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Abstract

We show that the orbit closures for directing modules over tame algebras are normal and Cohen—
Macaulay. The proof is based on degenerations to normal toric varieties.
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1. Introduction and the main results

Throughout the paper k denotes a fixed algebraically closed field. By an algebra we
mean an associative k-algebra with identity, and by a module a finite-dimensional left mod-
ule. Furthermore, for an algebra A, mod A stands for the category of finite-dimensional left
A-modules. By N and Z we denote the sets of nonnegative integers and integers, respec-
tively. Finally, if i and j are integers, then by [i, j] we denote the set of all integers k such
thati <k < j.

Let d be a positive integer and denote by M(d) the algebra of (d x d)-matrices with
coefficients in k. For an algebra A the set mod4(d) of the A-module structures on the
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vector space k9 has a natural structure of an affine variety. Indeed, if A ~k(X1,..., X;)/1
for t+ > 0 and a two-sided ideal I, then mod (d) can be identified with the closed sub-
set of (M(d))" given by the vanishing of the entries of all matrices p(X1,..., X;) for
p € 1. Moreover, the general linear group GL(d) acts on mod4(d) by conjugations
and the GL(d)-orbits in mody4 (d) correspond bijectively to the isomorphism classes of
d-dimensional left A-modules. We shall denote by Oy the GL(d)-orbit in mod4 (d) cor-
responding to (the isomorphism class of) a d-dimensional module M in mod A. It is an
interesting task to study geometric properties of the Zariski closure Oy of Q.

The above problem can also be formulated in terms of representations of finite quivers
instead of modules over algebras. Here, by a finite quiver X' we mean a finite set X of
vertices and a finite set X'| of arrows together with two maps s, t: Xy — X, which assign
to an arrow its starting and terminating vertex, respectively. Let d = (dy)yex, € N20 be a
dimension vector and let M(m, n) denote the space of (m x n)-matrices with coefficients
in k. The affine space

repr(@) = [ [ Mdi, da)

aeX]

is called a variety of representations of . The product GL(d) =[]
linear groups acts on rep 5. (d) by conjugations:

GL(d,) of general

XEEO

g-V= (gtot Vocg;)tl)ozexl

for g = (gx)xex, € GL(d) and V = (V)aex, €repx(d). The orbit of V e reps (d) with
respect to this action is denoted by Oy, and its closure by Oy . In fact, the module varieties
and varieties of representations of quivers are closely related to each other (see [7] for
details). In particular, for any algebra A there is a uniquely determined quiver X (called
the Gabriel quiver of A) such that for each d > 1 and M € mod 4 (d) there are a dimension
vectord e N20 and V e rep 5 (d) such that Oy is isomorphic to the associated fibre bundle
GL(d) xGL@) Oy . Hence Oy is normal, Cohen-Macaulay, unibranch or regular in some
codimension if and only if Oy is.

The orbit closures are normal and Cohen—Macaulay varieties (with rational singularities
in characteristic zero) provided ¥ is a Dynkin quiver of type A, or D, [5,6], or A is
a Brauer tree algebra [13]. Moreover, they are regular in codimension one if X' is the
Kronecker quiver [1], or A is a representation finite algebra [17], i.e., a set ind A of chosen
representatives of isomorphism classes of indecomposable A-modules is finite. Another
result states that the variety Oy is unibranch if there are only finitely many modules U in
ind A such that there is a monomorphism from U to M ! for some i > 0 [15]. On the other
hand, there exists an orbit closure in rep s ((3, 3)), where X' is the Kronecker quiver, which
is neither unibranch nor Cohen—Macaulay (see [16]).

‘We say that an algebra A is tame if we can chose ind A in such a way that for every d > 0
all d-dimensional modules in ind A can be described by finitely many one-parameter fam-
ilies. According to Drozd’s Tame and Wild Theorem ([11], see also [10]) there is a chance
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to classify modules only for tame algebras. An indecomposable module M in mod A is
called directing if there exists no sequence

M:MOL>M1—> —)Mmlng—M

in mod A, where m >0, My, ..., M,,_1 belong to ind A and f1, ..., f,; are nonzero non-
isomorphisms. Bongartz investigated from the geometric point of view a special class of
directing modules, so called preprojective ones (see [8, Proposition 6]). Further results in
this direction were obtained by Skowroniski and the first named author in [3] (see also [2]
for the case of decomposable directing modules). The following main theorem of the paper
completes the results of [3] to the general case.

Theorem 1.1. Let M be an indecomposable directing module over a tame algebra. Then
the variety Oy is normal and Cohen—-Macaulay.

Using [3, Theorem 2] (see [4, Proposition 2.4] for the correct list of algebras) and the
geometric equivalence described in [7] we get that Oy is isomorphic to the associated
fibre bundle GL(d) xGL(a) Op, where either Op is a normal complete intersection, or up
to duality, P is defined as follows. Let 0 < p < g <r < s <1, let A be the quiver

o) [7=8] Or+4 ar+6 0‘3+4

e \ > AN

o [04
p+1 p+2 o)
. . . T er+l o2

1 s+1
o < °

p+1
ak / \ F/t%
. Ag+2 . or+3 or45 O‘Y+6 L Yrta °
q+1 1+1

(if some of the inequalities between 0, p, g, r, s and ¢ are equalities, then we obtain the
obvious degenerated version of the above quiver; see also a more detailed discussion about
the definition of the quiver Q(p, q,r,s,t) after Proposition 2.3 in Section 2) and let d
be the dimension vector in N4°, whose (r + 1)th coordinate equals 2 and the remaining
coordinates are 1. Then P = P(p, q,r,s,t) is the point (Py)aen, € rep,(d) such that

Po, . =1 0], Po,n=1-1 —1], Po, s =10 1],
Py =10 117, Py, s=[1 0],

and the remaining matrices P, are equal to [1]. Hence Theorem 1.1 is a consequence of
the following result.

TheoreIE 1.2. Let P = P(p,q,r,s,t) for some integers 0 < p < g <r < s <t. Then the
variety Op is normal, Cohen—-Macaulay, and has rational singularities in characteristic
zero.
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The idea of the proof is to degenerate such varieties to toric normal varieties using the
so-called Sagbi-bases (see [9,12]). These normal toric varieties appear in the following
theorem.

Theorem 1.3. Let Q be a finite quiver without oriented cycles, let d be the dimension
vector in N0 with the coordinates equal to 1 and let V be the point of rep (d) given by
the matrices equal to [1]. Then Oy is a normal toric variety.

The paper is organized as follows. In Section 2 we prove Theorem 1.3 and investigate
the equations defining the toric varieties described in the theorem. Section 3 is devoted to
the proof of Theorem 1.2.

2. Toric varieties

Let Q be a finite quiver without oriented cycles and let d = (d;);c g, be the dimension
vector in N0 with all d; equal to 1. Then the algebraic group GL(d) = [l cg, k" is atorus
and the orbit closures in repg (d) are affine toric varieties (here we do not assume that
toric varieties are normal). In partlcular this holds for the orbit closure Oy, where V =
(Va)ae g, 1s the point of repQ(d) with V,, = [1] for any arrow o € Q1. Let e, =€,y — €54
for o € Q1, where (e;);eq, is the standard basis of 790 1t follows from the definition of
the action of GL(d) on rep,(d) that Oy corresponds to the semigroup

Co= 3 N.e,Cz®,

OtEQl

which means that the algebra k[Oy] of regular functions on Oy may be identified with the
subalgebra of k[T;, Tfl]iEQO generated by 7%, o € Q1, where for X = (x;);ecg, € 790 we
put T = ]_[l- 0o Tix". According to this identification, k[Oy] as a vector space has a basis
formed by T*, x € Cg. It is well known that an affine toric variety is normal if and only if
the corresponding semigroup C is saturated, i.e., if a lattice point x belongs to the subgroup
of Z" generated by C and Ax € C for some A € N\ {0}, then x € C. It is known that Cop
is a saturated semigroup (see [14, Example 3.7]), but for completeness we include a short
proof below.

For a vector X = (x;)icq, € 790 and a subset F of Qo we abbreviate by Xz the sum
Y icr Xi- A subset F of Qg is called a filter in Q if

saell = taelF
for any arrow o € Q. Let X be the subset of all x € 720 such that Xg, =0and xp >0
for any filter F in Q. Obviously X is a saturated semigroup. Hence Theorem 1.3 is a

consequence of the following fact.

Proposition 2.1. Cop = X .
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Proof. Obviously Cp € Xo. Let X = (x;)icg, € Xo. In order to prove that x € Cp we
proceed by a double induction, first: on the cardinality of Q¢, and second: on the integer
ZFE}— xr = 0, where F is the set of all filters in Q.

Assume first that there is no arrow in Q (for example, this holds if Qg has only one
element). Then for any i € Qg, {i} is a filter in Q and thus x; > 0. On the other hand,
> icg, Xi =0, which gives x =0 € Cg.

Assume now that there is a proper nonempty filter F in Q such that xg = 0. Let Q' and
Q" be the full subquivers of Q such that QO = F and Qj = Qo \ F. Then x =x' + x”
according to the canonical isomorphism

7,20 ~ ZQf) ey ZQS_

Observe that X' € X o and X" € X o. By the inductive assumption, X' € Co' and X" € Cr.
Consequently, x € Cor @ Cgr S Cp.

Hence we may assume that O is nonempty and that Xz > O for any nonempty proper
filter F'in Q. Choose o € Q1 and let y = x —e,. Obviously y g, = 0. Since there are no ori-
ented cycles in Q, there is a filter F in Q withta € F and sa ¢ F. For any such filter yr =
xr — 1 > 0, while for the remaining ones yr = xr > 0. Hence y € X and ZFe]—‘YF <
Y rer XrF. By our inductive assumption y € Cp, which givesx =y +e, €Cp. O

Now we consider the problem of finding equations defining Oy . More precisely, we
want to describe generators of the ideal I 0> which is the kernel of the algebra homomor-
phism

k[Salaco, — k[Ti, T;'] Sy > T

i€Qo’
For W = (Wq)aco, € Z2' we define wh = (W) )acp,, W~ = (w3 )aco, € Z2! by

+

w, =max{wy,0} and w, =max{—wy,0} fora e Q;.

Let U : 22" — 7,20 be the group homomorphism such that 2/(f,) = e, for @ € Q1, where
(fo)ae g, is the standard basis of Z21. Then Ic, is generated by the binomials

SYT_SY with w € Ker(U),
where

SV =[] sy« forw=(weaecg, €N?
€0

(see [14, Lemma 1.1]). Note that Ker({/) consists of the vectors w = (wg)wec@; € Z21 such
that

> wy=) w, forallie Q. 1)

so=i ta=i
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In the case of toric varieties occurring in Theorem 1.3 we shall indicate a special finite
subsets of Ker(!/) for which the corresponding binomials generate the ideal I¢,, .

Let O* be the double quiver of Q, i.e., the quiver with the same set of vertices as Q and
the set of arrows Q1 U Q| , where O = {o™ | @ € 01} is the set of the formal inverses o™
of arrows « in Q with sa¢™ =tw and ta™ = s«. By a nonoriented path in Q we mean an
oriented path in @* which does not contain neither «a™ nor @~ « for « € Q; as a subpath.
By a nonoriented cycle in Q we mean a nontrivial nonoriented path in Q which starts and
terminates at the same vertex. A nonoriented cycle is called primitive if it does not contain
a proper subpath which is a nonoriented cycle.

With a primitive nonoriented cycle 81---f; in Q we may associate a vector u =
(to)aco, € 721 in the following way:

1, o =B forsomei € [1,1],
Uugy=13 —1, a~ =p; forsomei €[l,1], e Q.
0, otherwise,

Note that u € Ker(i/). Let Z be the set of all vectors obtained from primitive nonori-
ented cycles in Q in the way described above. Observe that Z = —Z, which means that
—u € Z for any u € Z. Thus we can choose a subset Z’ of Z such that Z = Z"U (-Z2)
and Z' N (—Z’) = @. Note that the elements of Z’ correspond bijectively to the equiv-
alence classes of primitive nonoriented cycles in Q under the relation which identify a
cycle with all its rotations and all rotations of its inversion (since these notions seem to
be self-explained we will not give precise definitions here). Our next aim is to show that
the binomials corresponding to the elements of Z’ (hence to the equivalence classes of
primitive nonoriented cycles in Q) generate Ker({/). We start with the following auxiliary
observation.

Lemma 2.2. If w € Ker(i) is nonzero, then there exists u € Z such that ut < w* and
u <w.

Proof. Let w = (wq)qecp, be a nonzero element of Ker({/). We construct inductively an
infinite nonoriented path w = B1 8283 - - - in Q, such that for each j > 1 either 8; = a for
an arrow o € Q1 with wy > 0, or 8; =™ for an arrow o € Q1 with w, < 0. We take an
arbitrary arrow o € Q1 with wy # 0 in order to define 81. Assume now that 8, is defined.
If 8, = « for « € Q1, then it follows from the equality (1) for i = t«,, that there is an arrow
a’ # a such that either sa’ = ta and wy > 0, or ta’ = ta and w, < 0. In the former case
we put 8,41 = o, and in the latter B,+1 =a'~. If B, = a~ for a € Q1, then we consider
the equality (1) for i = s and we define §,4; in a similar way as above. Since the quiver
Q is finite, there exists a primitive nonoriented cycle which is a subpath of w. The vector
corresponding to this cycle satisfies the claim. O

Now we can prove the announced result.
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Proposition 2.3. Let Q be a finite quiver without oriented cycles and assume the above
notation. Then the ideal I¢, is generated by the binomials

+

ST _sY . ueZ.

Proof. Since

vt

SV = (s — s
if v=—uand u € 291, it suffices to prove that if w = (wq)qep, belongs to Ker(f), then
DAL belongs to the ideal generated by the binomials

+

S _SY . ueZ.

We proceed by induction on |w| = Zate |wg| = 0. If |[w| =0, then w = 0 and we are

done. Otherwise by the previous lemma, there is a vector u € Z such that ut < w' and
u~ <w . Then

wr=u"+v" and w =u 4+v" forv=w—u.

Moreover, v € Ker({/) and |v| = |w| — |u| < |w|. Since

+

SYT ST =SSV -5 ) 45 (S —8V),

the claim follows by the inductive assumption. O

The above proposition gives us a finite set of generators of I¢,,. As we shall see below,
this set usually is not minimal.

We restrict now our findings to a quiver Q of a special form. Let0 < p <g <r <s <t.
We define a quiver Q = Q(p, q,1,s,t) in the following way. f 0 < p <g <r <s <,
then Q is the quiver

+

1 }M// W s+4

o — > . — > <0

B Bp Br+2 ﬂr 1 Bs+9
Bi ! \ /,+8 " ’ By+10

Br+3 \
L et

0e ° ) ®r+5

p+1 q
Br+a + P
Bg+1 r+9 Br+10
B /,35 \ Lot

By+2 Br+9
o ——> - 0

q+1 - }; /s+5 t+4
r

Br+10
4
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If0=p(p=gq,q=r,r=sors =t,respectively) then we cancel appropriate arrows and
identify vertices O and p (O and g,0and r,r +5 and t +5, or s +5 and 7 + 5, respectively).
Thus in the most extremal case 0 = p =g =r = s =t we get the quiver

1
°

\u

= [

3

Ve
=
3

with 6 vertices and 10 arrows.
Recall that fg,, ..., f4,, , is the standard basis of Z2!. Let
u; =fg . forie[l,10] and
up =11 5, 2 =f[,41.41 w3 =fig 1.0
s =fj411.5410) w5 =fs+11,0+100
where f; jy =3 _,; jfp fori, j € [1,7 + 10]. Observe that it may happen that u; = 0 for
some i € [11, 15]. With the above notation Z’ consists, up to sign, of the following vectors:
Vi =uy+uj —u3 —u,
V2 =u4+up —us —ug3,
V3 =uj +ug —uy —uy,
V4 =1U5 4+ Uj9 — Ug — Ug,
Vs =Uu3 + U9 +-Uj5 — U4 —Ug — Uj4,
Ve =U] + U9 +-Uj] +Uj5 — U4 —U7 — U2 — U4,
V7 =u3 +Uujp +Uj2 +Uj5 — U — Ug — U3 — U4,
Vg =Uuj +Uujo +Uuj] +Uj5 — U — U7 — U3 — U4,
Vo=uj +ug+uj —u3 —uy —uy,
Vip =Us4 +ujo + U2 — g — U9 — W13,
Vit =u +u4 +up —u3 —u5 —uy3,
Vi =u;+u3+ug+uj5s —uy —ug — U7 — U4,

Vi3 =u3z+us+upp+u;s —ug —Ug —ug —uyg,
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Vig=uz+ug+uj +u5s —ug —ug —up — U4,

Vis =u3 +Ug + U2 +uj5 —Us —Uug — U3 — Uj4,

Vie=u] + U4 +ug +uj] —u3 —us —u7 —uy3,

Vi7=u2 + U4+ 00+ U] — U3 — U — U9 — U3,

Vig=u; +u3+ug +upp+uj5s —up —us —uy —u3 — U4,

Vig =U2 + U5 +Uj0 +Uj] + U5 —Ug — U — Ug — W2 — U4,

V20 =U] + U3+ U5 +ujp + U5 —u2 — Uy —Ug — U7 — U4,

V21 =u2 +Ug + U + U5 —us —ug — U3 — U4,

V22 =uj + U4 +ug +ujp+upp —u3 —Ug — U7 — U9 — U3,

V23 =uj +Ug + Uy U5 —Us — U7 — U3 — Uj4,

Vo4 =Up +Ujo + U1 U5 —Ug — U — U3 — Uj4,

V25 =up +Uus +ujo +uj +uj5s —u4 — g — U7 — U2 — Up4,

V26 =] + U3+ U0 +Uj2 + U5 — U — Ug — U7 — W3 — U4,
Indeed, recall that the elements of Z’ correspond to the equivalence classes of the primitive
nonoriented cycles in Q. Note that each such equivalence class is determined by a non-
empty subset of the set consisting of the five inner polygons visible on the picture of the
quiver Q. There are 25 — 1 = 31 such nonempty subsets, 26 of them lead to our vectors v;,
i €[1,26], and none of the remaining five subsets corresponds to the equivalence class

of a primitive nonoriented cycle in Q (they may be seen as corresponding to equivalence
classes of two disjoint primitive cycles).

Lemma 2.4. Let Q = Q(p,q,r,s,t) for 0 < p < g <r <s <t Then the ideal ICQ is
generated by the binomials

SV SV, iell8].

Proof. By Proposition 2.3, it suffices to show that the above binomials generate the re-
maining binomials

SV —S% . ie[9,26].

This is a quite easy, but tedious verification. Hence we prove the claim only for i =9 and
i =21, leaving the other cases to the reader:

Sv;r _ SV; — SU1 SugSull _ Sll} SU7SU12
= Sui (S“I Sus _ SU2SU7) + §W (Sllelln — W Su12)

— SMI(SY3 — %) 4 SYT(SVT — %),
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Sv;’l _ V21 — §W2 gUo gUII GUIs _ GUs GUs gUI3 GUI4
= WS (SU2 U — g gt2) - gHI2 (g3 gU9 gUIs _ gUa gUs gUI4)
4 SUBSUI(SU M2 — S5 gU3)
= SWSM(S¥ — 1) 4 SU2(SS — %)

+SUsha(sS —§%). O

3. Degenerations to toric varieties

Let A, d and P be as in Theorem 1.2. As usual eq,...,e;;5 denote the standard
basis of Z!*3. For i, j € [1,1 + 5], e;,j} = Dieqi € I X = (xiie[1,145] € k't5 and
w= (wi)ie[l,,+5] € NtJrS, then xV = Hie[l,tJrS] xiwi.

Our aim in this section is to prove Theorem 1.2. As the first step we describe the
coordinate ring of Op. Note that dimOp = r + 5. Indeed, dimOp = dimGL(d) —
dim Stabgy (ay(P), where Stabgp gy denotes the subgroup of all g € GL(d) such that
g - P = P. Easy calculations show dimGL(d) = + 6 and Stabgy(q)(P) = k*, thus the
formula follows.

Let @ : k'3 — rep ,(d) be given by

D (X)y; =[x;], i€[l,r]U[r+6,145],
D (X)g,, =X [0 X431,
D (X)ayr = XUPIXAA X, ) — Xpga —Xpg2 — X431,
P (X3 = XU x4 xr42],
D (X, s =[—Xr13 Xr11 15 x4 X +6.1451

t
@ (X)O‘r+5 = ['xr+2 —Xr+4 ] rxr+5Xe[’+6v-‘+5] s

for x = (xi)ie[1,145] € k't3. The next observation is the following.

Lemma 3.1. & (k'+5) = Op.
Proof. Let

U={x=ieft.+s) €K | xi #0, i € [1,r]U[r +5.1 +5],

Xp+1Xr42 7 Xp+3Xr 44 } .

Then U is an open subset of k'+> and @|y is injective, thus dim @ (k't5) =1 + 5 =
dimQOp. Since Op is irreducible, it is enough to show that ®(U) C Op. Let x =
Xral Xr .

(xi)ief1,i+51 € U and X =71 "], Then g = (gi)ie[1,1+2] given by

Xr+4 Xr42
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g =x", iel0,pl,
g =xWttil . je[p+1,q],
gi =Xt iefg+1,r],
gr41 =XT1IX,
gi = xCL.r1 det er+sxe[r+6‘i+3lXelS+6,t+SJ’ IR= [r + 2’ s+ 1]’

gi = X171 det er+sxe[r+6,x+5]Xe[s+6,i+3]’ iels+2,t+2],

belongs to GL(d) and g - @ (x) = P. _
Obviously, the above lemma implies that k\[Op] = k[ay, ..., a;+10], Where ay, ..., a;+10
are polynomials in k[77, ..., T;4s5] defined by

a=T, ie€[lr],
ary =TT,
Ao = TOPHIIT, 5,
apy3 = TOPITOUGHLAT, o 4 TULAT G+ LAT, | 5
Qrygq = TEe.p1 Telg+1.r] Tr+l + TeL.p) Telg+1.r] Tr+4,
ar45 = Te0.ql Tr+a,
ari6 =TT, 45,
ar47 = Tri1 Ty s TEH61531,

ar+8 = Try3 Tr+5Te[x+6,r+5]7

€
ar49 = Tp 44T 45T +65451,

€
ar410 = Ty 2 Tp 5T UH05H3],

ai=T_s, iel[r+11,¢t+10].

As before, TV = nie[l,t+]0] Tl.w" for w = (w;)ief1,1+10] € N/F10,

We order the elements of N> by the reversed lexicographic order, i.e., we say that
u = (4;)ie[1,1+5] is smaller than v = (v;);¢[1,,+5) if there exists i € [1,¢ 4 5] such that
u; <v; and uj =v; for all j € [i + 1,7+ 5]. The induced order of the monomials in
k[T1, ..., T;4s5] is a term order in the sense of [12, 1.3].

For a = ZveNf+5 MTY € k[T, ..., Tiys], a # 0, we define the initial monomial in(a)
as T", where u = max{v € Ni+5 | .y # 0}. If A is a subalgebra of k[T1, ..., Ty+s], then by
the initial algebra in(A) of A we mean the subalgebra of A generated by {in(a) | a € A}.
According to [9, Corollary 2.3(b)] in order to prove Theorem 1.2 it is enough to show that
in(k[ay, ..., ar+10]) is finitely generated and normal. Using Theorem 1.3 it will follow if
we show isomorphisms in(k[ay, ..., ar+10]) = k[in(ay), ..., in(a;+10)] = k[Oy], where V
is the point ofrepQ((l),-eu,tH]) with all matrices equal to [1]. Here Q = Q(p, q,71,s,1) is
the quiver defined in Section 2.
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We first show the latter isomorphism, or in other words, we describe k[Oy]. The
method is analogous to the one applied above in order to describe k[Op]. Let ¥ : k! 5
repo ((Dief1.r+5]) be defined by

P(X)p, =xi, i€ll,r]
D (X)p,,, =Xy, 4y,
P(X)p,p =X+ 043,
D (x)g, = xTMAIXCUtlrly i e[r+3,r+4],
D(X)p,,5 = XMxr 44,
D(X)p, o = X011, 42,
D(X)g,,7 = Xy 1 Xpy SXEISHOI45]
D(X)p, 15 = Xr43%y 45X 1T,
D (X)B, o = XraXypsX U HO],
DXV 9 = Xp 2y 45X 05,
P(X)g =xi—5, I€[r+11,t+10],

for X = (xj)ie[1,145] € k3. With arguments similar to those used in the proof of
Lemma 3.1, one shows that

(p(kt+5) — @v,

hence k[Oy] may be identified with the subalgebra of k[T, ..., T;+5] generated by poly-
nomials by, ..., bs410, Where
bi=T;, iell,r],
by =TT,
byyp =TT, 43,
b; = TOLATCUHAT: e [r+3,r+4],
brys =TT, 4y,
brie =TT, 12,
byy7 =T, T, 5TEsH6045]
byig =Ty 3T, 45T H6145]
bryo =Ty yqT, 5T U645
byy10 = Try2 Ty 45T E+65+5,

bi=T_s, ielr+11,¢+10].
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It is an obvious observation _that b; = in(qg;) for all i € [1,t + 10], which shows that
klin(ay), ..., in(a;+10)] >~ k[Oy].
Observe that the kernel 7 of the algebra homomorphism
k[Sﬂl,...,S/gtﬂo]—>k[T1,...,Tl+5], Sg; = b,

equals the ideal ICQ defined in Section 2, as both of them are the ideals of @V in
repQ((l)ie[l),ﬁ]). By Lemma 2.4, I is generated by the binomials

£=8% —8%, ie[l8]

where v, ..., vg are as in Section 2.

As the final step we show that in(k[ay, ..., ar+10]) = k[b1, ..., bi+10] Gf this con-
dition holds, then one says that a = (ay,...,a;+10) is a Sagbi basis of the algebra
klay, ..., a;+10]). According to [9, Proposition 1.1] it is enough to show that there exist

riuw€k,ie[l,8,uel;={veN+t|in@@") <in((a))}, such that

E(a)=)_ Aiua"

uel;

u .
Here, a" = a;lﬁ' ~~atf:’fb'° for u = (ug;)ie(1,1+10] € N9 and &(a) denotes the image of

§ €kl[Sp,, ..., Sp,,1] via the map
k[Sﬂl,...,SﬂH]O]—)k[T1,...,Tz+5]a Sg; > a;.
But

&(a)=0, i€{3,4,8]},
£1(a) = =TT, 15 = —a®l4*1a, 44,
&2(a) =TT, 4 = a"" a4y,
&6(a) = =TT,y Ty Tpy sTEUH613)

= —ae[l.plar+1ar+7ae[r+ll,s+10]7
&7(a) = TN T, 2Ty 12 Ty g s TEH01+3)

= ae[q+l”']a,+6gr+10ae[s4rll,1+10]’
&s(a) = TPl Telg+1.r1 Tr+2Tr+4Tr+5Te[’+6~’+5]

— TeLpl TClg+1.r] Tr+1 Tr+3 Tr+5 T Clr+6.1+5]

€ €
= Qr44ar410a [s+11,2410] _ ar 430,474 [r+ll,s+lOJ’

and the initial monomial

in(ar+3ar+7ae[’+l'*”'OJ) = TOPITCUHLNT, T,y 3Ty 5 T Cr+60+45]
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is smaller than
in(ar+4ar+loae[s+l1.t+10]) — in(§5(a)) = TCUPITC+AT, 5Ty g Ty s TOUH6145]

which finishes the proof. O
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