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Bisphenol A (BPA) and phthalates are endocrine disruptors possibly linked to adverse reproductive and
neurodevelopmental outcomes. These chemicals have commonly beenmeasured in urine in population surveys;
however, such data are limited for large populations of pregnant women, especially for the critical first trimester
of pregnancy. The aimof the studywas tomeasure BPA and phthalatemetabolites infirst trimester urine samples
collected in a large national-scale pregnancy cohort study and to identify major predictors of exposure. Approx-
imately 2000womenwere recruited in the first trimester of pregnancy from ten sites across Canada. A question-
naire was administered to obtain demographic and socio-economic data on participants and a spot urine sample
was collected and analyzed for total BPA (GC–MS/MS) and 11 phthalatemetabolites (LC–MS/MS). The geometric
mean (GM)maternal urinary concentration of total BPA, uncorrected for specific gravity, was 0.80 (95% CI 0.76–
0.85) μg/L. Almost 88% of the women had detectable urinary concentrations of BPA. An analysis of urinary con-
centrations of BPA by maternal characteristics with specific gravity as a covariate in the linear model showed
that the geometric mean concentrations: (1) decreasedwith increasing maternal age, (2) were higher in current
smokers or women who quit during pregnancy compared to never smokers, and (3) tended to be higher in
women who provided a fasting urine sample and who were born in Canada, and had lower incomes and educa-
tion. Several of the phthalate metabolites analyzed were not prevalent in this population (MCHP, MMP, MiNP,
MOP), with percentages detectable at less than 15%. The phthalate metabolites with the highest measured con-
centrations were MEP (GM: 32.02 μg/L) and MnBP (GM: 11.59 μg/L). MBzP urinary concentrations decreased
with maternal age but did not differ by time of urine collection; whereas the DEHP metabolites tended to be
higher in older women and when the urine was collected later in the day. This study provides the first biomon-
itoring results for the largest population of pregnant women sampled in the first trimester of pregnancy. The
results indicate that exposure among this population of pregnant women to these chemicals is comparable to
or even lower than that observed in a Canadian national population-based survey.

Crown Copyright © 2014 Published by Elsevier Ltd. All rights reserved. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Phthalates are ubiquitous environmental contaminants resulting in
widespread exposure of the human population including pregnant
women. Phthalates are used in a variety of industrial, consumer and
personal care products. Reported use of personal care products, particu-
larly perfumes and fragranced products, nail polish and eye makeup,
on, Healthy Environments and
r., A.L. 0801A, Ottawa, ON K1A
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has been positively associated with urinary concentration of multiple
phthalate metabolites in women of reproductive age (Buckley et al.,
2012; Parlett et al., 2013) and in pregnant women (Braun et al., 2013;
Cantonwine et al., 2014). Phthalates may be present in U.S. foods
(Schecter et al., 2013) and in some medications and dietary supple-
ments (Kelley et al., 2012). There is concern that at least some
phthalates may be endocrine disruptors (De Coster and van Larebeke,
2012) and affect development and reproduction (Jurewicz and Hanke,
2011; Kay et al., 2013; Meeker, 2012). For example, prenatal exposure
to the phthalate metabolite MEHP (mono-(2-ethylhexyl) phthalate)
has been associatedwith higher occurrence of early first trimester preg-
nancy loss (Toft et al., 2012). Elevated maternal urinary concentrations
pen access article under the CC BY-NC-ND license
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of some phthalate metabolites have been associated with decreased
child mental and motor development and increased internalizing
behaviors (Whyatt et al., 2012) and decreases in the psychomotor
development index (Téllez-Rojo et al., 2013), especially in girls. Re-
duced anogenital distances in male infants, a potential early marker of
reproductive toxicity in humans, have also been observed (Suzuki
et al., 2012; Swan et al., 2005, 2008). The evidence for potential effects
on birth weight are conflicting with some studies noting no effects
(Philippat et al., 2012; Suzuki et al., 2010; Wolff et al., 2008) and one
study reporting an association between low birth weight and prenatal
exposure to di-n-butyl phthalate (Zhang et al., 2009). While several
studies (Adibi et al., 2009; Latini et al., 2003; Meeker et al., 2009;
Weinberger et al., 2014; Whyatt et al., 2009) have examined potential
risks of preterm delivery from phthalate exposure, the strongest
evidence comes from a recent large case–control study which reported
significant associations with MEHP, MECPP, and Σ DEHP metabolites
(Ferguson et al., 2014). A number of phthalate metabolites have been
identified andmeasured in urine, including both hydrolytic monoesters
and oxidized secondary metabolites that can be conjugated with glucu-
ronic acid and excreted in urine, with the extent of oxidation increasing
with the length of the alkyl chain of the phthalate monoester (Koch and
Calafat, 2009). Metabolite biomarkers for low (LMW), intermediate
(IMW) and high molecular weight (HMW) phthalates have been
measured (Table 1). The oxidized metabolites have a longer half-life of
elimination than the simple monoesters and tend to be excreted in
higher concentrations (Wittassek et al., 2011). Furthermore, identical
exposures to a DnBP (LMW) and a DEHP (HMW) phthalate at the
same time may lead to a 5- to 20-fold higher urinary excretion of
MnBP compared to MEHP and therefore the relative urinary concentra-
tions for the monoester metabolites do not necessarily correspond to
the exposure level for the parent phthalate (Wittassek et al., 2011).

Similar to phthalates, the general population, including pregnant
women can be exposed to bisphenol A (BPA) in their daily life. Exposure
sources include dental sealants (Kloukos et al., 2013), canned foods (Cao
et al., 2011) and beverages (Cao et al., 2010), polycarbonate water dis-
pensers (Makris et al., 2013), medical devices in neonatal intensive
care units (Duty et al., 2013), vinyl shower curtains and pillow protec-
tors, dish and laundry detergents, tub and tile cleaners, soaps, lotions,
shampoo, conditioners, shaving creams, nail polish, and sunscreen
(Dodson et al., 2012), paper currencies (Liao and Kannan, 2011), indoor
dust (Loganathan and Kannan, 2011), and thermal paper (Geens et al.,
2012). The potential toxicity of BPA has been widely studied due to its
ubiquitous nature (in Canada, approximately 90% of the population in
a national survey had detectable concentrations of BPA in their urine
(Bushnik et al., 2010)) and potential estrogenic activity (Alonso-
Magdalena et al., 2012). Elevated maternal urinary concentrations of
BPA have been associated with adverse effects on the infant and
Table 1
Phthalate metabolites measured in the MIREC study, their limits of detection and the correctio

Parent phthalate Abbreviation Metabolites

Low molecular weight
Di-n-butyl phthalate DnBP Mono-n-butyl phthalate
Diethyl phthalate DEP Mono-ethyl phthalate
Butyl benzyl phthalate BBzP Mono-benzyl phthalate
Dimethyl phthalate DMP Mono-methyl phthalate

Intermediate molecular weight
Di-cyclo-hexyl phthalate DCHP Mono-cyclo-hexyl phthalate

High molecular weight
Di-iso-nonyl phthalate DiNP Mono-isononyl phthalate
Di-n-octyl phthalate DnOP Mono-n-octyl phthalate

Mono-(3-carboxypropyl) phthalate
Di-(2-ethylhexyl) phthalate DEHP Mono-(2-ethylhexyl) phthalate

Mono-(2-ethyl-5-oxo-hexyl) phtha
Mono-(2-ethyl-5-hydroxy-hexyl) p

⁎ See Langlois et al. (2012, 2014).
young child, including increased risk of preterm delivery or shortened
gestational length (Cantonwine et al., 2010; Tang et al., 2013;
Weinberger et al., 2014), effects on anthropometric measures at birth
(Lee et al., 2014; Snijder et al., 2013) and at 4 years of age (Valvi et al.,
2013), adipokine levels in 9-year-old children (Volberg et al., 2013),
child wheeze (Spanier et al., 2012) and child behavior (Braun et al.,
2011a; Harley et al., 2013b; Perera et al., 2012).

Pregnant women are a unique population because of the behavioral
and physiological changes to the female body during pregnancy which
may potentially differentially affect their exposure to environmental
chemicals (Abduljalil et al., 2012; Moya et al., 2014). To date there is a
paucity of biomonitoring data on BPA and phthalate metabolites
published on large cohorts of pregnantwomen, especially during the bi-
ologically sensitive timewindow for infant development of the first tri-
mester. This paper addresses this major knowledge gap in a national-
level cohort of pregnant women recruited during the first trimester in
Canada.

2. Materials and methods

2.1. Study population

TheMaternal-Infant Research on Environmental Chemicals (MIREC)
study recruited 2000 women in the first trimester of pregnancy
(b14 weeks gestation) from obstetric and prenatal clinics in ten cities
across Canada. The goal was to recruit women that were generally
representative of the population of pregnant women in each study
area over a three year recruitment period (2008–2011). Eligibility
criteria included ability to consent and to communicate in English or
French, age 18 years or older, planning on delivering at a local hospital,
and agreeing to participate in the cord blood collection component of
theMIREC study.Womenwith amedical history of any of the following
were excluded from the study: major chronic disease, threatened abor-
tion, and illicit drug use. Details on the cohort have been previously re-
ported (Arbuckle et al., 2013). One of themajor objectives of the MIREC
study was to obtain national-level biomonitoring data on exposure of
pregnantwomen and their fetuses to environmental chemicals thought
to potentially contribute to adverse health effects.

The study was reviewed and approved by the Health Canada
Research Ethics Board and the ethics committees at the participating
hospitals and research centers across Canada. Potential participants
were provided with information on the objectives and design of the
study and asked to sign the consent forms.

Information from questionnaires and medical charts as well as
biological specimens was collected during each trimester and at deliv-
ery. Questionnaires were administered during the 1st trimester study
visit to collect information on the characteristics of the participants
n factor that was applied to compensate for inaccurate analytical standards.

Abbreviation Correction factor ⁎ Limit of detection (μg/L)

MnBP 0.53 0.20
MEP 0.98 0.50
MBzP 0.37 0.20
MMP 0.75 5.0

MCHP 0.99 0.20

MiNP 0.61 0.40
MnOP 1.12 0.70
MCPP 0.78 0.20
MEHP 0.71 0.20

late MEOHP 0.93 0.20
hthalate MEHHP 0.89 0.40
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(e.g., maternal age and education, household income, pre-pregnancy
bodymass index and smoking status) and the timing of the urine collec-
tion (i.e., time of day, season, minutes since last void).

2.2. Urine collection and analysis

First trimester urine samples were collected in 125 mL Nalgene®
containers (Thermo-Fisher Scientific Inc., Rochester NY, USA), aliquoted
into 30 mL Nalgene® containers, frozen at −20 °C within 2 h of
collection and shipped on dry ice to the MIREC coordinating center in
Montreal where they were stored at −30 °C. Urine samples were
shipped in batches to the Centre de Toxicologie du Québec, Institut na-
tional de Santé Publique duQuébec (INSPQ) for analysis. This laboratory
is accredited by the Standards Council of Canada under ISO 17025, the
international standard for technical competence and quality in all
areas of testing and calibration. Urine samples were analyzed for
bisphenol A (BPA) and 11 phthalate metabolites: mono-n-butyl phthal-
ate (MnBP); mono-ethyl phthalate (MEP); mono-benzyl phthalate
(MBzP); mono-methyl phthalate (MMP); mono-cyclo-hexyl phthalate
(MCHP); mono-isononyl phthalate (MiNP); mono-n-octyl phthalate
(MnOP); mono-(3-carboxypropyl) phthalate (MCPP); mono-(2-
ethylhexyl) phthalate (MEHP); mono-(2-ethyl-5-oxo-hexyl) phthalate
(MEOHP); and mono-(2-ethyl-5-hydroxy-hexyl) phthalate (MEHHP)
(Table 1).

For the measurement of urinary total BPA (free plus conjugated)
(INSPQ Method E-454), an enzymatic hydrolysis frees the conjugated
compounds in urine. The samples are then derivatized at 70 °C
(pentafluorobenzylation) for 2 h. Pentafluorinated benzyl derivatives
are extracted with a mixture of hexane and dichloromethane and ana-
lyzed by GC–MS/MS with a GC Agilent 6890 N (Agilent Technologies;
Mississauga, Ontario, Canada) coupled with a tandemmass spectrome-
ter Quattro Micro GC (Waters; Milford, Massachusetts, USA). The mea-
surement of ions generated was performed in MRM (multiple reaction
monitoring) mode with a source in negative chemical ionization mode
(NCI). The analytical column used was a HP-5MS 30 m × 0.25 mm i.d.
× 0.25 μm film thickness (Agilent Technologies; Mississauga, Ontario,
Canada). The limit of detection (LOD) for BPA in urine was 0.2 μg/L
and was calculated by using the value equivalent to three times the
standard deviation of 10 replicates of a sample at a concentration
from 4 to 10 times the estimated LOD with a signal to noise (S/N) of 3.

Following an enzymatic deconjugation, the phthalate monoester
compounds were extracted by solid phase extraction with anion ex-
change media using the Janus robotic station (PerkinElmer; Waltham,
Massachusetts, USA) (INSPQMethod E-453). The extracts were brought
to dryness, taken up in water and analyzed by LC–MS/MS with an Ultra
Performance Liquid Chromatography (UPLC) Acquity (Waters; Milford,
Massachusetts, USA) coupled with a tandem mass spectrometer
Quattro Premier XE (Waters; Milford, Massachusetts, USA) in MRM
mode with an electrospray ion source in negative mode. The analytical
column used was an Acquity BEH Phenyl 50 mm × 2.1 mm i.d. ×
1.7 μm film thickness (Waters; Milford, Massachusetts, USA). The limits
of detection (LOD) for the phthalatemonoestermetabolites varied from
0.2 to 5.0 μg/L (Table 1) and theywere estimated as a function of the sig-
nal to noise ratio (S/N) of 3 in real samples because most of the phthal-
ate monoesters have concentrations too high in normal urine to be
calculated with the standard deviation as described above with BPA.

All biospecimen containers were provided by the laboratory to en-
sure conformity in the batches of supplies. Containers and field blanks
were tested for possible contamination during the collection, process-
ing, transportation and storage procedures. Water (Steril.O reagent
grade deionized distilled water) was used as the sampling media. Anal-
yses of field blanks were done at the laboratory using the same analyt-
ical procedures. Results showed that the field blanks were free of
contamination for the specific tests that were investigated.

When it became necessary to purchase new lots of standards for the
phthalate metabolites in early 2009, the laboratory noticed that there
was a significant difference in concentration between these new lots
and the previous ones. Troubled by this finding, the laboratory launched
a thorough investigation which is now published (Langlois et al., 2012).
The conclusion of this investigation brought to light that the phthalate
metabolite standards used in the MIREC study were inaccurate. The
analyses were not stopped but a correction factor was applied to all re-
sults generated (Langlois et al., 2014). The correction factors were de-
termined on the basis of the findings of three different reliable
commercial sources. The correction factors that were applied to the
MIREC results are listed in Table 1.

To account for urine dilution, specific gravity was measured in
thawed urine samples by a refractometer (UG-1, Atago # 3461, Atago
U.S.A. Inc., Bellevue, WA).

2.3. Statistical analysis

Concentrations for each metabolite analyzed in this report were
corrected by specific gravity (SG) using the following formula (adapted
from Just et al., 2010):

Pc ¼ Pi
SGm−1
SGi−1

� �

where Pc is the SG-corrected metabolite concentration, Pi is the
observed metabolite concentration, SGi is the specific gravity of the ith
urine sample and SGm is the median SG for the cohort. The statistical
analysis was conducted on both the uncorrected and SG-corrected con-
centration levels. A third method of analysis was also considered,
whereby the specific gravity was regarded as a covariate in the linear
model with the effect of interest (e.g., smoking, maternal age, parity,
etc.). As such, the linear model approach considered three models: i) a
full model containing specific gravity, the demographic variable (effect)
and an interaction term between specific gravity and the effect; ii) a
reduced model with no interaction term(s); and iii) a model with the
effect variable removed. Stepwise regression techniques were used to
determine whether the interaction term was significant. If the interac-
tion was not significant, then the reduced model was fit and the demo-
graphic variable was tested for significance. If the interaction term was
significant, then separate regression lines were fit for each level of the
main effect, since the differences between groups depended on the
level of specific gravity. In the analysis presented here, when an interac-
tion termwas significant, group differences were measured at the 25th,
50th and 75th percentiles of specific gravity.

As is common in human biomonitoring studies, concentrations of
environmental chemicals may be so low as to be indistinguishable
from zero when measured in the laboratory and are typically reported
as “bLOD”, where LOD represents the limit of detection for a given con-
taminant and analytical method. These observations are referred to as
“censored”. It has been demonstrated that simple substitution with a
constant such as 1/2 LOD or LOD/

ffiffiffi
2

p
may lead to increased bias and

an underestimation of the error variance, which results in lowered
power for statistical hypothesis testing (Cole et al., 2009; Helsel, 2012;
May et al., 2011). To mitigate these issues, many authors have adapted
techniques for survival analysis of right-censored data to the left-
censored case found in environmental studies. For descriptive statistics,
we implemented two popular estimation techniques for right-censored
data: a) parametric maximum likelihood estimation (MLE) and b) non-
parametric Kaplan–Meier (K–M) (Helsel, 2012). These methods differ
in their assumptions and calculation. Furthermore, to ensure accuracy,
only contaminants where 50% of the data was above the limit of detec-
tion were analyzed.

Maximum likelihood estimation assumes that the contaminant of
interest follows a distribution. In particular, since many of the contami-
nants were right-skewed, we assumed that the data followed a lognor-
mal distribution. In the case of the left-censored data, we must also
incorporate an expression to represent whether the observation is
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censored or not. Thus, the censored likelihood function becomes

L ¼ ∏
n

i¼1
p xið Þδi F xið Þ1−δi

where δi = 1 if detected and δi = 0 if censored. For a lognormal distri-
bution, the probability distribution function is

p xið Þ ¼ 1

xi
ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p e
logxi−μð Þ2

2σ2 :
Table 2
Characteristics of MIREC participants providing 1st trimester urine samples for analysis of
phthalate metabolites and bisphenol A.

Maternal characteristic N⁎ Percentage (%)

Maternal age (years)
b25 120 6.7
25–29 414 23.1
30–34 643 36.0
≥35 611 34.2

Parity
0 794 44.4
1 722 40.4
N1 270 15.1

Smoking status
Current⁎⁎ 209 11.7
Former 487 27.3
Never 1087 61.0

Time of urine collection
6:00–9:00 26 1.4
9:00–12:00 774 43.3
12:00–15:00 604 33.8
15:00–18:00 345 19.3
18:00–24:00 37 2.1

Fasting sample
No 1725 97.8
Yes 39 2.2

Birth place
Other 333 18.6
Canada 1455 81.4

Time since last urination (min)
b75 min 446 26.2
76–120 560 33.0
121–170 253 14.9
N170 440 25.9

Pre-pregnancy BMI (kg/m2)
b25 1069 64.2
25–29 363 21.8
≥30 233 14.0

Income ($)
≤50,000 305 17.9
50,001–100,000 711 41.6
N100,000 691 40.5

Season of collection
Fall 513 28.7
Winter 436 24.4
Spring 417 23.3
Summer 422 23.6

Education
High school or less 154 8.6
College diploma 510 28.6
University degree 1122 62.8

⁎ Number of women providing characteristics and urine sample for phthalate metabo-
lites; the N for BPA maternal characteristics were slightly higher.
⁎⁎ Includes women who quit smoking during current pregnancy.
And the cumulative distribution function (CDF) for lognormal is

F xið Þ ¼ Φ
yi−μ
σ

� �

with yi = log xi ∼ N(μ, σ2) and Φ(x) = P(X ≤ x) being the cumulative
distribution function of a normal random variable. Geometric means
and associated confidence intervals were then calculated based on the
MLE.

If the assumption of lognormality is not reasonable, the non-
parametric Kaplan–Meier procedure is preferred. The K–M method is
a well-known procedure used to estimate the survival function, S(t),
or time until an event occurs (e.g., failure of a component), assuming
that some observations are right-censored. No distributional assump-
tions aremade; rather an estimate of the survival function is obtained as

Ŝ tð Þ ¼ ∏
t ið Þ ≤ t

ni−di
ni

;

where Ŝ tð Þ ¼ 1 for t b t 1ð Þ; and t(i) represents the ordered survival
times t(1) b t(2) b ⋅⋅⋅ b t(m). Then, in the context of survival analysis, ni
is the number of individuals at risk of reaching a given event at t(i) and
di is the number of individuals that do reach the given event at time t(i).

In the left-censored case, we are interested in obtaining the median
of the empirical cumulative density function (ECDF) denoted F(t)which
is calculated as F tð Þ ¼ 1−Ŝ tð Þ. As suggested by other authors (Helsel,
2012; Koru-Sengul et al., 2011) the ECDF is found by “flipping” the ob-
servations after subtracting each observation from a constant larger
than themaximumvalue, and utilizing the right-censoredmethods pre-
sented above. Then, the observations are re-transformed back to the
original units to obtain the correct estimate of the median. Confidence
intervals were calculated using Greenwood's formula, as utilized in
the survival analysis (Helsel, 2012).

For hypothesis testing using the censoredmethods for the uncorrect-
ed and SG-corrected data, likelihood ratio tests for parametric ML esti-
mation were used, which follow a chi-square distribution under the
null hypothesis of no difference in groups. If this hypothesiswas rejected,
then multiple comparisons were performed using Bonferroni-adjusted
confidence intervals and significantly different groups were identified.
The assumptions for maximum likelihood were verified using a test for
lognormality developed by Nysen et al. (2012) which accounts for left-
censored observations. If the assumption of lognormality failed, then
non-parametric testing was performed using the Wilcoxon rank-sum
test for independent groups.

Statistical analysis was performed using SAS (Statistical Analysis
System) Enterprise Guide 4.2 and R (R Core Development Team). For
the censoring methods, functions from the R packages NADA and
SURVIVAL were used for analysis. A 5% significance level (α = 0.05)
was implemented throughout.

3. Results

Characteristics of the women providing 1st trimester urine samples
from the MIREC study for analysis of phthalate metabolites and BPA
are outlined in Table 2. The majority of the women were non-smokers
and of a higher socio-economic class than the general population of
women giving birth in Canada (Arbuckle et al., 2013). Themedian gesta-
tional age of the mothers whose urine samples were collected was
12.43 weeks, with a range of 6.14 to 14.86 weeks.

One urine samplewas excluded from our analysis because it was too
dilute (specific gravity = 1.000, creatinine b 0.3 nmol/L) and all chem-
ical results were below the limits of detection. There were 3 samples for
whom no specific gravity results were available whichwere included in
the uncorrected analyses but removed from the corrected analyses.
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3.1. Total BPA

Maternal urinary concentrations of total BPA ranged from non-
detectable (b0.02 μg/L) to 140 μg/L, uncorrected for specific gravity,
with almost 88% of the women having detectable concentrations of
BPA (Table 3).

An analysis of urinary concentrations of BPA by maternal character-
isticswith specific gravity as a covariate in the linearmodel showed that
the geometric mean concentrations: (1) decreased with increasing
maternal age, (2) were higher in current smokers or women who quit
during pregnancy compared to never smokers, and (3) tended to be
higher in women who provided a fasting urine sample and who were
born in Canada, and had lower incomes and education (Table 4). Parity,
pre-pregnancy body mass index (BMI) and season of sample collection
were not significant predictors of urinary BPA concentrations. It is
noteworthy that a significant interaction with specific gravity and time
of urine collection was observed indicating that the effect of time of
urine collection depends on the specific gravity of the mother's urine.
BPA concentrations tended to increase with time of day; however,
whether the differences between times of daywere significant depended
on the percentile of specific gravity that was used for estimation. At the
25th percentile for specific gravity, urine collected between 9:00 and
15:00 were significantly lower in BPA than the samples collected be-
tween 15:00 and 18:00 (see Fig. 1). At the 50th percentile of specific
gravity, significant differences were noted between the samples collect-
ed between 9:00 and 12:00 and those from 15:00 to 18:00; whereas at
the 75th percentile of specific gravity, there were no significant differ-
ences in BPA concentrations by time of urine collection.

3.2. Phthalates

Several of the phthalate metabolites analyzed were not prevalent in
this population (MCHP,MMP,MiNP,MOP),with percentages detectable
at less than 15% (Table 3). The phthalate metabolites with the highest
measured concentrations were MEP (geometric mean (GM): 32.02,
maximum: 13,000 μg/L, N99% detected) and MnBP (GM: 11.59, maxi-
mum: 3100 μg/L, N99% detected); and the DEHP metabolites (MEHP,
MEOHP, MEHHP) were detected in over 95% of the urine samples.

For the phthalatemetabolites,maternal agewas a significant predic-
tor of MBzP (highest in women b30 compared to women ≥35 years),
MEHHP (lower in women b25 compared to women 25–29 or
≥35 years), and MEHP and MEOHP (higher in women 25–29 than in
those b25 years). Parity was only a significant predictor of MEP, with
first pregnancies having the higher concentrations. Women who were
current smokers at the time of the urine collection or who had quit dur-
ing the pregnancy tended to have lower urinary concentrations of
MEHHP and MEOHP.

As with BPA, a significant interaction was found between specific
gravity and time of urine collection for some of the phthalate metabo-
lites (MnBP, MCPP, MEHHP, MEHP, MEOHP, and MEP). For MnBP, con-
centrations increased with time of day with significant differences
between specific time periods noted only at the 25th or 50th percentile
of specific gravity (data not shown).

MCPP concentrations also increased with time of day, with urines
collected between 9:00 and 12:00 significantly lower than those collect-
ed between 15:00 and 18:00; however, at the 75th percentile of specific
gravity only urines collected between 9:00 and 12:00were significantly
lower from those collected between 18:00 and 24:00 (data not shown).

Fig. 2 displays the MEOHP urinary concentrations by time of day of
collection and specific gravity, showing that the differences between
sampling times depend on the specific gravity of the urine. For example,
only at the 75th percentile of specific gravity areMEOHP concentrations
collected in urine between 6:00 and 9:00 significantly higher than those
collected between 9:00 and 15:00.

Womenwho had fasted prior to the urine collection had higher con-
centrations of MBzP and MEP. Foreign born women had lower



Table 4
Geometric mean maternal urinary concentrations of prevalent phthalates and BPA in the first trimester by characteristics of the woman, including specific gravity as a covariate.

Parent BPA DnBP DEP BBzP DnOP DEHP

Metabolite BPA MnBP MEP MBzP MCPP MEHP MEOHP MEHHP

Maternal age (years) N⁎ p = 0.009 p = 0.25 p = 0.075 p b 0.0001 p = 0.82 p = 0.0086 p = 0.0033 p = 0.0003
b25 120 1.02 12.43 40.85 6.75 0.80 1.84 4.94 6.60
25–29 414 0.83 12.30 34.21 6.21 0.85 2.49 6.83 9.75
30–34 643 0.82 11.18 31.64 5.01 0.86 2.17 6.26 9.01
≥35 611 0.74 11.40 29.35 4.57 0.89 2.24 6.54 9.51
Parity p = 0.095 p = 0.62 p b 0.0001 p = 0.061 p = 0.50 p = 0.22 p = 0.39 p = 0.42
0 794 0.85 11.41 37.65 4.99 0.84 2.28 6.43 9.06
1 722 0.78 11.51 28.71 5.19 0.90 2.27 6.48 9.44
N1 270 0.75 12.09 26.15 5.91 0.85 2.04 5.97 8.71
Smoking status p = 0.0014 p = 0.19 p = 0.054 p = 0.12 p = 0.054 p = 0.067 p = 0.012 p = 0.0052
Current⁎⁎ 209 1.01 10.47 39.67 5.91 0.76 1.97 5.46 7.62
Former 487 0.81 11.82 31.37 5.20 0.94 2.36 6.76 9.71
Never 1087 0.77 11.70 30.79 5.06 0.85 2.24 6.40 9.21
Time of urine collection p = 0.032 ⁎⁎⁎ p = 0.0001 ⁎⁎⁎ p = 0.040 ⁎⁎⁎ p = 0.22 p = 0.014 ⁎⁎⁎ p b 0.0001 ⁎⁎⁎ p = 0.0003 ⁎⁎⁎ p b 0.0001 ⁎⁎⁎

6:00–9:00 26 0.60 7.88 33.37 4.76 0.52 2.34 6.68 8.64
9:00–12:00 774 0.67 8.96 29.05 4.90 0.62 1.62 4.55 6.32
12:00–15:00 604 0.72 10.02 27.26 5.40 0.73 1.98 5.59 8.08
15:00–18:00 345 0.94 12.40 27.12 5.60 1.01 2.81 7.93 11.79
18:00–24:00 37 1.08 16.34 26.16 5.67 1.46 2.22 7.32 10.41
Fasting sample p = 0.036 p = 0.19 p = 0.02 p = 0.011 p = 0.72 p = 0.36 p = 0.47 p = 0.44
No 1725 0.80 11.51 31.38 5.14 0.86 2.25 6.39 9.18
Yes 39 1.13 13.82 53.00 7.79 0.81 1.96 5.77 8.19
Birth place p = 0.035 p = 0.22 p = 0.0003 p = 0.0004 p = 0.59 p b 0.0001 p = 0.0056 p = 0.0039
Other 333 0.73 12.21 41.10 4.36 0.84 2.72 7.18 10.43
Canada 1455 0.83 11.45 30.15 5.42 0.87 2.14 6.21 8.89
Time since last urination p = 0.047 p = 0.0049 ⁎⁎⁎ p = 0.014 p = 0.0004 ⁎⁎⁎ p = 0.65 p = 0.071 p = 0.0056 p = 0.0025
b75 min. 446 0.77 8.77 27.08 3.86 0.82 2.02 5.63 7.95
76–120 560 0.77 10.56 32.84 4.67 0.86 2.28 6.55 9.38
121–170 253 0.91 10.16 35.08 4.39 0.87 2.35 6.79 9.81
N170 440 0.86 10.67 36.16 5.60 0.91 2.34 6.73 9.72
Pre-pregnancy BMI (kg/m2) p = 0.052 p = 0.94 p = 0.80 p = 0.0068 p = 0.65 p b 0.0001 p = 0.23 p = 0.44
b25 1069 0.77 11.53 31.15 4.99 0.85 2.37 6.44 9.18
25–29 363 0.87 11.75 31.39 5.08 0.91 2.13 6.31 9.16
≥30 233 0.86 11.51 33.37 6.28 0.87 1.77 5.78 8.43
Income ($) p = 0.021 p = 0.014 p = 0.049 p b 0.0001 p = 0.39 p = 0.21 p = 0.016 p = 0.0042
≤50,000 305 0.92 13.27 37.97 6.71 0.83 2.21 5.88 8.28
50,001–100,000 711 0.81 11.25 30.69 5.16 0.85 2.17 6.26 8.95
N100,000 691 0.76 11.36 30.43 4.75 0.91 2.36 6.89 10.04
Season of collection p = 0.53 p = 0.22 p = 0.13 p = 0.70 p = 0.032 ⁎⁎⁎ p = 0.50 p = 0.93 p = 0.68
Fall 513 0.78 11.84 28.33 5.11 0.66 2.19 6.36 9.07
Winter 436 0.84 11.96 32.70 5.37 0.70 2.28 6.47 9.06
Spring 417 0.79 10.72 34.45 5.34 0.78 2.35 6.46 9.59
Summer 422 0.84 11.81 33.50 5.02 0.78 2.15 6.25 8.95
Education p = 0.027 p = 0.0010 ⁎⁎⁎ p = 0.10 p = 0.0059 ⁎⁎⁎ p = 0.57 p = 0.014 p = 0.0006 p = 0.0002
High school 154 0.96 10.20 35.21 6.08 0.79 1.96 5.20 7.19
College diploma 510 0.83 9.24 35.06 4.57 0.87 2.10 6.03 8.62
University degree 1122 0.78 10.14 30.26 4.31 0.87 2.35 6.73 9.72

⁎ Number of women for phthalate metabolites; the N for BPA maternal characteristics were slightly higher.
⁎⁎ Includes women who quit smoking during current pregnancy.
⁎⁎⁎ Significant interaction between specific gravity (SG) and characteristic; GM for 50th percentile of SG reported.
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concentrations of MBzP, but higher concentrations of MEHHP, MEHP,
MEOHP and MEP. The length of time since the last urination was a sig-
nificant predictor of MnBP, MBzP, MEHHP, MEOHP and MEP. Pre-
pregnancy BMI was associated with urinary concentrations of MBzP
and MEHP (with BMI b 25 having higher levels than those with BMI
≥ 30). Income was a significant predictor for MnBP, MBzP (highest in
those with ≤$50,000), MEHHP, MEOHP and MEP. A significant interac-
tion with specific gravity was observed with season of collection for
MCPP. Higher maternal educationwas significantly associated with ele-
vated concentrations of MEHHP and MEOHP, except for MBzP, where
the reverse was true at the 25th and 50th percentiles of specific gravity.

3.3. Correction for specific gravity

In addition to considering specific gravity as a covariate, statistical
analysis and hypothesis testing were also performed using specific
gravity-corrected data. The results for the specific gravity correction
are provided in Supplementary material Table S1. For variables such as
smoking status, fasting and maternal birth place, similar conclusions
of statistical significancewere obtained regardless of the specific gravity
correctionmethod. For other variables however, some slight differences
were noted. In particular, for MEP, time of urine collection was signifi-
cant (p = 0.04) when specific gravity was considered as a covariate,
while no significant difference (p = 0.4924) was found when the spe-
cific gravity correction was used.

3.4. Censored versus substitution methods

While not the primary objective of our study, we have also com-
pared results of hypothesis testing using censored methods (likelihood
ratio andWilcoxon)with results using substitution of half the detection
limit. Supplementary Tables S2 and S3 display p-values for the various
methods for contaminants BPA and MEOHP respectively. From both
tables, it is evident that conclusions were similar among the statistical



Fig. 1. BPA urinary 1st trimester concentrations (geometricmean) by time of urine collec-
tion and specific gravity.
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methods used, however some differences were noted. For instance,
considering specific gravity as a covariate, parity was a significant pre-
dictor for BPA using the substitution methods (p = 0.0442), however
it is not significant when considering the maximum likelihood method
(p = 0.0946). Nevertheless, given that censored methods are based
upon sound statistical theory and have demonstrated improved effi-
ciency in many empirical studies (Cole et al., 2009; Helsel, 2012; May
et al., 2011),we implemented censoredmethods in the present analysis.

4. Discussion

This paper reports urinary BPA and phthalate metabolite concentra-
tions in a larger population of pregnant women than has ever been re-
ported in the literature and expressly for the first trimester, a critical
windowof exposure for thedevelopment of the infant. It also represents
a diverse geographical distribution of pregnant women from across
Canada with some participation of women from varied ethnic and
socio-demographic strata. The prevalent urinary exposures for this
population were: BPA (87.7% detected), MnBP (99.7% detected), MEP
(99.8% detected), MBzP (99.3% detected), MCPP (82.2% detected),
MEHP (97.6% detected), MEOHP (99.6% detected), and MEHHP (99.0%
detected).

Based on a spot urine sample, the first trimester geometric mean
concentration of total BPA (uncorrected for specific gravity) in MIREC
(0.80 μg/L; 95% CI 0.76–0.85 μg/L) tended to be lower than those report-
ed in the Generation R (1.3 μg/L) (Snijder et al., 2013), CHAMACOS
(1.0 μg/L) (Harley et al., 2013a), and INMA (2.1 μg/L) (Casas et al.,
2013) cohorts and also lower than those reported in the CanadianHealth
Measures Surveys (CHMS) of 2007–2009 (1.26 μg/L) (Health Canada,
2010a) and 2009–2011 (1.2 μg/L) for women 20–39 years of age
(Health Canada, 2013a). While 97.4% of the women 20–39 in the
CHMS 2009–2011 sample had detectable levels of BPA in their urine,
the figure for MIREC participants was somewhat lower at 88%. It should
Fig. 2.MEOHPurinary 1st trimester concentrations (geometricmean) by time of urine col-
lection and specific gravity.
be noted that the same laboratory and analytical methods were used in
both the CHMS andMIREC analyses, so the results should be comparable.
It is possible that there are population differences between studies (e.g.,
consumer product formulations) which account for the lower urinary
BPA concentrations observed in MIREC. Methodological differences
were not a factor in explaining significantly lower urinary levels of BPA
in a Canadian national survey compared to an American (Lakind et al.,
2012). Women in the MIREC study, who were younger, smoked, had
fasted, were born in Canada, had lower income and education level and
provided their urine sample later in the day had significantly higher uri-
nary concentrations of BPA. Similar results were reported in the Spanish
birth cohort study, where women who were younger, less-educated,
smoked, and who were exposed to second-hand tobacco smoke (SHS)
had higher BPA concentrations than others (Casas et al., 2013). In con-
trast, maternal age, education, and smoking status were not significant
predictors in the CHAMACOS study of predominantly low income
Mexican-Americans or Mexican immigrants in California (Quirós-Alcalá
et al., 2013). In the Cincinnati HOME study where the median BPA con-
centration at 16 weeks was 2.0 ng/mL (compared to 0.82 ng/mL in
MIREC), creatinine-standardized BPA concentrations were also higher
among women with lower education than among women with higher
education and were the highest between 1500 and 1659 h (Braun
et al., 2011b).

Median phthalate metabolite concentrations in maternal urine in
MIREC were comparable to those reported for women 20–39 years of
age in Cycle 2 of the CHMS (2009–2011) (Health Canada, 2013a) but
tended to be lower than in an American (Engel et al., 2009) or Spanish
pregnancy cohort (Casas et al., 2011) (Fig. 3). The availability of con-
sumer products containing certain phthalates may be declining, as
levels of several phthalate metabolites are decreasing over time in
Canada (Fig. 3), which may explain differences observed with earlier
cohorts. An interesting observation was the vastly different median
urinary concentrations of MEP reported in the Spanish (324 μg/L)
and American cohorts (386 μg/L) compared to the Canadian studies
(48 μg/L in the CHMS survey and 28 μg/L in MIREC). The American
cohort (Engel et al., 2009) was of lower socio-economic status than
the MIREC cohort and their samples were collected in 1999–2001 and
were affected by approximately 40% by the correction in the MEP
phthalate standard (CDC, 2012) which may explain the differences.
It is noteworthy that a maximum urinary MEP concentration of
13,000 μg/L was measured in MIREC and a significant association be-
tween urinary MEP and lower income was observed.

Although the limit of detection forMMP inMIRECwas higher (5 μg/L)
than that for NHANES (0.5 μg/L), the proportion of NHANES 2009–2010
results below the LOD was too high to calculate a geometric mean (CDC,
2013), indicating that exposure to this phthalate is not prevalent in either
country. The percentage of non-detects for MMP in Canadian women
20–39 years of age ranged from 87% (2007–2009) to 76% (2009–2011),
Fig. 3. Comparison of uncorrected median phthalate metabolite concentrations (μg/L) in
urine from various international studies: INMA Spain (n = 118; Casas et al., 2011), Mt
Sinai (n = 295; Engel et al., 2009), MIREC (n = 1788), CHMS 2007–2009 (n = 364;
Health Canada, 2013a); CHMS 2009–2011 (n = 190; Health Canada, 2013a) and
Denmark (Tefre de Renzy-Martin et al., 2014).

image of Fig.�2
image of Fig.�3
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comparable with MIREC data (85%) with the same LOD (Health Canada,
2010a, 2013a).

Maternal age was a significant predictor of MBzP (highest inwomen
b30 compared to women ≥35 years), MEHHP (lower in women b25
compared to women 25–29 or ≥35 years), and MEHP and MEOHP
(higher in women 25–29 than in those b25 years). A small study of
Puerto Ricanwomen also reported thatMBzP urinary levelswere higher
in younger women, but also reported higher concentrations of MnBP in
the youngest women (Cantonwine et al., 2014). In MIREC, the only
phthalate metabolites significantly associated with parity was MEP,
with first pregnancies having the higher concentration.

In MIREC, although the numbers were small, women who fasted
(n = 39) had significantly higher urinary concentrations of the low
molecular weight phthalate metabolites MBzP and MEP and lower
(although not statistically significant) levels for the DEHP metabolites.
In the CanadianHealthMeasures Survey, concentrations of the DEHPme-
tabolites were significantly lower and no different for MEP and MBzP in
the fasted as compared to the non-fasted groups (Saravanabhavan et al.,
2013). A fasting study of 5 volunteers has provided support for the hy-
pothesis that exposure to high molecular weight phthalates is driven by
food consumption as they reported a trend of declining urinary concen-
trations during the fast for the metabolites of the high molecular weight
phthalates (DEHP,DiNP, DiDP/DPHP); in contrast, formost of the lowmo-
lecular weight phthalates, only a weak association with fasting was ob-
served (Koch et al., 2013). Not considering whether subjects fasted prior
to urine collection may underestimate exposure to some phthalates
(Wittassek et al., 2011).

PBPKmodeling has shown that the ratio betweenMEHP and the ox-
idized metabolite MEHHP can vary between 2.89 and 5.4 (Lorber et al.,
2010). This range of ratios is somewhat higher than the ratio of uncor-
rected geometric means found in MIREC of 1.43, but within the range
for the specific gravity corrected geometric mean ratios of 4.1.

Given the ubiquitous presence of phthalates in the environment, one
of themajor concerns inmeasuring phthalate metabolite concentrations
in urine is possible external contamination, including during collection
(urine cups, aliquot tubes, etc.) and laboratory analysis (laboratory
reagents, sampling equipment, and analytical apparatus) (Koch and
Calafat, 2009). Simple monoester metabolites are prone to external con-
tamination during the analytical procedure; whereas the secondary oxi-
dized phthalate metabolites are not susceptible (Wittassek et al., 2011).
Based on the results of the field blanks and testing of collectionmaterials,
there is no evidence that external contamination was a concern in this
study.

4.1. Health Canada regulations and primary prevention

Despite themany sources of exposures to BPA, dietary intake due to
migration from food packaging and use of BPA-containing polycarbon-
ate storage containers is considered as the primary route of exposure for
the general, non-occupationally exposed population (Health Canada,
2008). The Government of Canada, through scientific assessment,
determined that BPA is toxic to human health (Canada, 2010) and a
provisional tolerable daily intake of 25 μg/kg body weight from food
packaging has been established (Health Canada, 2008, 2012). There is
currently no biomonitoring-based guidance value to allow interpreta-
tion of urinary levels measured in the MIREC study. Current dietary ex-
posure to BPA through food packaging useswas determined not to pose
a health risk to the general population, including newborns and young
children (Health Canada, 2008, 2012). Due to laboratory and experi-
mental uncertainty and potential low dose effects reported in develop-
mental and neurobehavioral studies (Environment Canada and Health
Canada, 2008), Health Canada heightened its risk management mea-
sures with focus on minimizing exposure from products consumed by
newborns and infants. As of 2010, Health Canada has prohibited the
manufacturing, advertisement, sale, or import of BPA-containing poly-
carbonate baby bottles (Health Canada, 2010b). Health Canada has
also committed to facilitating the assessment of proposed industry
alternatives to BPA for use in infant-formula and other can coatings, as
well as targets for BPA in infant-formula cans (Health Canada, 2012).
BPA is also included on Health Canada's list of prohibited and restricted
cosmetic ingredients (Health Canada, 2011a). Canadians are encour-
aged to read labels ensuring containers are BPA-free, and avoiding
products with the number “7 PC” in the center of the recycling symbol.
If consumers opt to continue using older bottles that may contain BPA,
these should not be heated while containing liquid. It is recommended
that water or other liquids be boiled and allowed to cool to lukewarm in
a non-polycarbonate container before transferring.

For phthalates, food and the use of consumer products made from
polyvinyl chloride (PVC) plastics are the primary sources of exposure
to phthalates to the general population. As with BPA, the weight of evi-
dence is presently insufficient for developing health-based biomonitor-
ing guidance values to interpret urinary levels measured in the MIREC
study. Nevertheless, Health Canada has assessed several phthalates as
priority substances, including DEHP, DnBP, DOP and BBP. Based on
these assessments, only DEHP was declared toxic and now included
onHealth Canada's list of prohibited and restricted cosmetic ingredients
(Health Canada, 2011a). In 2011, Health Canada has also restricted the
use of six phthalates (DEHP, DnBP, BBP, DiNP, DiDP, and DOP) to no
more than 1000 mg/kg (0.1%) in soft vinyl children's toys and child-
care articles whether imported, sold or advertised in Canada (Health
Canada, 2011b). On July 13, 2013, Health Canada announced a high-
priority assessment under the Chemicals Management Plan for 14
substances which are part of the Phthalate Substance Grouping and 14
additional substances which are under consideration for inclusion in
the grouping (Health Canada, 2013b). For individual primary preven-
tion, consumers are encouraged to read labels on personal care products
and vinyl clothing, avoiding products with the number “3” in the center
of the recycling symbol, and if unsure, the manufacturer may be called
for content clarification. Further, “Health Canada advises parents and
caregivers to monitor their children's use of soft vinyl (PVC) toys not
specifically designed for sucking and chewing (such as vinyl bibs and
bath, squeeze or inflatable toys), and to remove these products from
the child's environment if they observe the child sucking or chewing
on them for extended periods” (Health Canada, 2011b).

4.2. Strengths and limitations

A major limitation of the study is that at the time the study was de-
signed, we were limited to measuring the phthalate metabolites for
which the laboratory had methods and therefore were missing some
of the major oxidative metabolites for the longer chain phthalates. For
example, we did not measure mono(2-ethyl-5-carboxy-pentyl)phthal-
ate (MECPP), which has been identified as the most prominent oxida-
tive DEHP metabolite in urine and exhibits the longest half-live of
elimination (N15 h) in urine (Fromme et al., 2007).

Another significant limitation in assessing an individual's exposure
is that only one spot urine sample was collected per woman during
the 1st trimester. As these chemicals have a short half-life (hours) and
there are multiple sources and routes of exposure, intra-individual var-
iability in results are expected. The extent of the variability depends on
the phthalate metabolite with DEHPmetabolites often displaying more
variability than other metabolites (Braun et al., 2012; Frederiksen et al.,
2013; Peck et al., 2010; Preau et al., 2010). The study population, inter-
val between sample collections and frequency of collections can also
impact variability as measured by the intraclass correlation coefficients
(ICCs) as illustrated for MEP where the ICC has ranged from b0.3 (Adibi
et al., 2003; Teitelbaum et al., 2008) to N0.5 (Braun et al., 2012;
Frederiksen et al., 2013; Peck et al., 2010).

The ability of a single spot urine to accurately reflect an individual's
exposure over a period of time has generally been poor for BPA with
ICCs ranging from 0.12 (Braun et al., 2011b) to 0.24 (Meeker et al.,
2013). As collecting and analyzing multiple urine samples from an
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individual in a large prospective cohort study would substantially in-
crease the costs and participant burden, one recommendation has
been to note the time of urine collection and the time since the last
void (Preau et al., 2010). Although this information was collected in
MIREC, it was not included in the univariate models for identifying
other predictors of exposure and should be considered for any models
examining potential health risks from the exposure.

This study has several strengths. This diversity and large sample size
enable a more accurate estimate of the potential distribution and range
of exposures (extremes) in the Canadian population and will facilitate
the assessment and management of potential risks associated with
these ubiquitous chemicals by the regulatory agencies. The finding
that urinary BPA levels are higher in smokers, who are already at higher
risk of adverse pregnancy outcomes (Nieuwenhuijsen et al., 2013) and
in younger women of lower education and income, suggests that this
population sub-group warrants further research and education to
reduce their risks. In regard to phthalates, there was no common popu-
lation sub-group with elevated exposure; however, given the multiple
phthalates and various sources of exposure, this may not be surprising.
As theMIREC studywas not designed to identifymajor sources of expo-
sure for these chemicals, it did not have the data on diet, food packaging
and use of consumer products to correlate with urinary levels. One of
the strengths of the MIREC study is that it does fill a major data gap
by providing data on the range of urinary concentrations of these
chemicals, measured in the same laboratory, in a large diverse popula-
tion of pregnant women that can be compared to both the general pop-
ulation of Canada and to women of reproductive age. Thus providing
direct measures of exposure in this vulnerable population in order to
improve decisions for protecting health and preventing disease and
can serve as the basis for future monitoring and research activities.
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