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§1. INTRODUCTION

1.1. Let 4, be the Steenrod algebra for the prime p. Adamsin [2]introduced a spectral
sequence which has as its E, term Ext, (H*(X), Z,) and which converges to a graded algebra
associated to (X, p), i.e. the p-primary stable homotopy groups of X. In this paper we
will study this sequence for X = S”, p = 2. In particular we will evaluate enough differentials
to obtain the following 2-primary stable homotopy groups.

THEOREM 1.1.1.  The table lists m,(S°) for 29 < k < 45.

TaBLE 1.1.2
k m(S°) k mi(S°)
29 0 38 44-(2?2)
30 2 39 16 + (2)°
31 64+2+2 40 84+(2)P+(222722)
32 @) 41 23 +@8?2)
33 4+ (2* 42 8§+2-+2
34 8+ (2)3 43 8
35 8+2+42 44 8
36 2 45 24+(87274)
37 24242

The notation is read as follows, for example: n,, equals either Z;4 plus three direct
summands of Z,, or possibly Z4 plus four direct summands of Z,; etc.

Table 1.1.7 shows E, of the Adams spectral sequence for ¢ — s < 45. Generators for
the homotopy groups can be read off this from table. The groups extensions in 1.1.2 which
we have not settled are those involving e,, &,u, z, and w in dimensions 38, 40, 41, and 45
respectively.

We will be concerned throughout only with stable groups and with the prime 2; there-
fore our notation takes this for granted. Thus we write m,(S°) for the 2-primary component
of 7, (S (n large), we write 4 for 4,, and so forth.

+ This work was supported in part by the U.S. Army Research Office (Durham). The first-named
author is an Alfred P. Sloan Fellow.
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The first problem in any use of the Adams spectral sequence is to obtain
E, = Ext}{(Z,,Z,).F

We do this by the technique of May [S]. May constructs another spectral sequence which
has as its E, term an algebra we call E°Ext, which is a tri-graded algebra associated to
E, = Ext. We have extended (and corrected) May’s computations to obtain complete
information on E°Ext to dimension 70. The range which will be needed for this paper is
given in Table 1.1.3. In addition some remarks on the product structure are given in 1.2
below.

Using Table 1.1.3 as a reference we can state our main result.
THEOREM 1.1.4. In the Adams spectral sequence,
(i) 6,6 =0 forall r;
(i) Ssdoeq = hos; S4(doeq + hihs) = P2d,; 6,P'eqg = Pi*2g; if P'dye, is in E,,
then 6,P'dyey = P'+2d,;
(ili) 83 = hak;
(iv) 82y = h3x;
(V) 84dov = P?u; 63P'gk = h P u,i=0,1;6,Pv=hiPu,i=0,1,2;
(vi) O4hshs = hox.

May and Maunder have previously determined some differentials in the range 29 £
t — 5 < 46 which we collect for reference in the next theorem.

TueoreM 1.1.5. (May (5] and Maunder [4]). ,P'k =P hyg; 6,hs = hoh;
Sshahs = s; S,hghs = P*hody; 6,P'l = P'hodgeq; 8,P'm = hoel; 8,P'eq = P'hidy; 6,P =
P Undy; ,P% = PP+ rod, .

To complete the proof of 1.1.1 it remains to prove the following result.

THeOREM 1.1.6. A/l differentials in the range 29 < t — s £ 45 not implied by the above
are zero.

Table 1.1.7 shows F; = E, for t — s £ 45.

The above theorems give much information beyond dimension 45. We stop at this
point because the homotopy problem is not going to be solved one stem at a time but
rather by some general device. We have shown a number of techniques which suggest that
the Adams spectral sequence is a good device for computing 7,(S°).

For completeness we include a table of m,(S°) for k£ < 28. These results are due to
Toda [10] (k < 20), Mimura [7] (k =21, 22), and May [5] 21 £ k £ 28).
Note that the result for 7,5 differs from that given by May [5] which was 2 + 4 + 2 + 16.
We establish this group extension in 2.1. All other group extensions in the known range
are given by multiplication by h, except possibly those left open in 1.1.2. This can be

1 In what follows we often will speak colloquially and treat Ext (H*(X), Z,) as a functor on a space
X or as a functor on the module H*(X). When no space or module is mentioned we mean Ext (Z,, Z,).
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TaBLE 1.1.8
k 0 1 2 3 4,5 7 8 9 10 11 12,13 14 15
(5% 0 2 2 8 0 2 16 22 23 2 8 0 22 2432
k 16 17 18 19 20 21 22 23 24 25 26 27 28
m(S%) 22 2% 842 248 g 22 22 248416 22 22 22 8 2

established without much difficulty, using 25 = 0, various bracket representations, etc. We
omit the details.

1.2. In the table of Ext, Table 1.1.3, relations involving h, and A, are indicated by
vertical and diagonal lines respectively. Many other relations hold in this range which cannot
be listed for reasons of space. Those most important for our calculations are listed below.

Since we have computed Ext by May’s techniques, the products which we naturally
obtain are actually the products according to the algebra structure of E°Ext. The product
in Ext of two elements always contains as a summand their product in E°Ext but may pos-
sibly contain also other terms of the same bi-grading (s, ) but of lower weight in the sense
of May [5]. Some examples are proved in §5 (5.1.3, 5.2.1, 5.2.4). It can be shown that
hor = s in Ext; hence hor = 0 in E°Ext, but s has lower weight than /r so that the product
in Ext is not obvious. Except as noted in 7.4 and 8.6 below, our results are independent of
such questions,

The following relations are derived in E°Ext by the May spectral sequence, and must
hold in Ext for dimensional reasons. This list is by no means complete.

Lemma 1.2.1.  Among the products in Ext are the following:

(i) hado = hoeo , haoeg = hog;
(i) P'*‘hihy = P'hid,,i=0;
(i) P'hy = hyg;

(iv) di=Plg, dog = e;
(v) hys=hdx
(v) hpd; = hug;
(vii) h3y = fog = hym;
(vili) h,t = h3n;
(ix) hyey = hady;
x) P'm =dk;
(xi) hdx' = P%x;
(xil) P!'B; = h;x".
These relations will often be used without specific reference to this lemma.

Many other relations are implicit in the notation of Table 1.1.3, such as hyf; = h,e,,
P'hig = h3k, hiu = hyz, etc.
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Recall also the Adams relations A, =0, Az, 5 =0, b3 = hi ki p,.

1.3. This paper is organized as follows. In §2 we settle ,; and #,5. Some preliminary
computations are contained in §3, and some techniques are introduced. In §4 we prove
1.1.4 (i)—(iii). Proofs of 1.1.4 (iv), (v), and (vi) are contained in §§5, 6 and 7, respectively.
Theorem 1.1.6 is proved in §8.

§2. DETERMINATION OF 725 AND 1139
2.1. May has shown that 7,5 is a group extension of Z,, Z,, Z,, and Z,.

THEOREM 2.1.1. 7,3 =Z, + Zg + Z,4 with generators {oa, 21, &), vk and p; where
p3 generates the image of J in dimension 23.

Proof. The only doubtful point is the group extension of Z, and Z, from {h,g} = v
and {P'h,d,}. Mimura [7] has shown that 7,, is generated by v and ex. Clearly then
ex = {P'd,}. According to Barratt [3], nic = {x, 2v, ¥), so we have 7’k = k{2v, v, n) =
ke = {P'd,}. Then 4vik = K = n{Pd,} = {P*h,d,}. Thus vk = {h,g} is of order 8,
which proves the theorem.

2.2. May has shown that 7, is either Z, or zero, depending on whether h3k survives
the Adams spectral sequence.

THEOREM 2.2,1. 7,5 =0.
Proof.¥ Since hdk = P'h,g = h,d? the homotopy element in question is nx*. But

ni? = {2, x, 2% by (3.10) of Toda’s book ([10], p. 33); thus nx* = 2<{k, 21, k), but since
21,5 = 0, we have yx* = 0, which proves the theorem.

In the light of 1.1.5, there are two possibilities: either 55(r) or §,(h3) must hit hZk.
THEOREM 2.2.2. hik = §5(r).

We will prove this in §8 using methods which are independent of the rest of this paper.
There we show (8.1.1) that 42 is a permanent cycle,f and 2.2.2 follows. A direct proof of
2.2.2 is indicated in 4.4 below.

§3. SOME LEMMAS

3.1. Consider the stable complex X, = S° U, €?, where by such a symbol we always
understand Z"X,, where k is large enough so that the complex is defined and stable. Let
M, = H*(X,); M, is an A-module. The co-fibration

311 s°5H X, 5 82
yields a long exact sequence in Ext:

3.1.2 oo D Ext(HA(S), Z5) -5 BXt{(M,, Z,) 25 Bxt{(H*(S?), Z,) > ...

+ This proof was suggested to us by M. G, Barratt,
1 We say that « is a permanent cycle if 6,0 = 0 for all r; and if moreover « projects to a non-zero
element in E,, we say that « is a surviving cycle or survivor.
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where the connecting homomorphism & is just multiplication by 4, [I, Lemma 2.6.1].
This enables us to write down Ext for X, , using 1.1.3.

LemMA 3.1.3.  The table gives Exty(M,, Z,) for t — s =16, 17.

16 h? hoh? hody hidy Picoy
hoha h3hs h3hs héha hiha hSha hiha
17 € hoeo hzeo P*h,
2 3 4 5 6 -7 8 9

In the tables we write « for i,(x) and f for an element such that p.(B) = B. The rows and
columns are fixed values of (¢ — 5) and s respectively.

LEMMA 3.1.4. In the range of 3.1.3 the Adams differentials for X, are (i) 6, f, = hiey;
(i) 83hbh, = Hidy, i =1, 2; (iii) 8543k, = P'cy.

Proof. The Adams differentials are natural, which proves (i) and (ii), since these are
carried forward by i, and pulled back by p , respectively. Then (iii) follows from (ii) by
observing that g -h2dy = ho<1, hy, h2dy> = <hy, h2dy, hod = <hy, PRZ, hyd> = Plc,.

Hence we easily obtain E, for X, .

LeMMA 3.1.5. The table gives E, for X, in dimensions 16 and 17.

16 4 hoh3
; R R
€o hoeo P2,
2 3 4 5 6 7 8 9

The homotopy exact sequence of 3.1.1, in which the connecting homomorphism is
multiplication by 7, gives 7,4(X,) =Z,? Z, and 7,:(X,) = (Z, + Z,) ? (Z,¢ + Z,) where
? denotes an undetermined group extension. Comparing this calculation with 3.1.5, and
observing that ho - Ajhy = holl, hy, hihe) = {hy, hiha , hoy = P*h,, we can settle these homo~
topy groups.

LEMMA 3.1.6.  m,4(X,) = Z4; my4(X,) = Z4 + Z5, with generators {i4(eo)} and {1, 1,2p)
respectively.

Note that i4(e,) is a survivor whereas e, does not survive in S°. By 3.1.6 and inspection
of the homotopy exact sequence we have
3.1.7 Paliz(en)} = nk.

3.2. Consider next the stable complex X, = S°® u, €® and let M, = H*(X,). As with
X, the co-fibration
3.2.1 505 x, 5 g8

gives a long exact sequence in Ext, where the connecting homomorphism is multiplication
by #; (or oin the homotopy sequence).
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LeMMA 3.2.2. In Exty'3(M,, Z,) there is a class h% which survives the Adams spectral
sequence, and projects to h§ under p, . If w € Ext$(Z,, Z,) then hin = i ,Pla.

Proof. A portion of Ext for X is given below.

7
8 Co ;1_3- I;E E...
9 hyco Plhy

1 2 3 4 5 6...

The lemma follows easily from this and from the observation that B = izl hy, h§).

LemMMa 3.2.3. The table gives Bxt'(M,, Z,) for 14 £t —s <17,

14 3 do hodo 2do

Wby Ry hud
15 ha * * » * * *

hihs co

16 h1h4 PlCo

Khy  hico : 2
17 h2h, e hoeo h3eo Plhico Phy

1 2 3 4 5 6 7 8 9

Here the asterisks () denote Abh,, 1 i< 7.

Proof. This is a straightforward computation using the relation A;Ph, = h2d, and
other relations which are well known.

LeMMA 3.2.4. In the range of 3.2.3 the non-zero differentials are (i) 6,hbhy = hh™d,,
i=2,3; (i) 65e5 = Plcgy.

Proof. Since k ¢ o1, igk # 0 where k = {d,} € 7,4 as computed by Toda. Thus the
homotopy exact sequence of 3.2.1 implies that n,,(X,) = Z, + Z, and so d, must survive.
If 8,h3h, were zero, then we would have 83h0h, = hod, by naturality; but this could only
happen if 8,4, = dy, which is impossible. This contradiction proves (i). Similarly, since
{P'cy} = np = oy € 6y we must have Pley = §3¢,.

3.3. Tt is not hard to verify that the class {h,} in X, projects to <1, g, 26>. Let
Y =X, Uy, ¢ and let My = H*Y). We have a diagram

sohxly
33.1 "1 ql
SS S16

and we can compute Ext5'(M,, Z,) using the co-fibration (j, g). We will make extensive
computations of this kind later. For the present we record one important fact.
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LemMA 3.3.2. In Ext$(My, Z,) there is a surviving cycle P> = h§ such that q .P* = h}
and such that, if « € Ext{(Z,, Z,), then P« = (ji) . P*a.

The proof is straightforward ; compare 3.2.2.

3.4. We note the following general lemma for reference.

LEMMA 3.4.1. Suppose the maps i, p:S° 4 X5 X are such that the composition pyly

is zero in homotopy. Suppose « is an element in Ext for S° such that i 4o is a surviving cycle,
and such that p,a is essential for every & € {i a}. Then a is not a permanent cycle.

Proof. We first show that « is not a surviving cycle. For suppose f: S*— S° repre-
sented {o}; then the composition i-f would be in {i,«}, and therefore p,(i-f) would be
essential, which is a contradiction.

It remains to show that « cannot be the image of a differential. Suppose that a = J,5;
then i, = 6,(i,f) by naturality, but this is impossible, since i,« is a surviving cycle.

§4. 3.(eog) AND RELATED DIFFERENTIALS

4.1. 'We begin by showing that ¢ survives to nz4.

THEOREM 4.1.1.  The element t = {h;, h,h;, g> € Ext§**(Z,, Z,) is a permanent cycle.

Proof. We use the complex X, of 3.2. By 3.2.3 and 3.2.4, Ext%'8(M,, Z,) contains a
class hyhy = (1, hy, hhyy which is a permanent cycle. Multiplying by the permanent cycle
g € Ext4?*%(Z,, Z,) we obtain <{hs, hhs, g> = it which must also be a permanent cycle.
But it follows by naturality that ¢ itself is a permanent cycle, since 7, is monomorphic in
dimension 35.

COROLLARY 4.1.2. t is a surviving cycle.

Proof. The only other possibility is ¢ = 63h3ks; but hyh2 =0 and h,(hd,) =0 so
clearly 8342k = 0.

4.2. We now prove the main result of this section.

THEOREM 4.2.1. d,e,9 = Pg.

Proof. We use X, and the results of 3.1. We have shown that i,e, is a survivor and
that py{ises} = nx (3.1.7). It follows that p,{i,e,9} = nxik where # = {g}. Now ki =
{h,dyg}, but h,dyg = h,e2 = h3m. Since ¢ is a permanent cycle, this element survives to
73s. Then 3.4.1 implies that eyg is not a permanent cycle. The only possibility is that of
the theorem. (P2h,g = 6,P'k by 1.1.5.)

This settles m35 =Z, .

COROLLARY 4.2.2. 6,43y = P*h,g = P'hik.

This follows from the relation Ay = h,e,g [9].

THEOREM 4.2.3. §,P'eyg = Pg.

Proof. The idea is that 4.2.3 would b_e_ immediate from 4.2.1 if P! were an actual
class, but the complex X, contains a class A% which behaves like P! by 3.2.2. The table
gives a portion of Ext for X.
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43 hoPim hiP'm
44 P PZhyg Pn2g P3g
hoPk hZP%k 2 )
45 Preag P2 hoP%k
12 13 14 15 16

By naturality we have 5,P% = P%hyg and 8,P'k = P?hyg. Since h,P2g = h2P'k, and
83P%g =0, 8;h3P k = 0. Thus P3¢ (i.e. i, P3g) projects to E,. Similarly Ple,g projects to
E,. But

d4isPleog = 54;%-909
= ’1—8‘54309
=~ h§P%g

i,P'P%g

=i,4P3g.

Since i, is monomorphic for the range in question, the theorem follows.
4.3, We now draw several consequences from 4.2.3,
PROPOSITION 4.3.1.  §;3d,e, = hgs.

Proof. Since P'g=d, 43.2 asserts that §,d2e, = P*d2. Thus if dye, projects to
E, we must have d,dye, = P?d,. But this is impossible since P*h,d, # 0 in E, while
hodoe, = Osince it equals 3,7, by 1.1.5. Thus dye, does not project to £, . We have d,dye, =
dy.8eq = h3d3 = 0. Thus §,dse, must be non-zero and we are finished.

Now 63h0hs = hgs also, by 1.1.5. Thus a = dye, + hihs is a cycle in E5 and hence
projects to E, .

COROLLARY 4.3.2. 8,0 = P%d,.

Proof. S4hqx = 8,h3hs = P2hod, .

Using 1.1.5 and 2.2.2, this settles 735 = Z, .
COROLLARY 4.3.3. §,Pleyg = Pit2g.

Proof. For i=2 we use 4.3.2 (which uses 4.2.3). Writing o as above, we have
(P~ ldya = (P~ Ydy)dye, = Plegg. Then §,Pleqg = P 1d,. 6,0 = P id2 = P'*%g.

COROLLARY 4.3.4. If P'dye, projects to E, then §,P'dye, = P**%d,.

Proof. 8,d,P'dge, = 8, P teyg = P'*3g = d,P'*?d, and the result follows, since
Pid, is the only element in Ext* for the appropriate s and t.

COROLLARY 4.3.5. If P'hdyey € E, then 8,P'h,dyey = P'*2h.d,.
COROLLARY 4.3.6. 8,h,e09 = P?h,g = P?hik.
These are immediate from 4.3.3 and 4.3.4 respectively.

4.4. We now deduce a further consequence of 4.2.3.
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ProPOSITION 4.4.1.  §,P%r = P?hik.

Proof. The following is a portion of Ext for the complex Y of 3.3:

45 P P?hok Pk
46 P*hid, P3d, P3hod,
P P
14 15 16 17

Here we have written Pk for (jji),P?k, etc.; elements originating from the 8-cell and the
16-cell have single and double bars respectively. By 3.3.2 (ji),P%s = P?s. This is a per-
manent cycle, since s and P? are permanent cycles in Ext for S° and Y respectively. Since
(ji)# is monomorphic in the required dimension, P2s is a permanent cycle. Thus P?A2k is
non-zero in E; for S°. But it must be zero in E, since P*h2k = P?h, g = h,-5,P'e,g whereas
hP'egg = 0. The only possibility is P2hZk = ;P

We can now prove 2.2.2 by observing that P*5,r # 0 since, using 3.3.2, P2,r =

COROLLARY 4.4.2. §3dyr = Phim.

This is immediate from 2.2.2 and the relation P*h3m = hid,k.

§5. THE y FAMILY
5.1. We obtain J,y and make a related observation on the algebra structure of Ext.
LeMMA 5.1.1.  83h3h3hs = h3x.
Proof. Since hix = hys, this follows immediately from 1.1.5.
This would appear to imply that 335355 = x but we shall show in a moment that

h3x = 0 in E; so that this inference is not valid. In fact §3h3%5 = 0 as will be shown in Sec-
tion 7.

LemMma 5.1.2.  S,h0y = hix.

Proof. Since hihshs =0, 5.1.1 implies that Afx =0 in E;. The only possibility is
hgx = 62h0y.

PROPOSITION 5.1.3.  In Ext, hyel = hyeog = hix.

Proof. By [9], hym = hly. Therefore hohyel = d,h,m = 8,h2y = hix. This implies the
proposition.

This product in Ext cannot be obtained from May’s spectral sequence, i.e. from E°Ext,
since in E°Ext, h,el = hyeog = 0 (the element Adx # 0 has different May filtration degree).
Since 5.1.3 is the first recorded difference between the algebra structures of Ext and E°Ext,
we give a second proof. May [6] has shown that s = {h,, dy, 3> and x = <{hs, hy, dpD.
(The relation ks =hix follows easily from this.) Then hix =hiChy, hy, dy> =
Khg s sy hyddy = (Phy)dy = hadog = haeg .
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THEOREM 5.1.4. &,y = hdx
Proof. This is now immediate from 5.1.2 and 5.1.3.

5.2. We now derive some differentials which lie beyond the range t — s £ 45 but which
will be needed later.

LEMMA 5.2.1. In Ext, h,P?eog = NSS,.

Proof. This product, which does not hold in E°Ext, is a necessary consequence of
4.3.3. We have h,6,P%e,g = P*h,g which is non-zero in E,. Thus h,P%e,g # 0 but Ext'77?
is generated by ASS,.

COROLLARY 5.2.2. §,45S, = P*h,g = Phik.
PROPOSITION 5.2.3.  6,h,S, = hgx'.

Proof. Since 6,P3% = P*h,g, 5,h3S, = 0 for r = 3, 4. Thus if 5,h3S,; were zero h3S,
would be a permanent cycle, contradicting 5.2.2. Therefore 6,435, = h8x’ and the proposi-
tion follows.

This argument does not settle §,S, since hgP;w = 0.

Remark 5.2.4. We have h$S, = P?h3y from 5.2.1 and the relation h,eqg = hohom =
h3y. Thus P2y = h3S, which again is a relation in Ext which does not hold in E°Ext for
reasons of filtration.

§6. THE u FAMILY
6.1.

We will use the complex X, of 3.1. In Ext}*%M,, Z,) there is a permanent

cycle <1, iy, P*h,> which maps to P4, (= h,g) under p, . Notice that if « € Ext for S° is
such that P'i, = 0 then (1, hy, P'hyda = i 4<hy, Phy, o).

PROPOSITION 6.1.1.  8,d,v = P*u.

Proof. May proves u = <h,, P'h,, d,> and v = {h,, P'h,, ey> [5]. Hence in Ext for
X,’, 641‘#(]00 = 64 <1, hl’ P1h4>doe0 = <1, hl’ P1h4>P2 do = f#qu. ThUS it iS enough to
show that i, P?u is non-zero in E,. The table gives a portion of Ext for X, .

55 P2hix

P2hix P2hdx P2hdx
Plegr Py
h3S, kS, h3S: 551
56 Plgj Pg?
14 15

16 17

Since 8,j = P'hye,, and P'g = d§ is a permanent cycle, §,P'gj = P%hyeyg, which equals

P2hix (= hIx') by 5.1.2 and 5.2.4. Thus 8,P'gj = P2hdx 5 i,P?u. By 5.2.3 8,hS; = P%hyx
and so i, P?u survives to E, and we are through.

COROLLARY 6.1.2. 8,P'gk = P*h,u and §,P*v = P*h3u.

Proof. Since hydyv =0, P?h,u must be zero in E, by 6.1.1. This proves the first
statement. The second statement is proved similarly.
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PROPOSITION 6.1.3. 839k = P'h,u.

Proof. The idea is to work in X, where we can “‘divide by P! in the sense of 3.2.2.
1t follows from 6.1.2 that §,hdgk = i, P gk = i4P*h,u = h§P'hu. Thus it is enough to
show that #$P'A,u is non-zero in E5. A portion of Ext for X, is given in the table.

s¢  Phd PR
Pg? P?hu
57 Pt
16 17 18

From this it is obvious that ZgPllzlu = i, P*hu survives to E; and this completes the proof.
COROLLARY 6.1.4. 6,P'v = P'h¥u (= P'hy2).
This follows immediately from 6.1.3.
PROPOSITION 6.1.5. 8,0 = hiu (= hoz).

The proof is similar to that of 6.1.3.

§7. d4hshs

7.0. We will show that §,hh5 = hyx. The outline of the argument is as follows. In
Ext for the complex Y of 3.3 there is a certain permanent cycle « (7.1). By some manipula-
tions with this cycle we can show that §;{1, h342) = x in the Adams sequence for Y (7.2).
The same differential holds in X, ; but this enables us to compute 73,(X,), from which we
can obtain m;, by a counting argument (7.3). The desired result follows.

7.1. 'We begin with the three-cell complex Y.
LemMA 7.1.1. The table gives a portion of Exti'(My, Z,).

i

h3 hoh do . x
22 haey
h1d0
23 h . . . . .
3 * * * hag *
1 2 3 4 5 6

Here the asterisks are abbreviations for products with /i of the elements to the left; single
and double bars indicate cell of origin as in 4.4.

By naturality we have in the above table the differentials 62}_1:, = hoh? and S3hghy = hody.
We introduce the notation
a=hg+hy =<1 hy, hyd + <1 hy, by
and we wish to show that o is a permanent cycle. If we pinch the 0-cell of Y to a point we
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obtain the two-cell complex S® U, €' which we will call Y’. The crucial step in the calcu-
lation of .43k 5 is the following.

LEMMA 7.12. The element h, + hy € Exty**(My., Z,) is a surviving cycle, giving a
homotopy element {o'} € n,3(Y").

Proof. Consider the following diagram:
Y — SBu,,etfu, et — §7¢
8116 ) Slélu e24 , £24
The lower row is equivalent to the co-fibration 3.2.1 of X,. Clearly then the connecting

homomorphism in the Ext sequence takes 1 to h—3 . Thus, by naturality, the connecting
homomorphism in the Ext sequence for the co-fibration of the upper row must hit either

h, or h, + k. Butit follows from the work of Adams on the decomposability of h(Sq*®) [1]

that the image 6,1 must contain iz:. This proves that 6,1 = ﬁ; +—l;; in the Ext sequence of
the upper row. But {1} is of course a homotopy element, the generator of n,,(S**), and

therefore /1, -+ Z; is a permanent cycle, and hence a surviving cycle, in Y’; and the lemma
follows.

LemMma 7.1.3. In Y, o is a surviving cycle.

Proof. This is now almost immediate from 7.1.2 and the homotopy exact sequence of
the co-fibration $S®—» Y — Y.

7.2. We now use the above results to show that x does not survive in the Adams
sequence for Y.

Lemma 7.2.1. In Ext for Y we have the following products:
() <, by, hydhy =<1, ks, h2);
(i) <1, hy, hyoh, =0;
(i) <1, hy, hyddy = jux;
(iv) <1, hy, hyddy=0.
Here j denotes the composite ji 1 S° — Y of 3.3.

Proof. Theproduct (i) is clear; (ii) follows from the well-known relation {h, , b5, by =
h3hs, since juhihs = 0; and (iii) follows from x = <{h;, h,, dy>. To prove (iv), observe that
hg<h4, do, h3) = hyldy, hs, hg) = h4pldo
=doP'h,
= do<hg, hy, hy)
= hg(”s she, dod
= h§x(# 0)
from which it follows that {h,, dy, #;> = x. Now from the Jacobi identity
Chys by, dod +<hy s do, had + {do, by, hy) =0,
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since the first two terms are each x and the indeterminacy is zero, it follows that
{dy, h3, hy) =0 which implies (iv).

COROLLARY 7.2.2. hya =1, hy, h3) and dyx = j 4 x.

LEMMA 7.3.2. In Y, 851, hy, h3> = j.x.

Proof. The table shows a portion of Ext for Y.

37 ng hg
h§h5 X ll()x
Inc: r
38 h3 * * *
2] y
1 2 3 4 5

By 7.2.2, 7.1.3, and 1.1.5,
d3hodl, hy, h3) = b3hohya
= adshoh,
= ahyd,
= hojx.
But §,{1, k3, h3) is clearly zero, and the lemma follows.
7.3. 'We now comnsider the complex X, .
LemMA 7.3.1.  The differential 551, h3h2> = iux holds in X,.
Proof. For s =<5, Ext for X, agrees with the table of 7.2.3 after deletion of the
elements with double bars. Thus 7.3.1 is immediate from 7.2.3 by naturality.
CoroOLLARY 7.3.2.  a{h3} is non-zero.

Proof. By 2.2.2 {h2} is the generator of n;, = Z,. In the homotopy exact sequence
3.2.1 of X, {h2} € m35(S®) does not come from m45(X,) since 7.3.1 implies that there is no
element in 735(X,) of filtration less than or equal to 2. This gives the corollary.

LEMMA 7.3.3. The table gives a portion of Ext for X, .

36 t 1?.5 * * Py * *
k * *
37 h3hs X * * €od Pk * *
38 E * * * y * * * Z%; * Pid, * *
€3
2 3 4 5 6 7 8 9 10 11 12 13 14

This is calculated in the usual way. We have made use of the relation hyr = A3x + hjt;
see 7.4 below. Also, we do not know whether h%d; = h3n, but this is irrelevant to our argu-
ment, so we omit #2d; from the above table for simplicity.
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LemMA 7.3.4. The following are the only differentials in the Adams sequence for X,
which involve dimension 37: (i) 6,k = hoPlg; (i) 8,Pk = hoP%g; (i) ,e09 = P%g;
(iv) 83hgs = K3Pk; (V) 65h3 = x.

Proof. The differentials (i) and (ii) are obvious by naturality, and we also obtain
(ili) by naturality, observing that 6,42k = 0 since A2k = h,Plg. We have proved (v) in
7.3.1. Finally, (iv) follows from (iii) and the fact that h,e,g = h3y is obviously a permanent
cycle here.

We should also observe that th is a permanent cycle, since it can be written
(h3ha)hy, (see 3.2.4), and that e, is a permanent cycle in X, by an argument given later (8.6)

PROPOSITION 7.3.5. 73, has exactly three generators.

Proof. 1t is clear from 7.3.4 that 75,(X,) is generated by the images of A2k and —I;ﬁ—k
Using 7.3.1 and the fact that m5,(S®) ~ n,, = 0, we have a short exact sequence

0 — 735(S%) = 735 — n3/(X,) — 0
and the result follows. (The map 7;5(S®) — n5, is monomorphic by 7.3.2.)
COROLLARY 7.3.6. d3h3hs=0.

Otherwise 75, would have at most two generators, since 1.1.5, 4.2, and 5.1.4 have eli-
minated all possible survivors except h3hs, x, hox, hix, and hyt (= h2n).

THEOREM 7.3-7. 64h3h5 = hox.

Proof. By 1.3.6, 6,h3hs is defined. If it were zero, both 85h345 and d;e; would have
to be non-zero, in order to agree with 7.3.5. But §;¢; =0 is proved in §8.6 below. Thus
7.3.7 follows from 7.3.5 and 7.3.6.

7.4. In the proof of 7.3.3-7.3.7 we used the relation hyr = h2x + h,t. In E°Ext,
hsr = 0, but in Ext, A, might conceivably be any linear combination of AZx and h,¢, since
both elements have lower weight in the sense of May (see Section 1.2 above).

The fact that /57 is as claimed has been proved by showing that 7 and h3x + 4,¢ do not
survive in the May spectral sequence for X, (unpublished). This product is closely related
to the product hor = s (because of Lemma 1.2.1, part (v)), which has been proved by similar
calculations (in the complex S® u,, e!). This latter product can also be proved by the
techniques and results in The metastable homotopy of S”, by M. Mahowald (Mem. Am.
math. Soc. No. 72, 1967).

§8. PROOF OF THEOREM 1.1.6

8.0. Now we will prove that all remaining differentials are zero. Using known facts
about the image of the J homomorphism, and using the fact that each 4, is a derivation with
respect to the product structure of £, , it is clear from what has already been proved that the
following elements are permanent cycles: n, dy, g, p, hs¢o , g5 , and h3hs. It remains to show
that the following are permanent cycles: h;hs, hyhs, Phhs, Phyhs, e, f;, ¢ca, and w.
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8.1. We begin by giving the promised proof that /2 is a permanent cycle, which implies
2.2.2. The fact that 42 is a permanent cycle is a corollary to the 1ouowing theorem.

THEOREM 8.1.1.  The four-fold bracket {o, 20, 6, 20 exists, and {h3} = {0, 20, 0, 20).

Proof. According to Oguchi [8], to show that the bracket exists it is sufficient to prove
that <o, 20, 6> = {20, 0, 26> = 0 with zero indeterminacy. It follows from Toda’s formula
((3.10) of [10]) that <, 26, 0) = {20, a, 26). But clearly {20, 0, 20) = 2{a, 20, ), and
since 2m,, = 0, both three-fold brackets are zero. The following lemma shows that the
indeterminacy is zero.

Lemma 8.1.2. omys =0,

Proof. m,s is generated by p and nx. Now xx =<y, 2v, ¢» and therefore onx =
{o, v, 2v>e =0oe =0. On the other hand S22 — S'° — SO(n) » Q"S" where w is a
generator and » > 22 shows that op = a(wJ) = 0.

This proves the existence of the four-fold bracket. To show that it contains {h2} we
represent the bracket by the complex

S"‘j‘ Sn+7 Usy en+15 U, en+23 ? Sn+30-
a -2

Then X = S" U,,; " 3! can be realized by taking the mapping cylinder M, of & and adjoin-
ing e"*3! by the map
S"+30-—2?S"+7U2, eI, ent 23 o M,
Let ¥ be the subcomplex
Sn+7 Uzd en+l5 Ua en+23 Uza en+31 e X.

The cohomology of the pair (X, Y) is given by the following table,
HY(X, Y) = H¥(X) -5 HY(Y)

n X" j*x"

n+7 Yne7
n+ 8 5*.Vn+7

n+15 Vn+1s
n+ 16 0*Vui1s

n+ 23 Vn+23
n+24 3*Vn123

n + 31 Xn+31 i*Xp 431

Adams has shown [1] that S¢'¢ = £, ja; ; 3¢, ; Where a, 3 ; contains the term Sq%. Hence
*Vnr1s = Sq'%x, = 1(Sq®¢o ;) where x is the canonical anti-automorphism of 4. The
Peterson-Stein formula now completes the proof.

The following consequence will be used in 8.3.
CoROLLARY 8.1.3. v{h2} =0.

Proof. v{o, 20, 0, 20) ~ {0, 20, 6, 20) but the indeterminacy of the last bracket is
20m,5 = 0.
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8.2. An elementary argument shows that {n, 21, {h}) = a has the property that ¢, s
is non-zero in S° U, e**. This implies that 4,45 is a permanent cycle.

This settles 74, and 7y, .
8.3. Using the same technique we can show that (v, {A2}, 21> = o, has the property

that ¢, 5 is non-zero in S® U,, €*° and hence that hyhs is a permanent cycle. This uses
8.1.3.

We have now settled =, for all £ < 36. It is not hard to verify that all group extensions
in the range 31-35 are trivial other than those given by A,.

8.4. It follows from 8.2 that P*h2hs = (Ph,)(h,hs) is a permanent cycle. Therefore
83P h,hs = 0 and PYii ks is itself a permanent cycle.

8.5. P'h,hs obviously gives a permanent cycle in Ext for X,, by 3.2.2, and since z is
not a multiple of 4, it follows that P!h,hs is a permanent cycle. This settles 7, .

8.6. If we can show die; =0 then e, is a permanent cycle. There are two possible
images: h,¢ and h2x. May has shown that e, = (&3, ¢, , k3, h,) [6]. We therefore consider
the complex X = S° U, €® U,, €% and show that the image of e, is a permanent cycle there.
Let M = H*X).

LemMA 8.6.1. The table gives a portion of Ext{{(M, Z,).

34 3 I3g J .
hahs * * han eg *
35 h—s * * * had,y m * *
1 2 3 4 S 6 7 8 9

The proof follows directly from Adams’ lemma [1; 2.6.1].
LemMma 8.6.2. ;z_: is a permanent cycle and in E, can be represented as {1, hy, ¢y, h3).
Proof. We first show that (i, o, ¢;, ¢) exists as a four-fold Toda bracket. Clearly
(1. 6, ¢;> = 0. To see that {¢ ¢,, o) =0 we use the Jacobi identity
{o,{no, 06,v>, 6) + {{g, 10, 06),v,6) + {7, 16,{5, v, 065> =0

since {¢;} = {56, o, v>. The second bracket is zero since {¢, o, 6> = 0. To prove the third
bracket zero, note that (46){a, v, 6> = 0 on S”. Hence we form

S3* 5 e16 U ST — SO(n) — Q'S"  (n)35)
which represents the third bracket. Then the third bracket is zero since 73,(SO) =0.
Thus the first bracket is zero also, and the four-fold bracket may be formed. Clearly
P4<1, 0, ¢;, 6> = o where p : X - S?8. This implies that 8¢, 0, ¢;, 6 # 0. Now if 8,3 # 0
for any r then there will not be enough classes in E%**33 to produce n;5(X). The lemma
follows.

LeMMA 8.6.3. e, is a permanent cycle, where i : S° - X.
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Proof. We have ize, =i,(hs, ¢, ha, hy) = h;l;—; and thus the result is immediate
from 8.6.2.

COROLLARY 8.6.4. Either e, is a permanent cycle, or else dye, = hyr.

Proof. From 8.6.3 it follows that e, gives a permanent cycle in the Adams sequence
for X,. Thus e, is a permanent cycle in the Adams sequence for S° unless its differential
is a multiple of 45; and h,r is the only possibility.

PROPOSITION 8.6.5. Either e, is a permanent cycle, or else e, = hin.

We omit the proof, which follows the same lines as 8.6.1-8.6.4, using the complex
X, = S° U, ¢* in place of X,.
THEOREM 8.6.6. e, is a permanent cycle.

Proof. By Lemma 1.2.1, h3n = hyt; by 7.4, hyr = h,t 4 hix. Since A2x is non-zero in
E;, the result follows by comparison of 8.6.4 and 8.6.5.

8.7. According to May [6], /; = <h2, h}, h3>. Thusin Ext for X, i, f, = h3<{1, by, h h3)
is a permanent cycle. This shows f; to be a permanent cycle, unless ¢,;g = h;y (another
ambiguity in the product structure of Ext). However, we can settle d, f; = 0 by considering
the complex S° u,, €® U, e!® in which %, is non-zero (cf. 7.1) and in which f; may be written
hi{1, hy, R3h,>. We omit the details.

8.8. We can show that ¢, = {h;, h,, h3) is a permanent cycle by using the complex
X, = S% U, e* in much the same manner.

8.9. Finally we must show that the permanent cycle w in Ext®»>* is not 4,B,. But
P'B, = h,x’, a permanent cycle; P'w # 0, and the result is an easy consequence of 3.2.2.
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