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Abstract

We show that the orbit closures for directing modules over tame algebras are normal and Cohen–
Macaulay. The proof is based on degenerations to normal toric varieties.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction and the main results

Throughout the paper k denotes a fixed algebraically closed field. By an algebra we
mean an associative k-algebra with identity, and by a module a finite-dimensional left mod-
ule. Furthermore, for an algebra A, modA stands for the category of finite-dimensional left
A-modules. By N and Z we denote the sets of nonnegative integers and integers, respec-
tively. Finally, if i and j are integers, then by [i, j ] we denote the set of all integers k such
that i � k � j .

Let d be a positive integer and denote by M(d) the algebra of (d × d)-matrices with
coefficients in k. For an algebra A the set modA(d) of the A-module structures on the
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vector space kd has a natural structure of an affine variety. Indeed, if A � k〈X1, . . . ,Xt 〉/I
for t > 0 and a two-sided ideal I , then modA(d) can be identified with the closed sub-
set of (M(d))t given by the vanishing of the entries of all matrices ρ(X1, . . . ,Xt ) for
ρ ∈ I . Moreover, the general linear group GL(d) acts on modA(d) by conjugations
and the GL(d)-orbits in modA(d) correspond bijectively to the isomorphism classes of
d-dimensional left A-modules. We shall denote by OM the GL(d)-orbit in modA(d) cor-
responding to (the isomorphism class of) a d-dimensional module M in modA. It is an
interesting task to study geometric properties of the Zariski closure OM of OM .

The above problem can also be formulated in terms of representations of finite quivers
instead of modules over algebras. Here, by a finite quiver Σ we mean a finite set Σ0 of
vertices and a finite set Σ1 of arrows together with two maps s, t :Σ1 → Σ0, which assign
to an arrow its starting and terminating vertex, respectively. Let d = (dx)x∈Σ0 ∈ N

Σ0 be a
dimension vector and let M(m,n) denote the space of (m × n)-matrices with coefficients
in k. The affine space

repΣ(d) =
∏

α∈Σ1

M(dtα, dsα)

is called a variety of representations of Σ . The product GL(d) = ∏
x∈Σ0

GL(dx) of general
linear groups acts on repΣ(d) by conjugations:

g · V = (
gtαVαg−1

sα

)
α∈Σ1

for g = (gx)x∈Σ0 ∈ GL(d) and V = (Vα)α∈Σ1 ∈ repΣ(d). The orbit of V ∈ repΣ(d) with
respect to this action is denoted by OV , and its closure by OV . In fact, the module varieties
and varieties of representations of quivers are closely related to each other (see [7] for
details). In particular, for any algebra A there is a uniquely determined quiver Σ (called
the Gabriel quiver of A) such that for each d � 1 and M ∈ modA(d) there are a dimension
vector d ∈ N

Σ0 and V ∈ repΣ(d) such that OM is isomorphic to the associated fibre bundle
GL(d) ×GL(d) OV . Hence OM is normal, Cohen–Macaulay, unibranch or regular in some
codimension if and only if OV is.

The orbit closures are normal and Cohen–Macaulay varieties (with rational singularities
in characteristic zero) provided Σ is a Dynkin quiver of type An or Dn [5,6], or A is
a Brauer tree algebra [13]. Moreover, they are regular in codimension one if Σ is the
Kronecker quiver [1], or A is a representation finite algebra [17], i.e., a set indA of chosen
representatives of isomorphism classes of indecomposable A-modules is finite. Another
result states that the variety OM is unibranch if there are only finitely many modules U in
indA such that there is a monomorphism from U to Mi for some i > 0 [15]. On the other
hand, there exists an orbit closure in repΣ((3,3)), where Σ is the Kronecker quiver, which
is neither unibranch nor Cohen–Macaulay (see [16]).

We say that an algebra A is tame if we can chose indA in such a way that for every d > 0
all d-dimensional modules in indA can be described by finitely many one-parameter fam-
ilies. According to Drozd’s Tame and Wild Theorem ([11], see also [10]) there is a chance
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to classify modules only for tame algebras. An indecomposable module M in modA is
called directing if there exists no sequence

M = M0
f1−→ M1 → ·· · → Mm−1

fm−→ Mm = M

in modA, where m > 0, M1, . . . ,Mm−1 belong to indA and f1, . . . , fm are nonzero non-
isomorphisms. Bongartz investigated from the geometric point of view a special class of
directing modules, so called preprojective ones (see [8, Proposition 6]). Further results in
this direction were obtained by Skowroński and the first named author in [3] (see also [2]
for the case of decomposable directing modules). The following main theorem of the paper
completes the results of [3] to the general case.

Theorem 1.1. Let M be an indecomposable directing module over a tame algebra. Then
the variety OM is normal and Cohen–Macaulay.

Using [3, Theorem 2] (see [4, Proposition 2.4] for the correct list of algebras) and the
geometric equivalence described in [7] we get that OM is isomorphic to the associated
fibre bundle GL(d) ×GL(d) OP , where either OP is a normal complete intersection, or up
to duality, P is defined as follows. Let 0 � p � q � r � s � t , let ∆ be the quiver

•1
α1

· · ·α2
•pαp

•r+2
αr+4

· · ·αr+6
•s+1

αs+4

•0 •
p+1

αp+1 · · ·αp+2 •
q

αq • r+1

αr+1

αr+2

αr+3

• t+2

αs+5

αt+5

•
q+1

αq+1

· · ·αq+2 •
r

αr •
s+2

αr+5 · · ·αs+6 •
t+1

αt+4

(if some of the inequalities between 0, p, q , r , s and t are equalities, then we obtain the
obvious degenerated version of the above quiver; see also a more detailed discussion about
the definition of the quiver Q(p,q, r, s, t) after Proposition 2.3 in Section 2) and let d
be the dimension vector in N

∆0 , whose (r + 1)th coordinate equals 2 and the remaining
coordinates are 1. Then P = P(p,q, r, s, t) is the point (Pα)α∈∆1 ∈ rep∆(d) such that

Pαr+1 = [1 0], Pαr+2 = [−1 −1 ], Pαr+3 = [0 1 ],
Pαr+4 = [0 1 ]tr, Pαr+5 = [1 0 ]tr,

and the remaining matrices Pα are equal to [1]. Hence Theorem 1.1 is a consequence of
the following result.

Theorem 1.2. Let P = P(p,q, r, s, t) for some integers 0 � p � q � r � s � t . Then the
variety OP is normal, Cohen–Macaulay, and has rational singularities in characteristic
zero.
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The idea of the proof is to degenerate such varieties to toric normal varieties using the
so-called Sagbi-bases (see [9,12]). These normal toric varieties appear in the following
theorem.

Theorem 1.3. Let Q be a finite quiver without oriented cycles, let d be the dimension
vector in N

Q0 with the coordinates equal to 1 and let V be the point of repQ(d) given by
the matrices equal to [1]. Then OV is a normal toric variety.

The paper is organized as follows. In Section 2 we prove Theorem 1.3 and investigate
the equations defining the toric varieties described in the theorem. Section 3 is devoted to
the proof of Theorem 1.2.

2. Toric varieties

Let Q be a finite quiver without oriented cycles and let d = (di)i∈Q0 be the dimension
vector in NQ0 with all di equal to 1. Then the algebraic group GL(d) = ∏

i∈Q0
k∗ is a torus

and the orbit closures in repQ(d) are affine toric varieties (here we do not assume that
toric varieties are normal). In particular, this holds for the orbit closure OV , where V =
(Vα)α∈Q1 is the point of repQ(d) with Vα = [1] for any arrow α ∈ Q1. Let eα = etα − esα

for α ∈ Q1, where (ei )i∈Q0 is the standard basis of Z
Q0 . It follows from the definition of

the action of GL(d) on repQ(d) that OV corresponds to the semigroup

CQ =
∑

α∈Q1

N · eα ⊂ Z
Q0,

which means that the algebra k[OV ] of regular functions on OV may be identified with the
subalgebra of k[Ti, T

−1
i ]i∈Q0 generated by T eα , α ∈ Q1, where for x = (xi)i∈Q0 ∈ Z

Q0 we
put T x = ∏

i∈Q0
T

xi

i . According to this identification, k[OV ] as a vector space has a basis
formed by T x, x ∈ CQ. It is well known that an affine toric variety is normal if and only if
the corresponding semigroup C is saturated, i.e., if a lattice point x belongs to the subgroup
of Z

n generated by C and λx ∈ C for some λ ∈ N \ {0}, then x ∈ C. It is known that CQ

is a saturated semigroup (see [14, Example 3.7]), but for completeness we include a short
proof below.

For a vector x = (xi)i∈Q0 ∈ Z
Q0 and a subset F of Q0 we abbreviate by xF the sum∑

i∈F xi . A subset F of Q0 is called a filter in Q if

sα ∈ F ⇒ tα ∈ F

for any arrow α ∈ Q1. Let XQ be the subset of all x ∈ Z
Q0 such that xQ0 = 0 and xF � 0

for any filter F in Q. Obviously XQ is a saturated semigroup. Hence Theorem 1.3 is a
consequence of the following fact.

Proposition 2.1. CQ = XQ.
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Proof. Obviously CQ ⊆ XQ. Let x = (xi)i∈Q0 ∈ XQ. In order to prove that x ∈ CQ we
proceed by a double induction, first: on the cardinality of Q0, and second: on the integer∑

F∈F xF � 0, where F is the set of all filters in Q.
Assume first that there is no arrow in Q1 (for example, this holds if Q0 has only one

element). Then for any i ∈ Q0, {i} is a filter in Q and thus xi � 0. On the other hand,∑
i∈Q0

xi = 0, which gives x = 0 ∈ CQ.
Assume now that there is a proper nonempty filter F in Q such that xF = 0. Let Q′ and

Q′′ be the full subquivers of Q such that Q′
0 = F and Q′′

0 = Q0 \ F . Then x = x′ + x′′
according to the canonical isomorphism

Z
Q0 � Z

Q′
0 ⊕ Z

Q′′
0 .

Observe that x′ ∈ XQ′ and x′′ ∈ XQ′′ . By the inductive assumption, x′ ∈ CQ′ and x′′ ∈ CQ′′ .
Consequently, x ∈ CQ′ ⊕ CQ′′ ⊆ CQ.

Hence we may assume that Q1 is nonempty and that xF > 0 for any nonempty proper
filter F in Q. Choose α ∈ Q1 and let y = x−eα . Obviously yQ0 = 0. Since there are no ori-
ented cycles in Q, there is a filter F in Q with tα ∈ F and sα /∈ F . For any such filter yF =
xF − 1 � 0, while for the remaining ones yF = xF � 0. Hence y ∈ XQ and

∑
F∈F yF <∑

F∈F xF . By our inductive assumption y ∈ CQ, which gives x = y + eα ∈ CQ. �
Now we consider the problem of finding equations defining OV . More precisely, we

want to describe generators of the ideal ICQ
, which is the kernel of the algebra homomor-

phism

k[Sα]α∈Q1 → k
[
Ti, T

−1
i

]
i∈Q0

, Sα �→ T eα .

For w = (wα)α∈Q1 ∈ Z
Q1 we define w+ = (w+

α )α∈Q1,w− = (w−
α )α∈Q1 ∈ Z

Q1 by

w+
α = max{wα,0} and w−

α = max{−wα,0} for α ∈ Q1.

Let U : ZQ1 → Z
Q0 be the group homomorphism such that U(fα) = eα for α ∈ Q1, where

(fα)α∈Q1 is the standard basis of Z
Q1 . Then ICQ

is generated by the binomials

Sw+ − Sw−
with w ∈ Ker(U),

where

Sw =
∏
i∈Q1

Swα
α for w = (wα)α∈Q1 ∈ N

Q1

(see [14, Lemma 1.1]). Note that Ker(U) consists of the vectors w = (wα)α∈Q1 ∈ Z
Q1 such

that

∑
wα =

∑
wα for all i ∈ Q0. (1)
sα=i tα=i
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In the case of toric varieties occurring in Theorem 1.3 we shall indicate a special finite
subsets of Ker(U) for which the corresponding binomials generate the ideal ICQ

.
Let Q∗ be the double quiver of Q, i.e., the quiver with the same set of vertices as Q and

the set of arrows Q1 ∪Q−
1 , where Q−

1 = {α− | α ∈ Q1} is the set of the formal inverses α−
of arrows α in Q with sα− = tα and tα− = sα. By a nonoriented path in Q we mean an
oriented path in Q∗ which does not contain neither αα− nor α−α for α ∈ Q1 as a subpath.
By a nonoriented cycle in Q we mean a nontrivial nonoriented path in Q which starts and
terminates at the same vertex. A nonoriented cycle is called primitive if it does not contain
a proper subpath which is a nonoriented cycle.

With a primitive nonoriented cycle β1 · · ·βl in Q we may associate a vector u =
(uα)α∈Q1 ∈ Z

Q1 in the following way:

uα =



1, α = βi for some i ∈ [1, l],
−1, α− = βi for some i ∈ [1, l],
0, otherwise,

α ∈ Q1.

Note that u ∈ Ker(U). Let Z be the set of all vectors obtained from primitive nonori-
ented cycles in Q in the way described above. Observe that Z = −Z , which means that
−u ∈ Z for any u ∈ Z . Thus we can choose a subset Z ′ of Z such that Z = Z ′ ∪ (−Z ′)
and Z ′ ∩ (−Z ′) = ∅. Note that the elements of Z ′ correspond bijectively to the equiv-
alence classes of primitive nonoriented cycles in Q under the relation which identify a
cycle with all its rotations and all rotations of its inversion (since these notions seem to
be self-explained we will not give precise definitions here). Our next aim is to show that
the binomials corresponding to the elements of Z ′ (hence to the equivalence classes of
primitive nonoriented cycles in Q) generate Ker(U). We start with the following auxiliary
observation.

Lemma 2.2. If w ∈ Ker(U) is nonzero, then there exists u ∈ Z such that u+ � w+ and
u− � w−.

Proof. Let w = (wα)α∈Q1 be a nonzero element of Ker(U). We construct inductively an
infinite nonoriented path ω = β1β2β3 · · · in Q, such that for each j � 1 either βj = α for
an arrow α ∈ Q1 with wα > 0, or βj = α− for an arrow α ∈ Q1 with wα < 0. We take an
arbitrary arrow α ∈ Q1 with wα �= 0 in order to define β1. Assume now that βn is defined.
If βn = α for α ∈ Q1, then it follows from the equality (1) for i = tαn that there is an arrow
α′ �= α such that either sα′ = tα and wα′ > 0, or tα′ = tα and wα′ < 0. In the former case
we put βn+1 = α′, and in the latter βn+1 = α′−. If βn = α− for α ∈ Q1, then we consider
the equality (1) for i = sα and we define βn+1 in a similar way as above. Since the quiver
Q is finite, there exists a primitive nonoriented cycle which is a subpath of ω. The vector
corresponding to this cycle satisfies the claim. �

Now we can prove the announced result.
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Proposition 2.3. Let Q be a finite quiver without oriented cycles and assume the above
notation. Then the ideal ICQ

is generated by the binomials

Su+ − Su−
, u ∈Z ′.

Proof. Since

Sv+ − Sv− = −(
Su+ − Su−)

if v = −u and u ∈ Z
Q1 , it suffices to prove that if w = (wα)α∈Q1 belongs to Ker(U), then

Sw+ − Sw−
belongs to the ideal generated by the binomials

Su+ − Su−
, u ∈Z.

We proceed by induction on |w| = ∑
α∈Q1

|wα| � 0. If |w| = 0, then w = 0 and we are
done. Otherwise by the previous lemma, there is a vector u ∈ Z such that u+ � w+ and
u− � w−. Then

w+ = u+ + v+ and w− = u− + v− for v = w − u.

Moreover, v ∈ Ker(U) and |v| = |w| − |u| < |w|. Since

Sw+ − Sw− = Sv+(
Su+ − Su−) + Su−(

Sv+ − Sv−)
,

the claim follows by the inductive assumption. �
The above proposition gives us a finite set of generators of ICQ

. As we shall see below,
this set usually is not minimal.

We restrict now our findings to a quiver Q of a special form. Let 0 � p � q � r � s � t .
We define a quiver Q = Q(p,q, r, s, t) in the following way. If 0 < p < q < r < s < t ,
then Q is the quiver

•r+1

•
r+2

•1
β2

· · ·
βp

•p
βr+1

βr+2

•r+3

•r+5
βr+7

βr+8

· · ·
βr+11

•s+4

βs+9

•0

β1

βp+1

βq+1

•
p+1

βp+2 · · · βq •
q

βr+3

βr+4

•
r+4

• t+5

βs+10

βt+10

•
q+1

βq+2 · · · βr •
r

βr+5

βr+6

•
s+5

βr+9

βr+10

· · ·βs+11 •
t+4

βt+9



G. Bobiński, G. Zwara / Journal of Algebra 298 (2006) 120–133 127
If 0 = p (p = q , q = r , r = s or s = t , respectively) then we cancel appropriate arrows and
identify vertices 0 and p (0 and q , 0 and r , r +5 and t +5, or s +5 and t +5, respectively).
Thus in the most extremal case 0 = p = q = r = s = t we get the quiver

•1

•
2

•3

•
4

•0

β1

β2

β3

β4

β5
β6

• 5

β7

β8

β9

β10

with 6 vertices and 10 arrows.
Recall that fβ1 , . . . , fβt+10 is the standard basis of Z

Q1 . Let

ui = fβr+i
for i ∈ [1,10] and

u11 = f[1,p], u12 = f[p+1,q], u13 = f[q+1,r],

u14 = f[r+11,s+10], u15 = f[s+11,t+10],

where f[i,j ] = ∑
l∈[i,j ] fβl

for i, j ∈ [1, t + 10]. Observe that it may happen that ui = 0 for
some i ∈ [11,15]. With the above notation Z ′ consists, up to sign, of the following vectors:

v1 = u2 + u11 − u3 − u12,

v2 = u4 + u12 − u5 − u13,

v3 = u1 + u8 − u2 − u7,

v4 = u5 + u10 − u6 − u9,

v5 = u3 + u9 + u15 − u4 − u8 − u14,

v6 = u1 + u9 + u11 + u15 − u4 − u7 − u12 − u14,

v7 = u3 + u10 + u12 + u15 − u6 − u8 − u13 − u14,

v8 = u1 + u10 + u11 + u15 − u6 − u7 − u13 − u14,

v9 = u1 + u8 + u11 − u3 − u7 − u12,

v10 = u4 + u10 + u12 − u6 − u9 − u13,

v11 = u2 + u4 + u11 − u3 − u5 − u13,

v12 = u1 + u3 + u9 + u15 − u2 − u4 − u7 − u14,

v13 = u3 + u5 + u10 + u15 − u4 − u6 − u8 − u14,
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v14 = u2 + u9 + u11 + u15 − u4 − u8 − u12 − u14,

v15 = u3 + u9 + u12 + u15 − u5 − u8 − u13 − u14,

v16 = u1 + u4 + u8 + u11 − u3 − u5 − u7 − u13,

v17 = u2 + u4 + u10 + u11 − u3 − u6 − u9 − u13,

v18 = u1 + u3 + u9 + u12 + u15 − u2 − u5 − u7 − u13 − u14,

v19 = u2 + u5 + u10 + u11 + u15 − u4 − u6 − u8 − u12 − u14,

v20 = u1 + u3 + u5 + u10 + u15 − u2 − u4 − u6 − u7 − u14,

v21 = u2 + u9 + u11 + u15 − u5 − u8 − u13 − u14,

v22 = u1 + u4 + u8 + u10 + u11 − u3 − u6 − u7 − u9 − u13,

v23 = u1 + u9 + u11 + u15 − u5 − u7 − u13 − u14,

v24 = u2 + u10 + u11 + u15 − u6 − u8 − u13 − u14,

v25 = u1 + u5 + u10 + u11 + u15 − u4 − u6 − u7 − u12 − u14,

v26 = u1 + u3 + u10 + u12 + u15 − u2 − u6 − u7 − u13 − u14.

Indeed, recall that the elements of Z ′ correspond to the equivalence classes of the primitive
nonoriented cycles in Q. Note that each such equivalence class is determined by a non-
empty subset of the set consisting of the five inner polygons visible on the picture of the
quiver Q. There are 25 − 1 = 31 such nonempty subsets, 26 of them lead to our vectors vi ,
i ∈ [1,26], and none of the remaining five subsets corresponds to the equivalence class
of a primitive nonoriented cycle in Q (they may be seen as corresponding to equivalence
classes of two disjoint primitive cycles).

Lemma 2.4. Let Q = Q(p,q, r, s, t) for 0 � p � q � r � s � t . Then the ideal ICQ
is

generated by the binomials

Sv+
i − Sv−

i , i ∈ [1,8].
Proof. By Proposition 2.3, it suffices to show that the above binomials generate the re-
maining binomials

Sv+
i − Sv−

i , i ∈ [9,26].
This is a quite easy, but tedious verification. Hence we prove the claim only for i = 9 and
i = 21, leaving the other cases to the reader:

Sv+
9 − Sv−

9 = Su1Su8Su11 − Su3Su7Su12

= Su11
(
Su1Su8 − Su2Su7

) + Su7
(
Su2Su11 − Su3Su12

)

= Su11
(
Sv+

3 − Sv−
3
) + Su7

(
Sv+

1 − Sv−
1
)
,
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Sv+
21 − Sv−

21 = Su2Su9Su11Su15 − Su5Su8Su13Su14

= Su9Su15
(
Su2Su11 − Su3Su12

) + Su12
(
Su3Su9Su15 − Su4Su8Su14

)

+ Su8Su14
(
Su4Su12 − Su5Su13

)

= Su9Su15
(
Sv+

1 − Sv−
1
) + Su12

(
Sv+

5 − Sv−
5
)

+ Su8Su14
(
Sv+

2 − Sv−
2
)
. �

3. Degenerations to toric varieties

Let ∆, d and P be as in Theorem 1.2. As usual e1, . . . , et+5 denote the standard
basis of Z

t+5. For i, j ∈ [1, t + 5], e[i,j ] = ∑
l∈[i,j ] el . If x = (xi)i∈[1,t+5] ∈ kt+5 and

w = (wi)i∈[1,t+5] ∈ N
t+5, then xw = ∏

i∈[1,t+5] x
wi

i .
Our aim in this section is to prove Theorem 1.2. As the first step we describe the

coordinate ring of OP . Note that dimOP = t + 5. Indeed, dimOP = dim GL(d) −
dim StabGL(d)(P ), where StabGL(d) denotes the subgroup of all g ∈ GL(d) such that
g · P = P . Easy calculations show dim GL(d) = t + 6 and StabGL(d)(P ) � k∗, thus the
formula follows.

Let Φ : kt+5 → rep∆(d) be given by

Φ(x)αi
= [xi], i ∈ [1, r] ∪ [r + 6, t + 5],

Φ(x)αr+1 = xe[p+1,r] [xr+1 xr+3 ],
Φ(x)αr+2 = xe[1,p]xe[q+1,r] [−xr+1 − xr+4 −xr+2 − xr+3 ],
Φ(x)αr+3 = xe[1,q] [xr+4 xr+2 ],
Φ(x)αr+4 = [−xr+3 xr+1 ]trxr+5xe[s+6,t+5],

Φ(x)αr+5 = [xr+2 −xr+4 ]trxr+5xe[r+6,s+5],

for x = (xi)i∈[1,t+5] ∈ kt+5. The next observation is the following.

Lemma 3.1. Φ(kt+5) = OP .

Proof. Let

U = {
x = (xi)i∈[1,t+5] ∈ kt+5 | xi �= 0, i ∈ [1, r] ∪ [r + 5, t + 5],

xr+1xr+2 �= xr+3xr+4
}
.

Then U is an open subset of kt+5 and Φ|U is injective, thus dimΦ(kt+5) = t + 5 =
dimOP . Since OP is irreducible, it is enough to show that Φ(U) ⊂ OP . Let x =
(xi)i∈[1,t+5] ∈ U and X = [ xr+1 xr+3

x x

]
. Then g = (gi)i∈[1,t+2] given by
r+4 r+2
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gi = xe[1,i] , i ∈ [0,p],
gi = xe[p+1,i], i ∈ [p + 1, q],
gi = xe[q+1,i] , i ∈ [q + 1, r],

gr+1 = xe[1,r]X,

gi = xe[1,r] detXxr+5xe[r+6,i+3]xe[s+6,t+5], i ∈ [r + 2, s + 1],
gi = xe[1,r] detXxr+5xe[r+6,s+5]xe[s+6,i+3] , i ∈ [s + 2, t + 2],

belongs to GL(d) and g · Φ(x) = P .
Obviously, the above lemma implies that k[OP ] = k[a1, . . . , at+10], where a1, . . . , at+10

are polynomials in k[T1, . . . , Tt+5] defined by

ai = Ti, i ∈ [1, r],
ar+1 = T e[p+1,r]Tr+1,

ar+2 = T e[p+1,r]Tr+3,

ar+3 = T e[1,p]T e[q+1,r]Tr+2 + T e[1,p]T e[q+1,r]Tr+3,

ar+4 = T e[1,p]T e[q+1,r]Tr+1 + T e[1,p]T e[q+1,r]Tr+4,

ar+5 = T e[1,q]Tr+4,

ar+6 = T e[1,q]Tr+2,

ar+7 = Tr+1Tr+5T
e[s+6,t+5] ,

ar+8 = Tr+3Tr+5T
e[s+6,t+5] ,

ar+9 = Tr+4Tr+5T
e[r+6,s+5],

ar+10 = Tr+2Tr+5T
e[r+6,s+5],

ai = Ti−5, i ∈ [r + 11, t + 10].
As before, T w = ∏

i∈[1,t+10] T
wi

i for w = (wi)i∈[1,t+10] ∈ N
t+10.

We order the elements of N
t+5 by the reversed lexicographic order, i.e., we say that

u = (ui)i∈[1,t+5] is smaller than v = (vi)i∈[1,t+5] if there exists i ∈ [1, t + 5] such that
ui < vi and uj = vj for all j ∈ [i + 1, t + 5]. The induced order of the monomials in
k[T1, . . . , Tt+5] is a term order in the sense of [12, 1.3].

For a = ∑
v∈Nt+5 λvT

v ∈ k[T1, . . . , Tt+5], a �= 0, we define the initial monomial in(a)

as T u, where u = max{v ∈ N
t+5 | λv �= 0}. If A is a subalgebra of k[T1, . . . , Tt+5], then by

the initial algebra in(A) of A we mean the subalgebra of A generated by {in(a) | a ∈ A}.
According to [9, Corollary 2.3(b)] in order to prove Theorem 1.2 it is enough to show that
in(k[a1, . . . , at+10]) is finitely generated and normal. Using Theorem 1.3 it will follow if
we show isomorphisms in(k[a1, . . . , at+10]) � k[in(a1), . . . , in(at+10)] � k[OV ], where V

is the point of repQ((1)i∈[1,t+5]) with all matrices equal to [1]. Here Q = Q(p,q, r, s, t) is
the quiver defined in Section 2.
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We first show the latter isomorphism, or in other words, we describe k[OV ]. The
method is analogous to the one applied above in order to describe k[OP ]. Let Ψ : kt+5 →
repQ((1)i∈[1,t+5]) be defined by

Φ(x)βi
= xi, i ∈ [1, r],

Φ(x)βr+1 = xe[p+1,r]xr+1,

Φ(x)βr+2 = xe[p+1,r]xr+3,

Φ(x)βi
= xe[1,p]xe[q+1,r]xi, i ∈ [r + 3, r + 4],

Φ(x)βr+5 = xe[1,q]xr+4,

Φ(x)βr+6 = xe[1,q]xr+2,

Φ(x)βr+7 = xr+1xr+5xe[s+6,t+5] ,

Φ(x)βr+8 = xr+3xr+5xe[s+6,t+5] ,

Φ(x)βr+9 = xr+4xr+5xe[r+6,s+5],

Φ(x)βr+10 = xr+2xr+5xe[r+6,s+5],

Φ(x)βi
= xi−5, i ∈ [r + 11, t + 10],

for x = (xi)i∈[1,t+5] ∈ kt+5. With arguments similar to those used in the proof of
Lemma 3.1, one shows that

Φ
(
kt+5

) = OV ,

hence k[OV ] may be identified with the subalgebra of k[T1, . . . , Tt+5] generated by poly-
nomials b1, . . . , bt+10, where

bi = Ti, i ∈ [1, r],
br+1 = T e[p+1,r]Tr+1,

br+2 = T e[p+1,r]Tr+3,

bi = T e[1,p]T e[q+1,r]Ti, i ∈ [r + 3, r + 4],
br+5 = T e[1,q]Tr+4,

br+6 = T e[1,q]Tr+2,

br+7 = Tr+1Tr+5T
e[s+6,t+5] ,

br+8 = Tr+3Tr+5T
e[s+6,t+5] ,

br+9 = Tr+4Tr+5T
e[r+6,s+5],

br+10 = Tr+2Tr+5T
e[r+6,s+5],

bi = Ti−5, i ∈ [r + 11, t + 10].
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It is an obvious observation that bi = in(ai) for all i ∈ [1, t + 10], which shows that
k[in(a1), . . . , in(at+10)] � k[OV ].

Observe that the kernel I of the algebra homomorphism

k[Sβ1 , . . . , Sβt+10 ] → k[T1, . . . , Tt+5], Sβi
�→ bi,

equals the ideal ICQ
defined in Section 2, as both of them are the ideals of OV in

repQ((1)i∈[1,t+5]). By Lemma 2.4, I is generated by the binomials

ξi = Sv+
i − Sv−

i , i ∈ [1,8],
where v1, . . . ,v8 are as in Section 2.

As the final step we show that in(k[a1, . . . , at+10]) � k[b1, . . . , bt+10] (if this con-
dition holds, then one says that a = (a1, . . . , at+10) is a Sagbi basis of the algebra
k[a1, . . . , at+10]). According to [9, Proposition 1.1] it is enough to show that there exist
λi,u ∈ k, i ∈ [1,8], u ∈ Ii = {v ∈ N

t+10 | in(av) � in(ξi(a))}, such that

ξi(a) =
∑
u∈Ii

λi,uau.

Here, au = a
uβ1
1 · · ·auβt+10

t+10 for u = (uβi
)i∈[1,t+10] ∈ N

Q1 and ξ(a) denotes the image of
ξ ∈ k[Sβ1, . . . , Sβt+10] via the map

k[Sβ1, . . . , Sβt+10] → k[T1, . . . , Tt+5], Sβi
�→ ai.

But

ξi(a) = 0, i ∈ {3,4,8},
ξ1(a) = −T e[1,r]Tr+2 = −ae[q+1,r]ar+6,

ξ2(a) = T e[1,r]Tr+1 = ae[1,p]ar+1,

ξ6(a) = −T e[1,r]Tr+1Tr+1Tr+5T
e[r+6,t+5]

= −ae[1,p]ar+1ar+7a
e[r+11,s+10],

ξ7(a) = T e[1,r]Tr+2Tr+2Tr+5T
e[r+6,t+5]

= ae[q+1,r]ar+6ar+10a
e[s+11,t+10] ,

ξ5(a) = T e[1,p]T e[q+1,r]Tr+2Tr+4Tr+5T
e[r+6,t+5]

− T e[1,p]T e[q+1,r]Tr+1Tr+3Tr+5T
e[r+6,t+5]

= ar+4ar+10a
e[s+11,t+10] − ar+3ar+7a

e[r+11,s+10],

and the initial monomial

in
(
ar+3ar+7a

e[r+11,s+10]) = T e[1,p]T e[q+1,r]Tr+1Tr+3Tr+5T
e[r+6,t+5]



G. Bobiński, G. Zwara / Journal of Algebra 298 (2006) 120–133 133
is smaller than

in
(
ar+4ar+10a

e[s+11,t+10]) = in
(
ξ5(a)

) = T e[1,p]T e[q+1,r]Tr+2Tr+4Tr+5T
e[r+6,t+5],

which finishes the proof. �
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