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Abstract 

In this paper continuous numerical solutions expressed in terms of matrix exponentials are constructed to approximate 
time-dependent systems of the type ut - A(t)Uxx - B( t )u  = O, 0 < x < p, t > O, u(O, t) = u(p,  t) = O, u(x, 0) =f(x),  0 ~< 
x ~< p. After truncation of an exact series solution, the numerical solution is constructed using Fer's factorization. Given 
e > 0 and to, h, with 0 < to < tl and D(to, h ) = {(x, t); 0 ~<x ~< p, to ~< t ~< h } the error of the approximated solution with 
respect to the exact series solution is less than e uniformly in D(to, tl). An algorithm is also included, @ 1999 Elsevier 
Science B.V. All rights reserved. 

A M S  classification: 65M15, 34A50, 35C10, 35A50 
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1. Introduction 

Systems o f  partial differential equations are frequent in many different problems such as the study 
o f  heat conduction and diffusion problems [21], or in the analysis o f  pollutant migration through soil 
modelling coupled thermoelastoplastic hydraulic response clays [22]. In the evaluation o f  coupled 
microwave heating processes the constant coefficient model often leads to misleading results due to 
the complexity o f  the field distribution within the over and the variation in dielectric properties o f  
material with temperature, moisture content, density and other properties [23, 15, Ch. 3]. 

In this paper we consider mixed problems for t ime-dependent systems o f  the type 

ut(x ,  t )  - -  A( t )Uxx(X,  t )  - -  B ( t ) u ( x ,  t )  = O, 0 < x < p ,  t > O, (1)  

* Corresponding author. Tel:. 34-6-3983148; fax: 34-6-3642345; e-mail: blanes@evalvx.uv.es. 

0377-0427/99/S-see front matter @ 1999 Elsevier Science B.V. All rights reserved. 
PII: S 0377-0427(98)00219-2 



190 S. Blanes. L. JfdarlJournal of Computational and Applied Mathematics 101 (1999) 189-202 

u(O, t) = u(p, t)  = O, t > O, (2)  

u(x,O)=f(x), O<<.x<<.p, (3) 

where the unknown u(x, t) and the right-hand side f (x)  are vectors in fir, and A(t), B(t) are con- 
tinuous ~r×r valued functions such that 

there exists a positive number Q such that for all t ~> 0 

and every eigenvalue z of  (A(t) + Ar~(t))/2, z i> Q > 0 (4) 

where AH(t) denotes the Hermitian conjugate of the matrix A(t). Problem (1 ) - (3 )  has been treated 
in [25] for the case where A(t)=A and B(t )=B are constant matrices, and in [19] for the case 
where B(t)= 0 and A(t) is an analytic matrix function. 

The aim of  this paper is not the comparison with respect to other discrete methods but the 
construction of  exact and continuous numerical solutions of  problem (1 ) - (3 )  in terms of matrix 
exponentials, with a prefixed accuracy in a bounded subdomain. In spite of the expensive cost of  the 
numerical computation of  matrix exponentials the proposed method has several possible important 
advantages: 
(i) It permits the determination of  a priori error bounds for the constructed analytic-numerical 

solutions, in terms of the available information of  the problem. 
(ii) The matrix coefficient A(t) does not need to be an analytic function, but only continuous, see 

[19]. 
(iii) With respect to discrete methods, the constructed approximation is defined simultaneously for 

all the points (x, t) of  the prefixed subdomain, and not only at a discrete mesh of points. 
The organization of  the paper is as follows. Section 2 deals with a revisited version of  the error 
analysis developed in [4], adapted to the problem 

V' ( t )=[B( t ) -  22A(t)]V(t), V(a0) = Vo, ao <.t<.al, (5) 

using Fer's factorization to approximate the solution of  (5) by matrix exponentials. In particular, 
using the concept of logarithmic norm, error bounds given in [4] are improved. In Section 3 an 
exact series solution of  Problem (1)- (3) ,  is constructed under hypothesis (4), using a separation 
of  variables technique. Given an admissible error e > 0 and tl > to > 0 we propose a truncation 
strategy so that the error of  the truncated series be less than e in 

O(to, t l)= {(x,t); O<.x<~p, O<to<~t<.fi}. (6) 

Section 4 deals with the construction of  Fer's approximations to each of  the exact solutions of 
vector problems of  the type 

T~(t)= [ B ( t ) - ( p ) 2 A ( t ) J  T,(t), 

where 

2 f 0 P f ( ( n _ _ ~ )  Cn = -- X) sin dx, 
P 

Tn(O) = e,, l<~n<<.no, (7) 

(8) 
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is the sine Fourier series coefficient o f f (x )  and no is the truncation index. Given ~ > 0 we determine 
the index m of  Fer's approximations Ttml(t), so that the error of the numerical approximation of  
Problem (1) - (3) ,  after replacing the exact solution Tn(t) of Problem (7 ) - (8 )  by its Fer's approx- 
imation T~ml(t), be smaller than ~ uniformly in D(to, tl), when the whole interval of  integration is 
split in subintervals. Section 5 provides the algorithm and an illustrative example. 

Throughout this paper the set of  all the eigenvalues of  a matrix D in cCxr is denoted by a(D) and 
the spectral radius of D, denoted by p(D) is the maximum of  the set {[zl; z E o-(D)}. We denote 
by IlOl[ the 2-norm of D, [13, p. 56; 16, p. 295]: 

[IDYll2 - max{Iogll/2; o E o'(DHD)}, IIDII = sup 
y¢0 Ilyll2 

where for a vector y C cC, I lyi lz  = (yHy)l/2 is the usual euclidean norm of  y. In accordance with 
[12, p. 110; 14, p. 59], the logarithmic norm #(D) is defined by 

# ( D ) =  lim I I l + h D I l - 1  
h-...*O,h > 0 h ' 

and satisfies 

I#(o) l  IIDII, 
#(ctD) = ~#(D) for ~ ~> 0, 

# ( D ) = m a x { c o ; ~ E a ( D + ~ D H ) } .  

(9) 

(10) 

(11) 

2. Fer approximation to V' = [B(t) - ~.:A(t)]V 

The interest in recovering qualitative features of the exact solution of time dependent matrix 
differential equations, and in particular the fundamental solution of a time-dependent linear system, 
has claimed the attention of many authors who have developed methods based on Lie groups. 
Although Lie groups are not mentioned in [17], the well-known method of  the iterated commutators is 
a rediscovering by Iserles of  Fer's approach, and is now being intensively investigated as a powerful 
tool to treat both linear and nonlinear differential equations on Lie groups and other manifolds 
[3, 27]. Application of  Fer's approximation as a symplectic integrator may be found in [6], and may 
be found as a tool for solving certain initial value problems for linear partial differential equations 
in [7]. Apart from [11] other recent relevant works related to Fer's method are [4, 8, 20]. 

In this section, starting from recent results of  [4], we introduce some improvements in the error 
analysis of Fer's method addressed to find a connection between the order of approximation and a 
prefixed accuracy. 

Fer's algorithm approximates the solution V(t) of the matrix initial problem 

V'(t)=S(t)V(t)  V(0) = I, (12) 

by a product of  matrix exponentials. Convergence of  the approximations appear already in Fer's 
original work [11]. Our starting point is Section 3 of  [4] where, using a slightly different argument, 
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the convergence region is enlarged and upper error bounds are improved. The aim of this section is 
to improve some of  the results given in [4] using the concept of  the logarithmic norm of  a matrix 
and introducing a different iterative mapping. We recall that Fer's expansion is generated by the 
following recursive scheme: 

V = e r' e F2 • • • e Fm Vm, 

V" =S~(t)Vm, Vm(O)=l, m= 1,2,3 . . . ,  (13) 

where Fm(t), Sin(t) are given by 

/0 Fm+l(t)----- Sm(s)ds,  S o ( t ) = S ( t ) ,  m = 0 , 1 , 2 . . .  

/ 0 ' / 0  • Sm+l = dx  d u e  -(1-u)Fm+l [Sm, Fm+l]e (l-u)Fm+l (14) 

where [P, Q] = PQ - QP. 
When after m steps we impose Vm(t)= I we are left with an approximation Viral(t) to the exact 

solution V(t). Let us consider that the matrix S(t) is bounded and I[ S(t) II is a piecewise continuous 
function such that [I S(t) II <~k(t)= k(°)(t). Fer's algorithm, Eqs. (13)-(14),  provides then a recursive 
relation among corresponding bounds k(m)(t) for [[Sm(t)[[. Let us denote K(m)(t,O) = -- ~k (m) ( s )ds .  
Using the mapping 

f x  1 - e2S(1 - 2s) 
M(x) ds, 

Jo 2s 

presented in [4], we can take as bounds (for [IFm+l(t)l[), K(m+l)(t, O)=M(K(m)(t, 0)) and the conver- 
gence is assured if K(m)(t, 0) < ~ with ¢ = 0.8604065. But, considering that for 0 < x < 

M(x) < x2/~ < x, (15) 

we can use the mapping 

K~m+')(t, 0) = G (g(m)( t ,O)) ,  G ( x ) = x 2 / ~ .  (16) 

Then limm~o~ K~m)(t, 0) = 0 if 0 is a stable fixed point for the iteration and K ~°) is within its basin 
of  attraction. It is clear that x = 0 is a stable fixed point of  x = G(x) and x = ~ is the next, unstable, 
fixed point [10]. Thus we have still assured the convergence of Fer's expansion for values of  time 
t such that 

f0 t IlS(s)l[ < (17) ds <~ K(°)( t, O ) 0.8604065. 

Note that if  K(m)(t,O) < ~ then K("+°(t,O) < K(m)(t,O). Expression (16) is simpler than using the 
mapping M(x). Further it has the same convergence domain and provides the iteration 

K0"+l) = ~(K(°)/~) 2~" 

The next result provides a priori error bounds of the theoretical solution of  the matrix problem 

V'(t)=[B(t)-22A(t)]V(t) ,  V(ao)=Vo, ao<<.t<<.al, 2 > 0 .  (18) 
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Theorem 1. Under hypothesis (4), let ~(ao, al), [3(ao, al) be positive numbers defined by 

 ,ao a ) 

, ,ao a 

Then the solution V(t) of (18) satisfies 

II v( t )ll <<-II Voll e(t-a°)[13(a°'al )-2zcffa°'al)]' 

; ao<~t<<.al}, 

ao <<. t <<. al } . 

ao <<. t <<. al. 

Proof. By [12, p. 114] the solution V(t) of (18) satisfies 

II v(t)][ ~< II Voll exp # (B(s) - A2A(s)) ds , 
N o "  a 0 

By (11) one gets 

{ ( B ( t )  +BH(t) 
# (B(s) - 22A(s)) = max z E o- 2 

and by [2, p. 246] it follows that 

ao <<. t <~ al. 

l <<.i<<.r, 

193 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

,25, 

where 2i(A(t)+ AH(t)/2) is the ith eigenvalue of the matrix (A(t)+ AH(t))/2. By (22)-(25)  and 
(19)-(20),  it follows that 

#(B(s)_22A(s) )<~p(B( t )2BH(t )  ) - 2 2 m i n { z E a ( A ( t ) 2 A r ~ ( t ) ) }  

~< ]3(ao, a l ) -  220~(ao, al), ao<<.s<<.al. (26) 

Thus the result is established. [] 

Now from [4], see also [3], if V(t) is the solution of 

V'(t)=[B(t) - 22A(t)]V(t), V(ao) = Vo, ao<~t<<.al =ao + h, 

and Vt"l(t) is the Fer approximation of order m of V(t), for ao ~<t ~<al one gets 

II V(t) - vtml(t)l[ <~ ]111011 g(m)(al, ao) e x'°){a''a°)+2K(')(al'a°), (27) 
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but in the problem we are considering it is preferable to take a refined bound. From Fer's algorithm 
we have V = V [m] Vm, s o  V - V Ira] = V I )  m w i t h  / )m ~--- I - -  Vm -1 . If  we consider that 

(Vm' ) '  = (28) 

t h e n  

Din(t) = - ~ ( S ) S m ( s )  ds. (29) 

Taking norms and considering II mI~-I(s)H ~< eX")~al'a°) we have flOm(t)][ <~ el~"~a~,a°)K~m)(aj,ao), then 

II v ( t ) -  vtml(t)l[ <~ II V]leK~'~'~°~g¢m)(al,ao), (30) 

where 

K~°)(s, ao) >>- l i B ( t )  - 22.4( t )1]  dt. (31) 

By (30) and Theorem 1 for a0 ~< t ~< al one gets 

II v(  t ) - vtmJ(t)l[ II Vol]e(t-~°)[fl(~°'a' )-2"2~(a°'~ )]eg'm'(a"a°) g(m)( al, ao ) • (32) 

Remark 2. Once we approximate the solution of (12) by the Fer approximation vtml( t )=e F~t)... 
e F"(t), it is necessary to compute the matrix exponentials e g'(t), where matrices F~(t) are related by 
(14). Numerous algorithms for computing matrix exponentials have been proposed, but most of  them 
are of dubious numerical quality, as is pointed in [24]. In accordance with [24], scaling and squaring 
with Pad6 approximants and a careful implementation of  Parlett's Schur decomposition method, see 
[13, Ch. 11], were found the less dubious of  the nineteen methods scrutinized. A promising method 
for computing matrix exponentials has been recently proposed in [9]. 

3. Exact and approximated theoretical solutions 

The eigenfunction method suggests to seek a series solution of  Problem (1 ) - (3 )  of  the form 

Z . nnx . (x , t )  = Tn(/) sin ( - - ~ )  , (33) 
n~>l 

where T.(t)  is the cgr-valued solution of the initial value Problem (7)-(8) .  The solution of  the vector 
problem can be written in the form 

T.(t) = U.(t)c., (34) 

where U. is the solution of  the matrix initial value problem 
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By the Riemann-Lebesgue lemma, there exists a constant M such that 

IIc, II ~< M, n ~> 1, (36) 

and by Theorem 1 and (34), solution of (7)-(8) satisfies 

II r,(t)l[ ~< Met[l~(°'t')-(n~/p)2~(°'tl )] (37) 

Metlfl(°'t~)e -t°(nn/p)2~(O'tl), 0 < to <~ t <<. tl, (38) 

[Ir~(t)ll <~ (l[B(t)l[ + (n~/P)ZllA(t)l[)llTn(t)]l (39) 

< ~ ( b ( t l ) + ( p ) 2 a ( t t ) ) M e t a # ( ° , t ' ) e  -to("~/p)2~(°,tl), 

where 

a(t , )=max{l lA( t )[I;  0 <<. t <~ t,}, 

b( t l )=max{l lB( t ) l l ;  0 <<. t <<. tl}. (40) 

Hence the series appearing taking termwise partial differentiation in (33), once with respect to t, 

E '  ( ) T,~(t)sln nrtx , 
n~>l \ P / 

and twice with respect to x, 

Z n ~ T n ( t ) c o s ( n n x ~  , 
o>11 p \ P /  

(nr¢)  2 (nrcx )  
--~}'~n>~l \ P /  Tn(t)sin ~ , 

are uniformly convergent in D(to, t l ) =  {(x,t); 0 <<.x <<. p, 0 < to <<. t <~ tl}. By the derivation the- 
orem of functional series [1, p. 402], one gets that u(x,t)  is termwise partially differentiable with 
respect to the variable t and twice termwise partially differentiable with respect to the variable x. 
By (7)-(8) it follows that 

ut(x, t) = n(t)u(x, t) + A(t)Ux~(X, t), 0 <~ x <<. p, t > O. 

If each component fj off-= (j~,... ,f~)v satisfies one of the conditions: 

(i) j~ is locally of bounded variation at every point x in [0, p]. 

(ii) ~ admits one-side derivatives (f})R(X) and (f})L(x) at 

every point x in [0,p], (41) 

and f is continuous in [0, p] with f ( 0 ) = f ( p ) =  0, then by [5, p. 57] it follows that 
• {nr~x'~ 

f ( x ) = ~ - ' e ,  sm~--2- )=u(x ,0  ), O<<.x<~p. (42) 
n>~l k _M / 

Thus the following result has been established: 
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Theorem 3. Let A(t),B(t) continuous cgr×r-valued functions such that condition (4) is satisfied. 
Let f (x)  be continuous in [0, p] with f(O) =f (p ) )  -- 0 and let each component J) o f f  satisfy one 
of  the conditions of (41). Then u(x,t) defined by (33) when T,(t) satisfies (7)-(8), is a solution 
of  Problem ( 1 )-(3). 

Given e > 0 we are interested, under hypotheses of Theorem 3, in the determination of an index 
no so that 

[n>~n ° ( n r t x ]  2'e Tn(t) sin k-p--/  < (x,t)ED(to, tl). 

From (38), considering that 

~ ~  e -t°(n~/p)2e(O'q ) ~ e -t°(x~/p)2e(O'q ) d~ --  

~ >no 

(43) 

P )erfc (n°rc ~ )  
2v/ltto~(0, tl \--p-- 

where erfc(t)=(2/x/-~)ft~e -x2 dx is the complementary error function, and from (43) it follows 
that 

Met'~(°'tl)P ( ~  ) 
(44) IIT.(t)ll 2x/rct0~(0 ' h)erfc tv/~o~(0,tl) • 

n>,0 

Hence, taking the first positive integer no such that 

erfc (np  ~ ) tl ) ex/rct0ct(0, tl ) (45) 
< Met~fl(o,t,)p , 

inequality (43) holds and 

- Z Tn(t)sin nnx < 2' (x,t)ED(to, tl). (46) 
~=I \ P /  

Thus the following result has been established: 

Corollary 4. Under hypothesis o f  Theorem 3, /et t~ > to > 0, e > 0 and let D(t0, tl ) be defined by 
(6). I f  u(x,t) is the exact series solution of  Problem (1)-(3) given by Theorem 3, and no is the 
first positive integer satisfying (45), then 

no . f n~x'~ 
u(x,t, no)= ~ T,(t) sm~ --p--) (47) 

n:l 
is an approximation satisfying (46). 

4. Continuous numerical solution 

Section 2 was concerned with the study of the local error, in the convergence domain, using 
Fer's approximation for the solution of Problem (7). If we are interested in the approximation of 
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Problem (7) using Fer's algorithm in an interval [to, tl] where Fer's method is not convergent, then 
we may split the interval in subintervals with guaranteed convergence. In this section we address 
the following question: Given e > 0, 0 < to < tl and no given by Corollary 4, how to determine 
the order m of  the Fer's approximation T[nm](t) of the exact solution T.(t)  of Problem (7) - (8)  such 
that the error with respect to the exact solution be smaller than e/(2no) when the whole interval of  
integration is split in N subintervals and the algorithm is used in each interval, i.e. to look for m 
such that 

0 < t 0 ~ < t < ~ t t ,  1 ~<n~<no. (48) ILT"(t)- Tffl(t)[I < 2n---~' 

Let h > 0 and consider the partition 0 = h0 < h~ < . . .  < hN = t~, where hj = j h ,  0 <~ j <<. N and 
Nh = tl. If  hj <<. t <<. hi+l, then we can write 

T.(t)  = Un(t, O)c~, (49) 

U~(hj, h j ) = l ,  h i <<. t <<. hi+l, 

Un(t,O) = Un(t, hi)Un(hi, h i _ l ) . . .  U.(h,0), hi <~ t ~< h;+l. (51) 

Let us introduce the notation 

U n ( l ,  h j )  = U n , j ( t ) ,  u [ m ] ( t ,  h j )  = Un[,~.](/), (52) 

O <. j <<. N - I, hj <. t <~ hj+l, 

where for simplicity we will write U./(hj+~ ) =  U.,j(h), Ira] __ Ira] , UA,j (hj+l) - U~j (h). Thus for hi ~ t <~ hi+l, 
0 ~ < i ~ < N - 1  we can write 

Un(t,O) -- u [ml ( t ,O)=  Un,,(t)Un, i - ~ ( h ) " "  Un, o(h) - U[ . ,~] ( t )U~(h)  "'" Un[ol(h) 

= ( U n ,  i ( t )  - -  Uffg(t))Un, i_~(h ) . . .  Un, o(h) 

+u~m, il(t)(U~,i-~(h) - U~J_l(h))U~,i-2(h) . . .  Un, o(h) 
[ - . .  , 

+U~]( t )  "'" U~]-j+l(h)(Un, i - j (h)  - U~]_j(h))U~,i_j_l(h) . . .  U~,o(h) 
-.~ . ° . 

+ u ~ l ( t )  U[n~l(h)(U~,o(h) tin] . . . .  V~,o(h)). 

Hence 

i 
II u~(t,  o )  - f[m](t~ 0)11 < ~ II utg(t)Jl  ' ' '  ]J utah-j+, (h)J] II U, , ,_ j (h )  - ut~[j(h)lJ 

j=0 

× I I u , , i - s - l ( h ) l l . . .  Ilu,,0(h)ll, hi ~ t <<, hi+l. (53) 
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(30), for hj ~< t ~< hj+l it follows that 

I/ut~J(t)ll ~< IlU.,j(t)lle<7("h,), (54) 

IlUn, i_j(t ) [,,] 1z (,-~[[/(-(m) L(t h ] _ K ( "  , .(t, h i_ j )  (55)  - U~,i-j(t)[I < l[ ~ n , i - - j \ % l H * * n , i - - j * , " - - i - - j ,  *~ . . . .  J " 

By (54)-(55)  one gets 

II u.t~l(t)ll - . .  [I ft~_j+~(h )l[llU.,,_j(h ) - ut.m)_j(h )][ 

~< I[ u..i(t)ll Ilu..i-S+l(h)[[[[ (m) • "" Un, i-j(h)llg'.._j(h~-j+~, hi-j)  

× exp(K~7)(t, h~) + K~3~_~(h~, h,_l) + . . .  + K~Z~_j(hi_j+~, h,_s)). (56) 

Note that by Theorem 1, for 0 < to ~< t ~< tl one gets 

IlUn, i(t)[I . . .  IIf.,o(h)l[ < et l f l (O' t l ) - t° (nn/P)z~(O' t l ) .  (57) 

By (53)-(56)  and (57) it follows 

II u~(t, o) - u [ m ] ( t ,  o)11 < etlfl(O'tl)--t°(nn/P)Zct(O'q) 

i 
(m) (m) ± K (m) tt, h ~ x ZK~,,i_j(hi_j+l,hi_y)exp(K~,,i (t, hi) (m) +Ktn, i_l(hi, hi-1) + ' ' "  T n , i - - j~ . t t i - - j+ l ,  i - - j ] )  

j=0 

to 
h,- ~< t ~< hi+l, No = ~ ~< i ~< N - 1. (58) 

Let 0 < 5 < 1, and let no be given by Corollary 4, then take h > 0 and select the integer N such 
that 

N > tl a(h )(nox/p) 2 + b(t~ ) h tl 
6~ N" 

Then taking 

6 n = a(fi)(nn/p)2 + b(h))6, 1 ~ n <~ no, 
a(tl)(non/p) 2 + b(6 

where 6. ~< 6 and 6. 0 = 5 ,  one can consider 

fJ; B(s)--(nrc)2A(s)]\ P / d s<K~?] ( t ' h j )=h[  a(tl)(nr~)2\7/ 

jh <~ t <<. ( j  + l )h, O <~ j <<. N - 1 ,  l <<. n <<. no. 

By (60) and (61) it follows that 

X(°!tt.,j., hi) <~ K(.°.](hj+,,hj) < 6.~, h,,; 
K~,j (t, hi) = ¢ ' , 

(59) 

(60) 

+ b(h )] < 6n¢, 

(61) 

(62) 

(63) 
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v(m)tt" h j )  = ~ ( l ' h j )  K(m)rt h j )  ~ *Xn, j t rtj+l, ~ 6n m(~), (64) n , j  \ ~ 

6n.m(~) = 62.~, lim (m) K 'j (t, hs) = 0. (65) 

Under hypothesis (59), by  (58), (65) it follows that 

i 
I[ U.( t, O) - u[nm]( t, 0)l [ ~< e t'a(°''' ~-t°("~/ p)~ ~(°'t' ) 3.,,.( ¢ ) e ~".~(O ~ e jan'm( O, 

j=0 

2 e (i+~)a.,-(o 
: et, fl(O,t,)_to(mt/p ) ct(O,t,)(~n,m(~) e6n, m(¢) -- 1 

e &,m(O - 1 

i h ~ < t ~ < ( i + l ) h ,  N 0 ~ < i ~ < N - 1 .  (66) 

Note that i f  e > 0, x > 0, by  the mean value theorem e ~x - 1 = 0~xe ~" for some s E ]0,x[. Hence, 
using that e x - 1 >~ x, one gets 

e ~x -- 1 
- -  ~ < ~ e  ~s~<~e ~x, x > 0 ,  ~ > 0 .  ( 6 7 )  
e x -- 1 

By  (66), (67) one gets 

II uo(t, o) - u[m](t, 0)11 ~eta~(O't~)-t°(nn/P)za(O'tl)( i + 1 )(~n,m( ~) e(i+2)6n'm(~), 

and by  (34) it follows that 

[I T~(t) - T[m](l)[[ ~ IIc. 1[ Net'3(O'tO-t°(nn/p)2~(O't' )(~n,m(¢) e(N+l)&'~(O, 

O < to <<.t<<.t~, l <<.n<<.no. (68) 

Let Pn be the unique root o f  equation 

~,etO(mt/p)Zct(O, tl ) 

xe (N+1" = 211cnNNet~o,t~)no, 1 ~ n  ~no  (69) 

and let m. be the first positive integer m satisfying 

l n ( ~ )  (70) 
2" > ln(6.------)' 

then 

and 

2'n ln(6.) < In ( ~ ) ,  ~n,m(~) ~- ~ (~2m < Dn, (71)  

[[ T~(t) -- T[~ml(t)[1% 2n0' O<~t<.tl, l <.n<.no. (72) 
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5. The algorithm and an example 

We begin this section summarizing the algorithm proposed in Sections 3 and 4 for the construction 
of  a continuous numerical solution of  Problem (1)- (3) ,  such that under hypothesis (4) satisfies 

, , ,x , t , -   73, 

STEP 1. Truncated theoretical approximation. 
Given 0 < to < 6, e > 0: 
• Compute M given by (36) and a(O, 6),  fl(O, tl) given by (19) and (20). 
• Take no as the first positive integer n satisfying (45). 
STEP 2. Construction of  continuous numerical solution. 
Given no, let 0 < 6 < 1 fixed and ~ = 0.8604065: 
• Compute a(6),  b(tl ) given by (40). 
• Select h > 0 and an integer N such that Nh = 6, and satisfying (59). 
• Compute the root Pn of  Eq. (69) for 1 <~n<~no. 
• Given Pn take the first positive integer rn~ satisfying (70) for 1 ~<n ~<n0. 
• Compute T~,ml(t) for 1 <~n<.no. 
• u(x, t, no, m) ---- ~-~nn° = 1 T[nm](t) sin(mrx/p) is an approximate solution satisfying (73) uniformly 

for (x , t )ED(to ,  tl). 

Example. Let us consider Problem (1 ) - (3 )  in (~2×2 where 

( 1 t )  ( l - - ie  t )  A(t)---- 1 ~e • B( t ) - -  1 --t 1 ~ l t ~e --~e 

and f (x)  any function in (g2 satisfying the hypotheses of  Theorem 3, such that [[¢,lJ < M with M =  1. 
1 and tl -- 1 and the error bound e = 10 -3. Then we We will consider p = 1, 0 < to ~< t < 6 with to = 

can choose 

~(0, l ) =  1 - ~(e + e - l ) ,  

fl(0, 1 ) =  1 + l ( e  -~ e - l ) .  

The next step is to look for the minimum no satisfying (45). That happens for no = 3 where 

nox 1)) erfc \(--~- ~ = 2.9885 × 10 -6 < 1.5539 × 10 -4 = e ~/ut°a(O' 1) 
Met~/~(o,l ) " 

Following the second step we choose 3 = ~1, and taking 

1 a(tl ) = b(6 ) = 1 + ~e 

the number of steps to consider is 

2 
b ( t l ) +  ( - ~ )  a(/1) 

tl = 1928.8 < 2 0 0 0 = N  
6¢ 
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or equivalently h = 1/2000. The values o f  6n are 

61 = 1.100 × 10 -2, 32 = 4.097 × 10 -2, 33 = 6 = 1 
11" 

Now we compute the root p, o f  Eq. (69) for 1 ~<n~<3, giving us 

Pl = 7 . 0 0 9  × 10 -8, P2 =2 .649  x 10 -6, P3 =4 .5 7 7  x 10 -4. 

Finally we take the first positive integer m,  satisfying (70) for 1 ~<n~<3. We obtain 

2 '~' > 3.619, 2 m2 > 3.972, 2 "3 > 3.144 

and so m~ = m2 = m3 = 2. To sum up, using the Fer 's  factorization to second order for the three first 
terms o f  the series, the error o f  the approximate solution will be smaller than ~ = 10 -3. For e = 10 -4 
(with no = 3) and taking now 6 = 1/22.8 we can choose N =4 0 0 0 .  Following the same calculations 
we find also ml = m2 = m3 = 2. 

Remark 5. Note that previous algorithm involves a free parameter 6 with 0 < 6 < 1 and its choice 
is significant. In accordance with (59) i f  6 ~ 0 then h must tend to 0 also. This means that we need 
to apply Fer 's  approximation more times, in more subintervals in which the original interval [t0,fi] 
is split. I f  6 ~ 1, then we apply Fer 's  approximation a minor number o f  times but, by  (70), the 
integer m proposed by  the algorithm as the order o f  the Fer 's  approximation to construct T,l'~(t), 
increases as well as 6 ~ 1. Taking into account the complexity o f  the nested integrals ( 1 3 ) - ( 1 4 ) ,  

1 Of  course the optimal value o f  6 is also depending on the in general, we suggest to take 6 < 5" 
interval [t0,tl] and the minimum of  the positive eigenvalues o f  the real part o f  A(t), see Condition 
(4). 
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