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Abstract

The four-dimensional critical scalar theory at equilibrium with a thermal bath at temperature T is considered. The thermal equilibrium state is
labeled by n the winding number of the vacua around the compact imaginary-time direction which compactification radius is 1/T . The effective
action for zero modes is a three-dimensional φ4 scalar theory in which the mass of the scalar field is proportional to n/T resembling the Kaluza–
Klein dimensional reduction. Similar results are obtained for the theory at zero temperature but in a one-dimensional potential well. Since parity
is violated by the vacua with odd vacuum number n, in such cases there is also a cubic term in the effective potential. The φ3 term contribution to
the vacuum shift at one-loop is of the same order of the contribution from the φ4 term in terms of the coupling constant of the four-dimensional
theory but becomes negligible as n tends to infinity. Finally, the relation between the scalar classical vacua and the corresponding SU(2) instantons
on S1 × R

3 in the ’t Hooft ansatz is studied.
© 2007 Elsevier B.V.
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1. Introduction

In four dimensions, massless φ4 model with nonpositive po-
tential is equivalent to SU(2) Yang–Mills theory in the ’t Hooft
ansatz [1–3]. Scalar theories with nonpositive potentials are
also familiar in gravity theories [4] while they may be prob-
lematic in quantum field theory.

In this Letter we obtain solutions of massless φ4 model with
nonpositive potential which are periodic in one direction. We
show that this periodic solution can be used for three purposes.
The first one is to study the critical φ4 theory at finite tempera-
ture. The second one is to study the theory in a one-dimensional
potential well by imposing the Dirichlet boundary condition on
φ to be vanishing at the boundaries. The third application of
this solution is to obtain SU(2) instantons on S1 × R

3 using the
’t Hooft ansatz.

The organization of the Letter is as follows. In Section 2 af-
ter a brief review of scalar field theory at finite temperature,
we consider the massless φ4 model in one dimension where we
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study the periodic solution of the equation of motion to be used
in the following sections. In Section 3 we use the result of Sec-
tion 2 to study the four-dimensional model at finite temperature.
The resulting three-dimensional effective action for zero modes
is shown to be a massive φ4 theory. The mass of the scalar field
is proportional to the winding number of the classical vacua,
considered as the thermal equilibrium state, around the compact
imaginary-time direction. In Section 4 we study the massless φ4

theory at zero temperature in a potential well. In this case the ef-
fective theory is realized in two different sectors corresponding
to even and odd vacuum numbers. For even vacuum numbers,
parity is conserved and the interaction is given by a φ4 term. In
the case of odd vacuum number, parity is violated and a φ3 in-
teraction is added. We study and compare the contribution form
both interaction terms to the vacuum shift at one-loop and verify
that for large vacuum numbers, the φ3 term contribution is neg-
ligible in comparison with the contribution from the φ4 term. In
Section 5 we briefly discuss the SU(2) instantons correspond-
ing to the periodic solutions in the ’t Hooft ansatz. There we
show that indeed the Yang–Mills field equation corresponds to
the critical theory with potential V (φ) ∼ −e2φ4 where e is the
gauge field coupling constant. Section 6 is devoted to conclu-
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sion and is closed by discussing the dependence of the entropy
of the thermal vacua on the corresponding winding number.

2. D = 1 φ4-model at thermal equilibrium

The static properties of finite temperature QFT can be de-
rived from the partition function Z = tr e−H/T where H is the
Hamiltonian of the quantum field theory and T is the temper-
ature. For a simple theory with boson fields φ and Euclidean
action S(φ) the partition function is given by the functional in-
tegral

(1)Z =
∫

[dφ] exp
[−S(φ)

]
,

where S(φ) is the integral of the Lagrangian density L(φ),

(2)S(φ) =
1/T∫
0

dt

∫
ddxL(φ),

and the field φ satisfies periodic boundary conditions in the
imaginary-time direction

(3)φ(t = 0, x) = φ(t = 1/T , x).

The equation of motion of the φ4 model in one dimension, de-
fined by the Euclidean action

(4)S =
∫

dt

(
1

2
φ′2 − g

4
φ4

)
,

where a ′ denotes one time derivation with respect to t , is the
following nonlinear Laplace equation

(5)φ′′ + gφ3 = 0.

This equation can be easily integrated once to obtain

(6)
1

2
φ′2 + g

4
φ4 = c.

For c = 0 the solution φ ∼ t−1 is singular at t = 0. For c > 0,
defining c = L−4 one obtains1

(7)φ = 1

L

(
4

g

)1/4

sn

(
g1/4 t

L

∣∣∣∣−1

)
,

in which sn(u|m) = sin(ϕ) is the Jacobi elliptic function in
which ϕ = am(u|m) is the inverse of Jacobi elliptic function
of the first kind, F(ϕ|m) defined by the relation2

(8)F(ϕ|m) =
ϕ∫

0

(
1 − m sin2 θ

)−1/2
dθ.

Defining

(9)u(ϕ) = F(ϕ|−1) =
ϕ∫

0

dθ
1√

1 + sin2 θ
,

1 In [5] similar wave functions are obtained for a massive harmonic oscillator.
2 For definition and calculations on elliptic functions one can use the software

Mathematica5, Wolfram Research, Inc.
one can easily verify that u(ϕ) is a periodic function

(10)u(ϕ + 2nπ) = u(ϕ) + 4nK(−1), n ∈ N,

in which K(m) = F(π
2 |m) denotes the complete elliptic inte-

gral of the first kind. Consequently the solution (7) is periodic,

(11)φ(t) = φ

(
t + n

4LK(−1)

g1/4

)
, n ∈ N.

By identifying the period with 1/T , one can determine L in
terms of T , as follows:

(12)Ln = g1/4

4K(−1)

T −1

n
, n ∈ N.

Thus, there exist a set of classical vacua φn with winding num-
ber n ∈ N around the compact imaginary-time direction given
by

(13)φn(t) =
√

2

g
ωn sn(ωnt |−1), ωn = nω1,

where ω1 = 4K(−1)T . It is straightforward to calculate the ac-
tion corresponding to φn, which is given by

(14)S(φn) = n4 (4K(−1))4

3g
T 3.

Consequently there is an action barrier,

(15)�S ∼ (4K(−1))4

3g
T 3,

separating different vacuum states. Given the vacua φn, it is nat-
ural to search for the corresponding kink solutions interpolating
between different vacua. We leave this question as an open
problem. In Section 5 we obtain SU(2) instantons on S1 × R

3

in the ’t Hooft ansatz corresponding to φn.

3. D = 4 φ4 model at thermal equilibrium

In this section we study the D = 4 φ4 model at thermal equi-
librium corresponding to the vacua φn given by Eq. (13). The
idea is similar to the Kaluza–Klein dimensional reduction (see
e.g. [6]). Considering a (d +1)-dimensional spacetime with one
compactified dimension M = R

1,d−1 × S1, a general (scalar)
field σ(xμ, t) in which xμ’s are coordinates of R

1,d−1 and t is
the coordinate on S1, can be decomposed via a Fourier transfor-
mation into its zero mode σ0(x

μ) and the Kaluza–Klein modes
σi(x

μ) which correspond to the ith winding state along S1. In
the original Kaluza–Klein method, the classical vacuum state
is unique and corresponds to σ = 0. If the there are different
local vacuum states in the theory, it is natural to anticipate the
emergence of different effective theories for zero-modes char-
acterizing the corresponding vacuum state. This is the case that
one encounters when zero-modes of the D = 4 φ4 model at
thermal equilibrium corresponding to the vacua φn is consid-
ered. In this theory, at any local vacua φn, the emergence of a
Kaluza–Klein mode gives a transition to a different vacua by
classically penetrating through the barrier (15). The classical
transition rates can be obtained by calculating the interaction
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term g
∫

φ4 in which φ is replaced with the corresponding
Kaluza–Klein mode expansion. These terms are negligible at
high temperature/weak coupling limit as can be verified from
Eq. (15). Of course, similar to the Kaluza–Klein dimensional
reduction method, in order to reconstruct the original theory in
the decompactification limit T → 0, all of these terms should be
considered. In the following, we do not consider the Kaluza–
Klein excitations and restrict ourselves to the effective action
for zero-modes in a local vacua labeled by φn.

Assuming that

(16)φ(�x, t) = φn(t) + T 1/2φ̄(�x),

we obtain the three-dimensional critical action for zero-mode
φ(�x). The coefficient T 1/2 is considered in the definition of
φ(�x) to insure that its classical mass-dimension is equal to 1/2,
the mass dimension of free scalar fields in three dimensions.
One should note that since we are considering the critical scalar
theory at finite temperature, the only mass scale at hand is the
background temperature T to adjust the mass dimension in the
dimensional reduction procedure.

The effective action can be obtained simply by inserting
Eq. (16) into the action

(17)S[φ] =
1/T∫
0

dt

∫
d3x

(
1

2
∂μφ∂μφ − g

4
φ4

)
.

In the formal expansion of S[φ] = S[φn + T 1/2φ̄],

(18)S[φ] = S[φn] + T 1/2
∫

φ̄

(
δS

δφ

)
φn

+ Sn[φ̄],

the linear term in φ̄ is vanishing since φn is a solution of the
equation of motion. Using Eq. (14) one verifies that here

(19)
S[φn]

V
= n4 (2K(−1))4

3g
T 3,

where V = ∫
d3x is the volume of the room. The effective ac-

tion is given by S[φ̄],

(20)

Sn[φ̄] =
∫

d3x

(
1

2

3∑
i=1

(∂i φ̄)2 − 1

2
m2

nφ̄
2 − g3φ̄

3 − g4

4
φ̄4

)
,

in which g4 = T g and,

(21)m2
n = 3gT

1/T∫
0

φ2
n = 6nωn

(
4E(−1) − 4K(−1)

)
,

(22)g3 = gT 3/2

1/T∫
0

φn = 0,

where E(m) gives the complete elliptic integral,

(23)E(m) =
π/2∫
0

√
1 − m sin2 θ dθ.
K(−1) � 1.31 and E(−1) � 1.91. Consequently, the effective
action for zero modes is a three-dimensional φ4 scalar theory in
which the mass of the scalar field are given by

(24)mn = nm1, n ∈ N,

resembling the Kaluza–Klein reduction, where

(25)m1 = {
6
(
4K(−1)

)[
4E(−1) − 4K(−1)

]}1/2
T � 8.6T .

4. Dirichlet boundary condition

In this section we study the D = 4 φ4 theory at zero temper-
ature with Dirichlet boundary condition

(26)φ(0, �x) = φ(�, �x) = 0,

instead of imposing the periodicity condition φ(t) = φ(t +
1/T ).

Rewriting the identity (10) as

(27)u(ϕ + nπ) = u(ϕ) + 2nK(−1), n ∈ N,

and noting that sn(0) = 0, one easily verifies that the Dirichlet
boundary condition φ(�) = 0 is satisfied by assuming that

(28)� = 2nLK(−1)

g1/4
, n ∈ N,

from which one instead of Eq. (12) obtains

(29)Ln = g1/4

2K(−1)

�

n
, n ∈ N.

Thus, here the set of classical vacua φn is given by Eq. (13) in
which one should assume that

(30)ω1 = 2K(−1)T .

All the results of Section 3 are still valid after replacing
1/T → � and ωn → ωn/2 or replacing 4K(−1) and 4E(−1)

by 2K(−1) and 2E(−1) respectively.
Since parity is violated in the four-dimensional theory by

the vacua φn with odd vacuum number n, it is natural that the
parity violating term g3φ̄

3 now appear in the expansion (18) in
this case,

(31)g3 = g

�3/2

�∫
0

φ2
n = π

�3/2

√
g

2
Δ(n),

where

(32)Δ(n) =
{

1, n odd,

0, n even.

The general form of the effective potential for equilibrium states
given by vacua with even and odd vacuum number n is plotted
in Figs. 1 and 2 respectively. From these figures one verifies that
the φ3 term do not affect the theory dramatically for example
by generating a local minima. In the following we compute the
one-loop contribution to the scalar field self-energy for the even
and odd cases and show that for large n, the vacuum shift in
two sectors are similar. To this aim, we assume the validity of
perturbation around the zero of the potential at φ = 0. As we
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Fig. 1. The effective potential: the even-vacua.

Fig. 2. The effective potential: the odd-vacua.

will show at the end of this section even in the case of the odd-
vacua, where the potential is of the form plotted in Fig. 2, one
should do perturbation around φ = 0.

The one-loop contribution to the self-energy from the φ3

term, depends on p the momenta of the external line,

Σ(3)
n (p) = Δ(n)π2

2

g

�3

∫
d3k

1

k2 + m2
n

1

(�k + �p)2 + m2
n

(33)= Δ(n)π4 g

�3

2

p
sin−1

(
1√

1 + 4m2
n/p

2

)
.

From this result, the one-loop contribution from the φ3 term
to the vacuum to vacuum transition (the unobservable vacuum
shift) can be obtained

(34)Σ(3)
n (0) = Δ(n)π4 g

�3

1

mn

∼ Δ(n)

n

g

�2
.

The one-loop contribution to the self-energy from the φ4 term,
is divergent. The divergent term is linear in the cut-off Λ and is
given by the one-loop diagram for mass-less scalar (n = 0)

(35)Σ(4)
n = − g

4�

∫
d3k

1

k2 + m2
n

= Σ
(4)
0 + g

�
π2mn,

where Σ
(4)
0 is the one-loop vacuum shift for the n = 0 case

(36)Σ
(4)
0 = − g

4�

∫
d3k

1

k2
= −g

�
πΛ.
Consequently,

(37)Σ(4)
n − Σ

(4)
0 = g

�
π2mn ∼ n

g

�2
.

The φ4 theory in three dimensions is super renormalizable. Af-
ter renormalization the vacuum shift is given by

(38)Σn = Σ(3)
n + Σ(4)

n − Σ
(4)
0 = g

�
π2mn

(
1 + Δ(n)π2

m2
n�

2

)
.

Consequently the φ3 term slightly modifies the vacuum shift,
but, the relative difference between the vacuum shift for the
even and odd cases, decreases as 1/n2. This result is consis-
tent with our physical intuition because for large n the global
behavior of the potential barrier is important thus Figs. 1 and 2
seem more similar to each other as n increases.

The only thing that we should check is whether the pertur-
bation point φ = 0 we used for both the even and odd cases is
the correct perturbation base point in the odd case. This can be
verified as follows. The potential term plus the mass term in the
odd-case is given by

(39)Ṽn(φ) = 1

2
m2

nφ
2 + g3φ

3 + g4

4
φ4.

If there is another point φ = φ0 around which we could do the
perturbation, then Ṽ (φ − φ0) should, first of all, be of the form

(40)Ṽ (δφ) = const + 1

2
M2

0 (δφ)2 +O(δφ)3,

for some constant M2
0 . This means that φ0 should be a station-

ary point of Ṽ (φ). To obtain the stationary point, we have to
solve the equation

(41)δṼ (φ)/δφ = m2
nφ + 3g3φ

2 + g4φ
3 = 0.

This equation in addition to φ = 0 has another solution if

(42)9g2
3 > 4m2

ng4

inserting g4 = g/�, mn � 4.3n/� and g3 from Eq. (31) into
Eq. (42) one verifies that a solution like φ0 exists if

(43)n2 < 0.6.

Since the φ3 term exists only for odd n, i.e. n � 1, therefore
the only solution to Eq. (41) is φ = 0 and consequently the one-
loop calculations above are correct.

5. SU(2) instanton on S1 × R
3

In this section we discuss SU(2) instantons corresponding to
the vacua φn, in the ’t Hooft ansatz [1]. The ’t Hooft ansatz for
the Yang–Mills potential Aa

μ is given by

(44)Aa
μ = ηa

μν∂
νψ/ψ,

where ηa
μν are the ’t Hooft tensors

(45)ηa
μν = ε0aμν + iηaμη0ν − iηaνη0μ,

in which ημν = (−,+,+,+) is the Minkowski metric. Assum-
ing that ψ = ψ(x0), the gauge field Aa

μ and the fieldstrength
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Fμν are given as follows:

(46)Aa
μ = iηaμφ,

and

(47)Fa
ij = −eεaijφ

2, F a
0i = iδai∂0φ,

in which φ = ∂tψ/ψ and e is the gauge field coupling constant.
The field equation ∂μFa

μν + eεabcAbμF c
μν = 0, reads

(48)∂2
0 φ − 2e2φ3 = 0.

Thus the field equation for an instanton is given by Eq. (48)
after a Wick rotation x0 → ix0,

(49)∂2
t φ + gφ3 = 0,

where g = 2e2. Using Eq. (47) the instanton action

(50)SYM = −1

4

∫
d4x Fa

μνF
aμν,

satisfies the identity SYM = 3S[φ] where S[φ] is the action of
the critical scalar theory in D = 4 given in Eq. (19).

Consequently, the set of solutions φn for the critical scalar
theory gives a set of solution to the SU(2) instanton field
equation. Furthermore the ’t Hooft ansatz provide a power-
ful motivation to study the critical scalar theory with potential
V (φ) ∼ −φ4 since as is observed above, the coupling constant
g ∼ e2 in Eq. (49) cannot be negative.

6. Conclusion

The massless φ4 model in one dimension has a set of peri-
odic solutions,

(51)φn(t) =
√

2

g
ωn sn(ωnt |−1), ωn = nω1,

if the scalar potential is V (φ) ∼ −φ4. These solutions can be
used to study the theory at finite temperature in higher dimen-
sions or to study such theories in a one-dimensional potential
well with Dirichlet boundary condition on the scalar field to be
vanishing on the boundaries. The resulting effective action is a
scalar theory in one dimension lower. Here we studied dimen-
sional reduction d = 4 → d = 3. The mass of scalar field in the
effective theory appeared to be proportional to n, resembling
the Kaluza–Klein dimensional reduction. In the thermal theory,
n is the winding number of the classical vacua around the com-
pact time direction but in the theory with Dirichlet boundary
condition it denotes the vacuum number. In the thermal the-
ory, the scalar interaction in the effective theory is given by a
φ4 term. The effective action in the case of φ4 model in one
dimensional potential well with Dirichlet boundary condition,
should be studied in two different sectors. If the vacuum num-
ber is even, the effective interaction is given by a φ4 term. But if
the vacuum number is odd, due to parity violation, there is also
a cubic term in the effective potential. Both theories of course
are super renormalizable.

Finally one can use φn to construct SU(2) invariant solu-
tions of the SU(2) Yang–Mills field equation on S1 ×R

3, in the
’t Hooft ansatz,

(52)A(n)a

μ = iηaμφn, n ∈ N.

Considering Aa
μ in Eq. (52) as an instanton the corresponding

action can be shown to be equivalent to

(53)SYM = n4 (4K(−1))4

g�3
,

where � is the radius of the S1.
Our motivation for the present work has been to general-

ize the classical Fubini’s solution [7] of the massless phi-fourth
model. The Fubini’s solution is invariant under the de Sitter sub-
group of the full conformal symmetry group of the classical
massless phi-fourth model. His motivation has been to find a
natural mass-scale in the physics of hadrons. In [8] we showed
that the Fubini’s vacua, in the phi-fourth model with nonpos-
itive potential, can be interpreted as an open FRW de Sitter
background. Furthermore, semiclassical arguments showed that
the entropy associated to the Fubini’s vacua is equivalent to the
entropy of a de Sitter vacua. This is a good sign for the relevance
of nonpositive potentials to physics specially when opposed to
the phi-fourth model with a positive potential which is known
to be trivial, see e.g. [9]. The connection between the Fubini’s
solution and the dS vacua is recently studied in the context of
M-theory in [10].

The Fubini’s solution is invariant under none of the trans-
lations of the conformal symmetry group. Thus an interesting
question is whether there exist a classical vacuum invariant
under some translations if not all [8]. As we saw above, such so-
lutions at least provide new instantons of the SU(2) Yang–Mills
theory which are probably useful in a braneworld scenario. In
such a scenario and probably in the physics of superconduc-
tors, the scalar theory itself is interesting as it is exhibiting a
new mass generating mechanism.

We close this section by giving some comments on the de-
pendence of the entropy Sn of vacua φn on n, the winding
number, in the case of the scalar theory at thermal equilibrium.
Classically, one may define an entropy by

(54)T δS = δS.

Since the action Sn is not a linear function of n, this formula will
be applicable only for large values of n. In this limit, δn4 � 4n3,
thus Eq. (54) can be integrated once to obtain

(55)Sn = n4 (4K(−1))4

g
T 2, n � 1.

To obtain the entropy semi-classically, one might determine the
quantum state |ψn〉 corresponding to the classical vacua φn and
define the entropy by the relation

(56)〈ψn|ψn〉 ∼ e−Sn .

To construct the quantum state |ψn〉, one may proceed as fol-
lows. One counts the number of plane waves eikx with a given
momenta k superposed to construct φn and then create the
same number of free-particle states from |0〉, the state of noth-
ing. The resulting spectrum of free-particle states describes the
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quantum state |ψn〉 corresponding to the classical vacua φn.
Consequently,

(57)|ψn〉 ∼ exp

(∑
m

√
A

(n)
m a†

m

)
|0〉,

where A
(n)
m are given by the Fourier transform of φn,

(58)φn(t) =
∑
m

A(n)
m sin(2πmT t).

Thus to obtain A
(n)
m one should calculate the following integral

(59)A(n)
m = ωn

π

√
2

g

2π∫
0

sn

(
n
K(−1)

π
θ

∣∣∣∣−1

)
sin(mθ)dθ.

We expect that the entropy obtained in this way become equiv-
alent to the result of Eq. (54) for large n.
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