = yi”l u X2 projective resolution of Ml @ M,. 

Proof. (The following is a generalization of the proof of Blowers result 133.) 

%?*9 is an exact sequence resolving Ml @ M2. The relative projectivity follows 

from the fact that if U is an RH module and V is an RG module then 

(UTG@I’)~(U@VJH)TC.Th f ere ore we only need to show that %?*9 is SF’ split. 

Let 3 E -yi”l and let t be contracting H homotopy of %? and denote by t’ the 

suspended H homotopy of SW. We shall prove that t’ @ 1 is a contracting H homotopy 
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of s%’ @ ~$3. By abuse of notation refer to Ml as C- 1, M2 as D_ 1 and the augmenta- 

tion maps by 6, and 6, respectively. If ci @ dj E Vi 0 Dj then 

13(t’ @ l)(ci @ dj) = 8(tci @ dj) 

= 6ctci 0 dj + ( - 1)i+2tci 0 6,dj, 

(t’ 0 1) d(ci @ dj) = (t’@ 1)(6cci 0 dj + ( - l)‘+ ‘ci 0 6,dj) 

= t~cci 0 dj + ( - l)‘+ ’ tci 0 S,dj, 

(a(t’ @ 1) + (t’ @ 1) a)(ci 0 dj) = tScci @ dj + fictci @ dj 

=ci@dj. 

Lowering dimension by one gives a contracting H homotopy of %?*9. The case 

H E X2 is similar with more care necessary when choosing signs. 0 

4. A spectral sequence 

In the previous section we described Blowers’ construction for the join of two 

relatively projective resolutions. In this section we will investigate the spectral se- 

quence arising from this in a natural way and reprove Blowers result on the join of 

two permutation representations using it. Let %? be a relatively S1 projective of R with 

boundary map & and 9 be a relatively z-P2 projective resolution of R with boundary 

map dD. E will denote the augmentations for both V and $3. Let 2 = Pi u Z2. Recall 

that for n # 0 we have 

(W*S), = ce, 0 GSn 0 $6 0 9)n. 

Looking carefully at the boundary map 8 on (%‘*S), we see that for c, E %‘,,, 

d(G) = &c,, 

for d, E D,, 

a(d,) = dDd,> 

and the differential on ci @ dj E Ci @ Dj is 

ScCi 0 dj + ( - 1)” ’ Ci 0 6,dj, i # 0, j # 0, 

a(ci 0 dj) = 
EcOdj - Cg 0 6,dj, i = 0, j # 0, 

&xi @ d,, + ( - l)‘+ ’ EdOci, i # 0, j = 0, 

&cod0 - Edoco, i = 0, j = 0, 

dc(ci @ dj) = 
i 

0, .i # 0, 
( _ l)i+ 1 &.doCir j = 0 
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and 

dD(Ci 0 dj) = 

0, i # 0, 
ccodj, i=O 

respectively. Notice that these are chain maps from V @ 9 -+ %? and %? 0 9 -+ 23 

respectively each extending the identity on R (with a nonstandard sign convention on 

+Z @ 9). This allows us to rewrite the differential on s(%?@ L7), as 

a(~, 0 dj) = 6,0~,,, (Ci 0 dj) + dc(ci 0 dj) + dD(ci 0 dj). 

Therefore we can write %?*9 as the total complex of the double complex 

Taking Horn’s we have a double complex spectral sequence abutting to relative 

cohomology with zero page: 

E?g = Hom,,(C, @ D,, M), 

EA3q = HomRG(sW 0 s),+ 1, M), 

Eeq = 0 for p # 0 and p # 1, 

I (6, + a,)* I &+I,@“, 
(4 + d,)* I 

Hom,,(Cz 0 D2, M) - Hom,,(s(C@ D)3, M)+0 ... 

1 
(6, + 6,)* 

I 
6* ,I( @II, 

W,- + d,)* I 

HomRG(C1 ODl, Ml-- Hom,,(s(C@ D)z, M)-0 ... 

I 
(& + 6,)* G,~,,~, 

(4 + dn)* I I 
HonAG 0 Do, W -Hom,c(s(C@D),, M)-0 ... 
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We define X = {Hi n gH2 I H, E ,yi”, H2 E iyio, g E G}, and by taking the vertical 

cohomology we calculate the El page: 

EySq = Hq(Xl; G, M) 0 Hq(X2; G, M), 

E;vq = Hq(X; G, M), 

Ey” = 0 for p # 0 and p # 1, 

H’(S,; G, M) @ H2(Z2; G, M) 
(4 + d,d* 
- HZ&%-; G, M)-0 

H”(s’f’l; G, M) @ H”(X2; G, M) ‘d, Ho&f; G, M)-0 

As this spectra1 sequence has just two columns we have that E, g E,. Calculating 

H*(Z; G, M) requires the understanding of H*(~i; G, M) for i both one and two, 

H* (Xx; G, M) and the map between them. 

Firstly we will investigate the maps ds and dT, in the case M g R. 

Lemma 4.1. d: and dz are algebra homomorphisms when M z R 

Proof. I will just prove the result for d,*. We want to show 

where u denotes cup product in both algebras. Let &E Horn&C,,, R) and 

FE Hom,,(C,, R) represent elements CI E H”(Zl; G, R) and fl E H”(Zl; G, R) respec- 

tively. Also allow dc and dD be diagonal maps for % and 9 respectively. A diagonal 

map for %? 0 9 with the shifted sign convention is given by - Y(dc 0 dD) where 

Y shuffles the middle two factors with a sign determined by their degrees. Thus for 

ci E Ci and dj E Dj, 

d,*(C( U /?)(Ci 0 dj) = d~(dc*(~ 0 /J))(Ci 0 dj). 

This is zero unless i = n + m and j = 0 in which case 

4% u MC+, 0 4) = A’*(& 0 PM+,+, 0 4)) 

=( _ 1)n+m+i 4&)(210 &~%,+,,J. 

On the other hand, 

(d,*(a) U d:(p))(Ci 0 dj) = - (d,*~ 0 dc?Ig) Y(d’Ci 0 dDdj). 
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But d,*(u) and d,*(p) are zero except on C, @ DO and C, @ DO respectively. Hence 

(d,*(x) u d:(/l))(ci @ dj) = 0 unless i = n + m and j = 0. In this case, 

(4%) u d;(B))(Cn+m 0 4) = - (4% 0 dc*fi)V&,,cn+m 0 At.0 4,) 

=( _ 1)n+m+i (a 0 a)(&,&,)@ 0 P)(&,,c,+,) 

=( _ 1)n+m+r s(&)(~ 0 iktcc,+,). 0 

For more general modules M these arguments can be extended to show that d,* and 

dz are H*(%‘,; G, R) and H*(&?,; G, R) module maps respectively where the algebra 

actions are induced by dz and dz respectively. This means that in order to calculate 

the E2 page of this spectral sequence it is enough to understand what the horizontal 

differential does to the generators in the zeroth column. 

The last part of this section will be devoted to investigating the cup product in 

relation to this spectral sequence in the case M E R. Since the horizontal differential is 

not a derivation the cup product will not induce a ring structure on the E0 page of this 

spectral sequence. The cup product is, however, computable in this spectral sequence. 

The following is an explicit diagonal map given by Blowers for %?*9 based on the 

diagonal maps for %5 and 9. As above let AC, and AD be diagonal maps for %’ and 

9 respectively. Define 

to be the map which shuffles the middle factors with a sign determined by their 

suspended degrees, and let 1 denote the unit in R g (sU), E (~$9)~. Then a diagonal 

map for %?* 9 is given by 

An = c A,,,, 
p+q=n 

Ap.&*ds) = 
WA;,,-pk.)) 0 (1 0 d,)), P I r, 

~(6~ 0 1) 0 (A:-,- ,,,M))), P > r. 

With this diagonal map we can explicitly calculate the product structure on 

H*(&?;G, R) from the product structures on H*(Xi; G, R), H*(X2; G, R) and 

H*(X; G, R). 

Theorem 4.2. Given ~17~2 E ff*(S,; G, R), PI $2 E ff*(X2; G, RI, and 

y1,y2 E H*(X; G, R) such that czi and Bi are of the same degree and 

(d: + dz)(ai + pi) = 0 (i.e. Cli + Bi is u cocycle), then: 

(Ml + Pl + 71) u (a2 + P2 + 72) 

= MI UC Cf2 + pl uDp2 + (- l)deg(al)+l d%, uymcs 72 + YI u vg,diB2, 

where u, uc, uD, and uyB9 represent the cup products in H*(X; G, R), 

H*(X,; G, R), H*(X2; G, R) and H*(X; G, R) respectively and the cocycles written on 

the right are extended by zero so as to he defined on all of %*9. 
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Proof. Since the cup product is graded commutative we only need to check the 

following: 

El u B2 = 0, 

‘J1u’/2=0, 

a, v a2 = a, WC a2, 

(a, + /11)uy2 = (- l)deg(~~‘+1&& U,@,.Y,. 

The identity a, u /?r = 0 follows as the image of the diagonal map A is never in 

(U @ R) @ (R @ 9). Likewise since the image is always in either (%? @ R) @ (%?*9) or 

(%7*9)@(R@9)wehavey,uy2=0. 

To prove the first nontrivial identity let B1 E HomRC(%?,,, R) and cZ E Hom,,(C,,,, R) 
represent CI~ and t12 respectively. For ci E Ci and dj E Dj: 

(a1 U az)(Ci*dj) = A*(21 0 &z)(ci*dj) 

But B, @$ k2 will be nonzero only when i = n + m and j = - 1 (here we abuse 

notation as before and think of D_ 1 z R). Thus 

(MI u ~2)(C,+m *I) = (5, 0 ~2)(W44c,+,, 0 (1 0 1))) 

= (2, 0 ~2)(Acc,+,) 

= (El UC ~z)(cn+m). 

To prove (a, + pl)uy2 = ( - l)deg(al)fl d:a, LJ~,,~~~ we will use the standard 

resolutions for V and 9. Namely %7” = RX”+’ where (G, X) is a permutation repres- 

entation associated to x1 and D, = R Y ,,‘+ ’ where (G, Y) is a permutation repres- 

entation associated to x2 (See [S] for more details of this construction). In particular 

the diagonal maps for % and 9 are the Alexander-Whitney maps, 

A’(% ,...,Xn)= i (XO,...rXi)O(Xj,,..,Xn), 

i=O 

and likewise for 9. 

Let 9 E Hom,,((V 0 9),_ 1, R), 2 E HomRG(Cn, R), and fl E Horn&D,, R) repres- 

ent elements y E N”-‘(XX; G, R), a E H”(Z’l; G, R), and /I E H”(Z2; G, R) such that 

(d~+d~)(~+~)=O.On~~RandR~D,(a+~)uy=Oandd~cruygO~~=Oso 

weneedtocomparevaluesforc*donlywherec=(~~,...,c~)EC~,d=(do,...,d~)ED~, 

i+j=n+m- l,andi,j# -1. 

((a+B)uY)(c*d)=((&+~)Oi) A,,&*4 
p+q=n+m- 1 > 
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As & + p^ is only nonzero on C, @ R and R @ D, we have that the cup product is 

zero unless p = n 5 i. Assume for the following that p = n I i in which case 

((~+B)uY)(c*d)=((B+B)O3)(d,,,~I(c*d)) 

= ((B + [) 0 S)(y’(d:,im,c 0 (1 od))) 

= ((2 + /r) 0 9)((%, . . . . c,) 0 1 0 (c,, . . . . Ci) 0 4 

= &(CO, . . .) Cfi) ’ y*(C,, . . .) Ci) 0 d). 

On the other hand, let Y: (V? 0 %‘) @ (9 @ 9) + (%? @ 9) 0 (%? @ 3) be the map as 

before which shuffles the middle factors with a sign determined by their degrees. As 

i,j # - 1 we can regard c*d as an element of s(g @ 9) and shall denote it by c 0 d. Thus: 

(&cc u W@&(C @ d) = - (&a 0 3)(Y(dCc 0 dDd). 

But (dF& 0 3) is nonzero only on (‘Zn 0~3~) 0 (g 0 9)m_l which implies that 

(d$x u Mo9y)(c 0 d) = 0 u nl ess p = n I i and q = 0 in which case 

(@ru,Bgy)(cOd)= -(d~BO~)((c,,...,c,)O(d,)O(c,,...,ci)Od) 

=( - l)“f’ &(do)B(c,, .) CR). ?((c,, . .) Ci) @ d) 

= (- l)“+‘((cc + ,Quy)(c*d). 

As an application of this spectral sequence, given two permutation representations 

(G, X) and (L, Y) define their join as (G, X)*(L, Y) = (G x L, XII Y). If Si and x2 

denote the collection of stabilisers for (G x L, X) and (G x L, Y) respectively then 

2 = &?‘i u Ye, is the collection of stabilisers for their join. 

Theorem 4.3 (Blowers). Zf (G, X) and (L, Y) are permutation representations and if 

cc,/l~H*(~;GxL,R)witkdegr>Oanddeg~>Otkenccu~=0. 

Proof. Define x = (H, n gH2 1 H, E yi”, H, E yioz, q E G}. Via the Kiinneth Theorem, 

H”(X; G x L, R) 2 @ H’(Pl; Gx L, R) 0 H’(X2; G x L, R), 
i+j=n 

and as L is a normal subgroup of G x L we have 

Hi(Sl; G x L, R) z Hi@?‘“,; G, R), 

where we abuse notation and use ;ri”l to denote the stabilisers for (G, X). The El page 

of the spectral sequence is therefore 

EY,” = H”(Xl; G, R) @ H”(Z?‘2; L, R), 

E ;*” = @ Hi(Sl; G, R) @ Hi(s’f2; L, R), 
i+j=n 

Ey,” = 0 for p > 1. 
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For n > 0 the map from Ey-” + Ey-” IS just the obvious injection and therefore the 

E2 page has nonzero entries in EiSo and in the first column. Therefore all cup products 

are trivial. 0 

5. Polynomial growth of H”(S; G, M) 

In this section let k be a field of characteristic p. 

As shown by the above example the relative cohomology ring of a group is no 

longer necessarily finitely generated as it is in the non-relative case. The following says 

that the dimension of H”(Z’; G, M) grows polynomially as a function of n. 

Theorem 5.1. Given M afinitely generated kG module, there exists a polynomial f such 

that 

dimk H”(X; G, M) <f(n) for all n 2 0. 

In this situation we will say that H*(P;G, M) has polynomial growth. 

To prove the theorem first we reduce as in the non-relative case to the Sylow 

p-subgroups of G and then proceed by triple induction: first on the order of the 

p-group, secondly on the order of the largest subgroup in Z’ and lastly on the number 

of classes of non-conjugate maxima1 subgroups in X0. As we are only trying to prove 

polynomial growth we only need to exhibit a spectral sequence abutting to the relative 

cohomology which has a page whose total complex has polynomial growth. 

Proof. First we reduce to the Sylow p subgroup of G. To do so we use a Corollary of 

Snapper [.5]. 

Corollary 5.2. Let M be a kG module, K a subgroup of G, and .X a collection of 

subgroups of G. Then 

Tr,,c resC,K : H”(A?‘; G, M) + H”(X’; G, M) 

consists of multiplying the elements of H”(&‘; G, M) by the index IG: K 1 for all n. In 

particular for a E H”(2; G, M) with n > 0, 1 GI. a = 0. 

Proof. Here TrK,C is seen as a map from H”({K n gH I H E 2, g E G}, (K, M) to 

H”(X’, G, M) and the proof is the same as in the non-relative case. 0 

Define 

H+(2; G, M) = @H”(P; G, M). 
n>O 
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Snapper’s result implies for any element M E H+ (%; G, M), 1 Cl. CI = 0. Therefore set 

I!+(&‘; G, M),,, to consist of all elements of H+(X; G, A4) annihilated by a power ofp, 

H+(Z; G, M) = @ H+(s’if; G, M)(,,. 
pprime 

Also, as a corollary of Snapper’s result 

resG,P. .H+(~;G,M)(p,~H*({gHnPIHE~,gEG};P,M) 

is injective for P a Sylow p-subgroup of G. 

Now we may assume that G is a p group and we will use induction on its order. The 

case 1 GI = p is already proved because there are no non-trivial subgroups and 

therefore the relative group cohomology is either trivial or just ordinary group 

cohomology. 

Assume by induction that we have polynomial growth for all p groups of order less 

than p” and for arbitrary collections of subgroups of such a p group. This means that 

for any p group G, j GI < p” and 2 a collection of subgroups of G there exists 

a polynomial f such that 

dim,H”(X; G, M) <f(n), 

To prove the general result we will use induction first on the order of the largest 

subgroup in the collection 2 and then on the number of classes of maximal 

non-conjugate subgroups. 

First assume that the largest subgroup in the collection 2 is of order p and that 

there is only one class of maximal subgroups in 2 with representative H. Let N be 

a maximal normal subgroup of G which contains H. The extension 

l+N+G+GIN+l 

gives a Lyndon-Hochschild-Serre spectral sequence with 

I$’ % H*(C,, H*(X; N, M)) 

where C, is the cyclic group of order p and X = {gH n N 1 g E G} is the collection of 

subgroups, 2, restricted to N. Notice this collection will in general have more than 

one class of non-conjugate maximal subgroups (see [S] for more details of this 

spectral sequence). As 1 N 1 < p” we know that H*(X; N, M) has polynomial growth. 

This implies that H*(C,, Z*(X; N, M)) has polynomial growth. Therefore we have 

a spectral sequence whose total complex on the E2 page has polynomial growth which 

implies that H*(H; G, M) has polynomial growth. 

Continuing with the case that the largest subgroup in 2’ has order p, assume that if 

X has less than m classes of non-conjugate maximal subgroups than H*(A?‘; G, M) 

has polynomial growth. Let 2’ have m classes of maximal subgroups with representat- 

ives Hi for 1 5 i I n. Let X’r = {H,) and P2 = {H,,...,H,j. Then the spectral 



D.G. Brown,lJournal of’ Pure and Applird AI&wa 97 (1994) I- 13 13 

sequence from the previous section has El page 

E’i)3q = Hq(ri”,; G, M) @ Hq(X2; G, M), 

E;-q = Hq(G, M), 

Eysq = 0 for p > 1. 

As each column has polynomial growth we can bound the dimension of the total 

complex by a polynomial which implies H*(X’; G, M) has polynomial growth. 

By induction if the order of the largest subgroup in 2 is less than p” then assume we 

have polynomial growth. The case when there is only one conjugacy class of maximal 

subgroups in 35 with representative of order p” is proved using a LyndonHoch- 

schild-Serre spectral sequence exactly as it was when that subgroup had order p. 

Finally assume that 2’ has m conjugacy classes of maximal subgroups and the 

maximal order of a subgroup in Z is p”. Let Hi for 1 I i I n be representatives of 

the classes and assume HI has order p”. As above define XI = {H, } and 

s2 = {H,, . . ., H,}. Then, the spectral sequence from the previous section has an El 

page 

Ey,q = Hq(c%?l; G, M) @ Hq(sF2; G, M), 

Ey3’ = 0 for p > 1. 

Again as each column has polynomial growth, H*(X’; G, M) has polynomial 

growth. 0 
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