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1. Introduction

Let (X, H, 1) be an abstract Wiener space, i.e., X is a real separable Banach space, H is
the Cameron—Martin space and w is the Wiener measure on X. Let Y be another real separable
Banach space and w := (w;)o<s<1 be the X-valued Brownian motion on a completed probability
space (£2, F,P) associated with p. We consider a class of Y-valued Wiener functionals X¢ :=
(X7)ogr<1 defined through the following formal stochastic differential equation (SDE) on Y':

Xt =o(XE) oedw, +b(e, XE)d1,  X5=0, (L1)

where the coefficients o and b take values in L(X, Y) and Y, respectively, with a suitable regu-
larity condition. In this paper, L(B, B’) denotes the space of bounded linear maps from B to B’
for real separable Banach spaces B and B’. We note that, since the diffusion coefficient o takes
values in L(X, Y), we cannot interpret equation (1.1) through the usual theory of SDEs generally
when X and Y are infinite-dimensional Banach spaces. See Section 3 for the precise formulation
of these Wiener functionals X¢. As examples of (1.1), we can give a class of heat processes on
loop spaces and the solutions of SDEs on M-type 2 Banach spaces. See Inahama and Kawabi [9]
for details.

The main objective of this paper is to discuss the precise asymptotic behavior of the Laplace
type functional integral E[G (X®) exp(—F(X?)/e?)] as & \, 0. For heat processes on loop spaces,
Laplace’s method was studied in the earlier paper Inahama [7]. In this paper, as a continuation
of [7] and [9], we establish the asymptotic expansion formulas for wider classes of (infinite-
dimensional) Banach space-valued Wiener functionals by using the fact that the rough path
theory of T. Lyons works on any Banach space.

To establish the Freidlin—Wentzell type large deviation principle for X¢, due to the lack of
the continuity of the Itd map w + X*®, Schilder’s theorem and the contraction principle may not
be used directly. To overcome this difficulty, Freidlin and Wentzell developed refined techniques
involving the exponential continuity (see Deuschel and Stroock [6]). On the other hand, recently,
Ledoux, Qian and Zhang [14] gave a new proof for the large deviation principle by using the
rough path theory. The basic idea in [14] is summarized as follows. First, they show that the
laws of Brownian rough paths satisfy the large deviation principle. Next, they use the contraction
principle since the Itd6 map is continuous in the framework of the rough path theory. Hence their
approach seems straightforward and much simpler than conventional proofs. In [8], it is shown
that their approach is also applicable to a class of stochastic processes on infinite-dimensional
spaces.

As an application of the large deviation principle, Laplace’s method is investigated in many
research fields of probability theory and mathematical physics. In finite-dimensional settings,
Schilder [16] initiated the study in the case of X® = ew and Azencott [4] and Ben Arous [5]
continued this study for (1.1). (For results concerning with more general Wiener functionals, see
Kusuoka and Stroock [11,12] and Takanobu and Watanabe [17].) In these papers, the stochastic
Taylor expansion for X¢ plays an essential role. The problem of [16] is rather easier because each
term of the expansion is continuous, which comes from the fact that X¢ is nothing but the scaled
Brownian motion. So, there is no ambiguity in the formulation. However, in general, it is very
complicated to give a precise interpretation on each term of this expansion through conventional
stochastic analysis because the Itd map is not a continuous Wiener functional. On the other hand,
Aida [2] proposed a new proof with the rough path theory for this problem recently. In [2], he
obtained the stochastic Taylor expansion with respect to the topology of the space of geometric
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rough paths for finite-dimensional cases. Since the Itd6 map is continuous in the rough path sense,
each term of the expansion is continuous. Hence we do not need to face the difficulty mentioned
above. By these reasons, the authors guess that, on the space of geometric rough paths, there
could be many other probability measures to which this method is applicable. Based on the idea
of [2], the first author [7] has already showed the stochastic Taylor expansion up to the order 2
in an infinite-dimensional setting.

Our method of the stochastic Taylor expansion is slightly different from Aida’s method in [2].
He uses the derivative equation, whose coefficient is of course of linear growth. Since it is not
known whether Lyons’ continuity theorem holds or not for unbounded coefficients, he extends
the continuity theorem for the case of the derivative equation in [1]. On the other hand, we use the
method in Azencott [4] and we only need the continuity theorem for the given equation, whose
coefficient is bounded. The price we have to pay is that notations and proofs may seem slightly
long. However, the strategy of this method is quite simple and straightforward.

The organization of this paper is as follows. In Section 2, we give a simple review of the rough
path theory and introduce the Cameron—Martin theorem and Fernique’s theorem in the frame-
work of Brownian rough paths. In Section 3, we give the framework and state the asymptotic
expansion formula in the case where the phase function has a unique non-degenerate minimum
point (Theorem 3.2). In Section 4, we establish the Taylor expansion for our Wiener functionals
X? in the sense of rough paths. This expansion plays an essential role in this paper. It is deter-
ministic in this case and, hence, the term “stochastic Taylor expansion” may not be appropriate
anymore. In Section 5, we estimate the remainder terms of the Taylor expansion. In Section 6,
we prove Theorem 3.2 and give the explicit representation for the coefficients in the asymptotic
expansion (Theorem 6.5). Finally, we also establish the asymptotic expansion formula in the case
where the phase function has finitely many non-degenerate minima (Theorem 6.7).

Throughout this paper, we denote by ¢ unimportant positive constants which may vary from
line to line. When their dependence on some parameters are significant, we specify as c(||y 1),
c(ro, 1), etc.

2. Preliminaries from the rough path theory
In this section we set notations and review some basic results of the rough path theory.
2.1. A review of the rough path theory

First, we recall the definition of spaces of geometric rough paths. Let B be a real separable
Banach space. The algebraic tensor product is denoted by B ®, B. We consider a norm | - | on
B ®, B such that |x ® y| < |x|p - |y|p holds for all x, y € B. We denote by B ® B the completion
of B ®, B by this norm. We often suppress the subscripts of Banach norms when there is no fear
of confusion. We also use the notation B” := B & --- @ B.

\ﬁf_d
n-times

Let 2 < p < 3 be the roughness and fix it throughout this paper. A continuous map
x =(1,x1,X2) from the simplex A := {(s,7) | 0 < s <t < 1} to the truncated tensor algebra
T®(B):=R& B & (B ® B) is said to be a B-valued rough path of roughness p if it satisfies
that, for every s <u <1,

X1(s, 1) =x1(s,u) +x1(u, 1),

xX2(s,t) =Xx2(s,u) +x2(u,t) +x1(s,u) @ x1(u,t) 2.1)
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and

n ilp
1%l pj = (SHPZ\J?j(tH,tz)’p// <oo forj=1,2,
b=t

where D ={0 =1y <t <--- <t, =1} runs over all finite partition of the interval [0, 1]. Equa-
tion (2.1) is called Chen’s identity and the norm || - ||, is called p-variation norm. || - || p,[s,1]
denotes the p-variation norm on the time interval [s, t]. We define by £2,, (B) the set of B-valued
rough paths of finite p-variation. The distance between x and y in £2,,(B) is defined by

dp(x,y) = 1x¥1 = Yillp + X2 = Y2l p/2-

We also set £g(x) := ||l x1]lp + ||i2||;//22. In the sequel, we will suppress the subscript in the case
where B is the abstract Wiener space X .

Let P(B) :={x € C([0, 1], B) | xo = 0}. For x € P(B), we define the norm by ||x||p(p) :=
SUpp<;<1 [%¢| B and sometimes write x (¢) for x;. We often write x (-) for X1 (0, -) € P(B) for sim-
plicity. We define by BV(B) :={y € P(B) | |ly|l1 < oo}, where ||y |1 denotes the total variation
norm of y. For y e BV(B), weset ¥ = (1, 1, ¥,) by

t
Vi, D) =¥ — Vs, Vo(s, 1) :2/(VL¢_VX)®qu, 0<s <<,
N

where the right-hand side of ¥, is the Riemann—Stieltjes integral. A rough path obtained in this
way is called the smooth rough path lying above y. A rough path obtained as the d),-limit of a
sequence of smooth rough paths is called a geometric rough path and the set of all the geometric
rough paths is denoted by G £2,,(B). Itis well known that G£2,(B) is a complete separable metric
space.

We set

t

1

. 2

H(B) =Ly (B) = {yeP(B)‘ytzfy;ds with |y (I3, :=/|y;|Bdt<oo}.
0 0

Clearly, there are natural continuous injections H(B) < BV(B) — G§2,(B). Note that H(B)
is dense in G2, (B) and, when B is a Hilbert space, it has a natural Hilbert structure.
Now we present a simple lemma which will be used in Section 4. We set

BV(L(B,B)):={(M,N) | (M —1dp, N —1dp) € BV(L(B, B)®?),
MtNt = Nl‘Mt =IdB fort e [0, 1]}

We say M € BV(L(B, B)) if (M, M~') e BV(L(B, B)) for simplicity.
We define amap I' :BV(B) x BV(L(B, B)) — BV(B) by

t
T(h, M), =T(h,(M,M7")), = M,/M;ldhs, 0<r<1,
0
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for h e BV(B) and M € BY(L(B, B)). The next lemma shows that it has a continuous extension
from G§2,(B) x BV(L(B, B)) to G£2,(B), which will be denoted by I again.

Lemma 2.1. Let T :BV(B) x BV(L(B, B)) — BV (B) be as above. Assume that there exists a
control function w such that

hi(s. )| Sw(s, 0P, i=1,2, 2.2

\M; — Mlos,5) + |M' — <w(s, 1) (23)

MX_1|L(B,B)
hold for 0 < s <t < 1. Then we have the following assertions:
(1) For h e BV(B) and M € BV(L(B, B)),

IT(h, M) (s, )| < cio(s,0)7P, i=1,2,0<s<t <1, (2.4)

where c1 and ¢y are positive constants depending only on w (0, 1).

(2) T extends to a continuous map from GS2,(B) x BV(L(B, B)) to G$2,(B). (We denote it
again by (h, M) € G$2,(B) x BV(L(B, B)) — I'(h,M)e G$2,(B).) Clearly, T(sh, M) =
eT(h, M) holds for any he G2,(B),M € BY(L(B,B)) and s e R.

Proof. At the beginning, we define A(h, M) € BV(B) by

t N

A(h, M), ::/dMS (Mslhs —/dMulhu>, t>0.

0 0

We note I'(h, M)y =0 and
t
dl“(h,M)tszt/M;ldhs—i—dht, t>0.
0

Then by the integration by parts formula, it is easy to see

t t N

I (h, M), :/dhs+[dMs</Mu_ldhu>
0

0 0
t N
:h,—i—/dMS (Ms‘hs —/dMuth,>
0 0
=h 4+ A(h, M), 1>0. 2.5)

On the other hand, we have an estimate
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|A(h, M); — A(h, M),|

t

/dMu(M,;lhu)

s

<Ilp@ (1+ [ M) IMI s + I8l - | M7 1M s
L20hllpa (14 M7 ) IMI 1 s.0- (2.6)

t u

fo o)

s 0

< +

Then by noting ||| p(p) < @(0, /P, (2.5) and (2.6), we obtain an estimate on the first level
path of I'(h, M) as follows:
|T(h, M), (s, 0)| = [T (h, M); — T (h, M);|
< |hiGs, )] + [A(h, M), — A(h, M)
<as, O+ 20kl pey (1+ [ M7 )M
<o, )7 4200, DP(1 + (0, D)w (s, 1)
< (14200, 1) + 200, D) w (s, 1)'/7. (2.7)

For the second level path of I' (h, M), we also have

t

/{(hu — ) + (10, M)y — ACh, M,)} @ d(h+ 2 (h, M),

N

[T (h, M), (s, 1)| =

< |ha(s, )] + |A(h, M)y (s, )| +

t
/ (hu — hy) ® dA(h, M),

t

(A M); — 1(h, M) @ (hy — ) — / d(h, M)y ® (ha — hy)

N

<wls,N*" + H)‘(h’ M) ”i[s,t] + 172l p.s.e1 - “’\(h’ M) ||1,[s,t]

+2[ah, M|y gy WAl s

+

<o, 0P 1 4lhl3 g (14 |M71 )2 IMIG
+3{20hlp) (1+ |M )M .} - 181 5.0
<o, 0P +400, DY?(1+ 00, D) w1’
+3{200, DV (1+ (0, D)o (s, H}ols,n'/?
< (1+6w(0, 1) + 10w(0, 1)* + 8w (0, D + 40 (0, DHw (s,H*?.  (2.8)

This completes the proof of (1).
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Next, we aim to show (2). For i,k € BV(B) and M, N € BV(L(B, B)), we assume that (2.2),
(2.3) and

ki(s, 0| <w(s, 0P, |hi(s, 1) —ki(s,0)| <ew(s, )P, i=1,2,
INe = Nlesmy + [NTH = N 5y S @(5,D),

|(M — N), — (M — N), <ew(s, 1),

|L(B,B)

(M~ - Nfl)t — (M - Nfl)s‘L(B,B) Seals, 1),

hold for 0 < s <t < 1. Under these assumptions, we have

|A(h, M), (s, 1) — A(h, N) (s, 1)

1 t

/dMu(M;lhu) —/dNu(Nu_lhu)

s N

<

u

/thL,(/udM;lhf) —fthu(O/dN;lth

K 0 s

+

t

/d(M - N)u (M, hy)

s

t

/dNu(Mu_l — N, Y

N

t u
/d(M—N)u</dM;‘h,>

s 0

<Ihllpay (L1M7 ) - IM = Nl + 10l e [M™ = N7 NI
+lhllpe |M 7, M = Nl + Ikl pa M= N7 IN s

<ew (0, DYP(144w(0, 1))w (s, 1). 2.9)

< +

u

/dNu{ /d(M—1 —N‘l)tht”

s 0

+ +

Then by noting (2.6), (2.9) and the equality A(h, M) — A(k, M) = A(h — k, M), we have the
following estimate on the first level path:

[T, M) (s.1) = Tk, N)i (5. 1)
hi(s, 1) —ki(s,0)| + |A(h —k, M) (s, )| + [A(k, M) (s, 1) — A(k, N) (s, 1)
<ew(s, 07 + {20k =kl pe (1 + [M7"],) - 1M1}

+ e (0, DP(1 44w (0, 1))w (s, 1)

<

<ew(s, D +2ew(0, VP (14 w(0, D))w(s, 1) + &(w(0, 1) + 4w (0, D) w (s, 1)1/?
<e(1+3w(0, 1) +6w(0, D) w (s, 1)'/7. (2.10)

For the second level path, we can proceed as
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|T(h, M)y (s, 1) — T(k, N)y(s, 1)|

< !|l_12(s, 1) —ka(s, )| + [A(h, M)y (s, 1) — Ak, M) (s, 1)

t t

+ /El(s,u)qu,\(h,M)u —/El(s,u)@)d,\(k, M),

N N

t t
+ /A(h,M)l(s,u)dehu —/A(k,M)l(s,u)@)dku }

S N

t

/l%l(s, u) @ d(Mk, M) — Ak, N))u‘
t
/ 3 — K, M) (5, u) ® dA(h, M),

s

+ !|A(k, M)y (s, 1) — Ak, N)a(s, )| +

t

/(x(k, M)y (s,u) — Ak, N) (s, u)) ® dky

N

+

< {8w(s,t)2/”+

t

+/A(k,M)1<s,u)®dx<h—k,M)u

N

t

t
+ /(h—k)l(s,u)@odx(h,M)u+fl€1(s,u)®dx(h—k,M)u

N

t t
+ /k(h—k,M)l(s,u)(X)dhu+/A(k, M)(s,u) @d(h —k), }

s N
+{
1

+ /A(k, N) (s, u) @ d(h(k, M) — Mk, N))u‘

s

t

/(,\(k, M) (s,u) — Ak, N)i(s,u)) @ dr(k, M),

N

t

+ /lEl(s, u) ®d(h(k, M) — Ak, N))u‘

s

t

+ /(k(k, M)y (s,u) — Ak, N)i (s, 1)) ® dk,

N

|



278 Y. Inahama, H. Kawabi / Journal of Functional Analysis 243 (2007) 270-322

<few(s, 0¥ + 2=k, |y - (IR M g+ (26K MD ] )
+ A =kl p, 5.1 - (H)‘(h’ M) Hl,[s,t] +2”)‘(k’ M) ”1,[‘&1])
+ 2=k M R 1 + 1Kl gs.0)]
+ {206 M) =206 N gy - (1206 MO gy + 1266 N )
+ 3| Ak, M) — A(k, N) ||LM Nkl s}

<{ew(s, 07 +41h —kllpsy - (101 sy + 1Kl py) - (1+ M) IMIZ
+2(Ikll Py + 21kl pay) - (L+ |M7H] ) - 1M sy - 1B = Kl pgs.r)
+2[lh =kl peg) - (1+ [ M~ 1) - IMI - QU pgs.1 + 1kl p.gs.) |
+ ”)‘(k’ M) — Ak, N) ” 1,s,2] (”)‘(k’ M) ”l,[s,t] + H)‘(k’ N) ”l,[s,t] + 3||k||1%[s,f])
< {ew(s,D¥? +8:0(0, NP (1 + w(0, ) w (s, 1)
+ 12(0, DVP (1 + (0, D))o (s, )17}
+ 200, D7 (1 +4w(0, D)w(s, 1) - {40, DVP (1 + (0, D)o (s, 1) + 3w (s, 1)'/7}
{1 +8(1 + w0, D) w0, N+ 12(1 + (0, 1))w(©, D}w(s, )*?
+e{4w(0, D*(1 +5w(0, 1) + 4w (0, 1)?) + 3w (0, (1 + 4w (0, 1)) }w (s, )*'?
<e(1+150(0, 1) + 36w (0, 1)? + 360 (0, 1)* +24w(0, o (s, /7. 2.11)
Then (2.10) and (2.11) lead us that I' is locally Lipschitz continuous on BV(B) x
BY(L(B, B)) with respect to the product topology induced by the distance d, on G$2,(B)
and | - l; on BY(L(B, B)). Hence by remembering that BV (B) is dense in G§2,(B), the map I'

extends to a continuous map from G£2,(B) x BV(L(B, B)) to GS§2,(B). The final assertion is
almost trivial. This completes the proof. O

Before closing this section, we review integrals along rough paths. Let B be another separable
Banach space and f € CSJOC(B, L(B, B))),ie., Vif, i=0,1,2,3, exist and are bounded on
every bounded set of B. Here, V denotes the Fréchet derivative on B. For k € N, vk f is a map
from B to Lk(B, ..., B; L(B, B")). Here Lk(Bl, ..., Bx; Br+1) denotes the space of bounded
k-linear maps from the direct sum of Banach spaces @le B; to another Banach space Bjy1.

For B-valued rough path x € G$2,(B), we consider

Jop = fx)Xi(s, 1) + Vf(x)[*20s,0)], 0<s<r< L.

We see that, for s <u < ¢,

1 n
Jso = Isu — Jusr = —/‘dn//‘dﬂv2f(xs +77)71(S,M))[f1(&u) ®x1(s,u) ®)?1(M,[)]
0 0
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1

—/dn V2 £ (xg + nE1 (s, w)[X1(s, 1) @ Xa(u, 1)], (2.12)
0

where we used the Taylor expansion for the function f and Chen’s identity (2.1) for x. Equa-

tion (2.12) will be used in Section 5.
For f denoted above and x € G£2,(B), we define f f(x)dx € G2,(B’) by

N—-1

(/f(x)df>l(s»t) 3:m(1g)ri)0 X(; Jiitirs

i=
N-—1

( / f(X)df) (0= lim Z{(f(xt,)@f(x,,-))[fz(n,rm)]
2 M0

—i—(/f(x)df) (s,t,)@(/f(x)df) (li,li+1)},
1 1

where D :={s =1t <t <t <--- <ty =t}. When X is in a bounded set of G£2,(B), the
sup-norm of the first level path X1 (-) is also bounded. Hence, we easily have the following conti-
nuity theorem by Theorems 5.2.3 and 5.3.1 in Lyons and Qian [15]. In the sequel, we often take
integrands of the form Idg & f € C} ;,.(B, L(B, B @ B')), where f € C} (B, L(B, B)).

Theorem 2.2. Let X, y € GS2,,(B). We assume that there exists a control function w such that
%DV [0 <o, /P, [Fils. 1) = (5, 0| <ew(s, )P, i=1,2.

Then there exist positive constants Cy and C depending only on p, (0, 1) and sup{|V/ f (x)|:
Ix| <w(0, DVP}, j=0,1,2,3, such that

([ rwaz) o
([ rwaz) so-( [ 1) 6o

hold fori =1, 2.

< Cro(s,0)P,

<eCro(s, 1)/P,

2.2. Some fundamental results for Brownian rough paths

In this subsection, we introduce Brownian rough paths on an abstract Wiener space (X, H, i).
Let w = (wy);>0 be the X-valued Brownian motion introduced in the previous section. For ¢ > 0,
the law of ew on P(X) is denoted by P,. Then (P(X), H(H), IP’/I) is also an abstract Wiener
space. We write H := H(H) for simplicity. When | - |xgx and u satisfy the following exactness
condition:
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(EX) There exist constants C > 0 and « € [1/2, 1) such that, for any N € N and for any sequence
{Gl}lziv 1 of independent X -valued random variables with common distribution w, it holds

|

(cf. Definition 1 in Ledoux, Lyons and Qian [13]), the Brownian rough path exists (see
Theorem 3 in [13]). Let w = (1, w1, wy) be the Brownian rough path. It is the P-almost
sure limit of the w(m) as m — 00 in G£2,(X) with respect to d,-topology, where w(m)
is the mth dyadic polygonal approximation of w. Note that wi(s, ?) = w; — wy for P-
almost surely. We denote by P, ¢ > 0, the law of the scaled Brownian rough path ew =
(1, ewy, 2W7).

N

Z Gu_1®Gy
=1

i| < CN* (2.13)
X®X

Now we present a theorem of Fernique type for Brownian rough paths. The following propo-
sition is taken from [7, Theorem 2.2].

Proposition 2.3. There exists a positive constant 8 such that

Elexp(B£?)] = / exp(B&()*) Py (dw) < oo.
G2,(X)

Finally, we give a theorem for absolute continuity of the laws of shifted Brownian rough paths.
It is similar to the well-known Cameron—Martin theorem. For X € G£2,,(X) and y € BV(X), we
define the shifted rough path x + y € G£2,(X) by

(x+y)G,0)=x1(s,t) +y(s,1),
t t
G F 7)a(s. 1) = Fa(s. 1) +fx1(s, u) ® dya + /(yu ) ® 1G5, du) + 75, 1).

s

Here the second and the third terms on the right-hand side are Young integrals. It is well known
that the map (X, y) — x £y is continuous from G£2,(X) x BV(X) to G£2,(X). (See [15,
Theorem 3.3.2].) The following proposition is taken from Lemma 2.3 in [7].

Proposition 2.4. Let ¢ > 0 and h € H. Then for every bounded measurable function F on
G$2,(X), it holds that

1

_ 1 , _ 1 _
F(w+ h)P.(dw) = / F(W)GXP<8—2/h (t)dwl(t)—2—82||h||%_[>IE”8(dw),
GR,(X) GR,(X) 0

where fol W' (t)dw(t) is the stochastic integral with respect to the scaled Brownian motion
(w1(0, t))ogr<1 defined on the probability space (G$2,(X), Pe). (Hereafter we sometimes de-
note it by [h](w) for simplicity.)
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3. Framework and the main result

In this section, we set notations, introduce our Wiener functionals through the Itd map in the
rough path sense and state our results. From now on, we only consider the projective norm on
the tensor product of any pair of Banach spaces, and we assume condition (EX) for | - |xgx and
W to treat Brownian rough paths. Note that (EX) holds with &« = 1/2 if dim(X) < oo.

First, we set notations for coefficients. Let o € CgO(Y, L(X,Y))and by,...,by € C}‘)’O(Y, Y),
N € N. V denotes the Fréchet derivative on Y. For k € N, V¥o and V*b are maps from ¥
to Lk(Y,...,Y; L(X,Y)) and Lk(Y,...,Y; Y), respectively. We set X := X ® RY and define
& eCP(Y,L(X,Y)) by

N
6(y)[(x,u)])~( :=U(y)x+2b,-(y)u,~, veY, xeX, u:(ul,...,uN)eRN.

i=1
Next, we consider the following differential equation in the rough path sense:
dy; = (y;)dx; with yop=0. 3.1)

Then for any ie G.Qp(f(), there exists a unique solution Z € G.Qp(f( @ Y) in the rough
path sense. Note that the natural projection of Z onto the first component is X. Projection of z
onto the second component is denoted by y € G£2,(Y) and we write y = @(X) and call it a
solution of (3.1). The map & : G.Qp(f( ) = G2,(Y) is called the Itd map and is locally Lip-
schitz continuous in the sense of Lyons and Qian. See [15, Theorem 6.2.2] for details. If x; =
(78 A;l), e, AZ(N)) is a X-valued continuous path of finite variation, the map ¢ @(%);(0,1) is
the solution of

N
dyi =0 (y)dyi+ Y bi(y)dr”  with yo=0

i=1

in the usual sense and 7 is the smooth rough path lying above (x;, @ (5)1 0, 1))ogi<1-
For » = M, ...,aM) e BV[RY) and ¥ € GR2,(X), we set (X,A) € GR2,(X) by
L(fv )")l(sr t) = (fl(ss t)v )"I - )".&) and

1 t t
L(x, A)2(s, 1) = (fz(s,t),ffl(s,u)®dku,/()»u —M)@fl(s,du),/(ku —M)@d)»u)-

Here the second and the third component are Young integrals. If /2 is a smooth rough path lying
above h € BV(X), then ¢(h, ) is a smooth rough path lying above (i, 1) € BV (X). Note that the
map ¢: G$2,(X) x BV(RY) — G£2,(X) is continuous.

For ¢ € [0,1], we define 1* € BV(RY) by A%(t) := (a1(e)t,...,an(e)t), where a =
(@i, ...,ayn):10,11 = RY is a R¥-valued smooth curve. In what follows, we usually use the
notation

N

. d’
al(e) Vib(y) =) ——ai®)V'bi(y),  j,keNU{0}.

i=1
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Next, we regard the Itd map defined ElbOVC as a map from BV(X) to BV(Y). We define
¥, :BV(X) — BV(Y) by ¥, (h); := @ (t(h, 1%))1(0,¢) for 0 <t < 1. That is, y := ¥, (h) is the
unique solution of the ordinary differential equation

dy; =o0(:)dh; +a(e)-b(y;)dt with yp =0. (3.2)

We note that ¥, also maps H(X) to H(Y).
For the X-valued Brownian motion w, let w be the Brownian rough path over X. For ¢ €
[0, 1], we define a Wiener functional X¢ € P(Y) by

X; =@ ((ew, 1%)),(0.1), 0<r<1.

We investigate the asymptotic behavior of the law of X* as & N\ 0. First, we recall a large devia-
tion principle which was essentially shown in Theorem 4.9 of Inahama and Kawabi [8].

Theorem 3.1. For ¢ > 0, we denote by V, the law of the process X¢. Then, {V}e=0 satisfies a
large deviation principle as € \ 0 with the good rate function A, where

A) = { sinfllly 5 le = Yo()). ifd=o(y) for some y € H.
00, otherwise.

More precisely, for any measurable set K C P(Y), it holds that

— inf A(¢) < liminfe? logV:(K) < limsupzz2 logVe(K) < — inf A(¢).
pekK° £\0 N0 pekK

As a consequence of Theorem 3.1, we have the following asymptotics for every bounded
continuous function F on P(Y):

li\l‘%e2 log E[exp(—F (X?)/e?)] = —inf{F (¢) + A(¢) | p € P(V)}.

This is Varadhan’s integral lemma. See [6] for example. Our next concern is to investi-
gate the more precise asymptotics of a generalization of the integral on the left-hand side
of above equality. That is, we aim to establish the asymptotic expansions of the integral
E[G(X)exp(—F(X?)/e?)] as & \ 0.

In this paper, we impose the following conditions on the functions F' and G. In what follows,
we especially denote by D the Fréchet derivatives on BV(X) and P(Y).

(H1) F and G are real-valued bounded continuous functions defined on P(Y).

(H2) The function Fp := F oWy + || - ||%_[ /2 defined on H attains its minimum at a unique point
y € 'H. For this y, we write ¢ := Yy(y).

(H3) The functions F and G are n + 3 and n + 1 times Fréchet differentiable on a neighborhood
B(¢) of ¢ € P(Y), respectively. Moreover there exist positive constants My, ..., M, 13
such that

|D*F) [y, .. y]| S Millylp )y, k=1.....n+3,
ID*G[y. ... ]| < Millylpyy. k=1.....n+1,
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hold for any n € B(¢) and y € P(Y).

(H4) At the point y € H, we consider the Hessian A := D*(F o Yo)(¥)|HxH- As a bounded
self-adjoint operator on H, the operator A is strictly larger than —Ids; in the form sense.
(By the min—max principle, it is equivalent to assume that all eigenvalues of A are strictly
larger than —1.)

Now we are in a position to state our main theorem. The explicit values of {a;,}}, _, will be given
later since we need to introduce a few more notations which we cannot 1ntroduce briefly. See
Theorem 6.5 for the detail.

Theorem 3.2. Under conditions (EX), (H1)-(H4), we have the following asymptotic expansion:

E[G(X®)exp(~F(X*)/e?)]
= exp(—FA(y)/sz) exp(—c(y)/s) . (Ot() +aje+--+a,e" + 0(8”“)), (3.3)

where the constant ¢(y) in (3.3) is given by c(y) := DF(¢)[E1(y)]. Here E;(y) € H(Y) C
P(Y), j €N, is the unique solution of the differential equation

dE; = Vo (@), dyi] —a(0) - Vb(@)[E]dt =a'V(0) - b($)dr  with B, =0.  (3.4)
4. Taylor expansion in the sense of rough paths

In this section, we establish the Taylor expansion for the differential equation (3.2) in the
sense of rough paths. In Sections 4 and 5, we discuss without conditions (EX), (H1)-(H4). In
particular, y € BV(X) and ¢ = ¥(y) are not the special elements as in (H2). Notice also that
we do not need the imbedded Hilbert space H C X, neither.

At the beginning, we discuss in a heuristic way in order to find out what the terms in the
expansion are like. Fix y € BV(X) and ¢ = ¥y(y) € BV(Y). Suppose that we have an expansion
around ¢ as

Aq&::dﬁ(t(y—i—sh,)f))l—¢~8¢1+--~+8"¢"+..., as £ \ 0.

Of course, we also have

(n)
a(a)~a(0)+8a'(0)+~-~|—8"an—‘(0) +..., ase\0.
From equation (3.2),
.- <"><0)
d(@+ Ap)~0(p+ Ap)d(y +eh)+ [ ) &" -b(¢ + Ap)dr,
n=0 '

o 1
~ (Z —V'o($)[Ag,.... Ap.d(y + eh>]>
n:

n=0

(Z nd ()> (Z V'b($)[Ag, . Agb]dt). 4.1)

n=0
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Picking up terms of order n € N, we see the following definition is quite natural.
Definition 4.1. For fixed y € BV(X), We set ¢° = ¢ by
do¢r =0 (¢:)dy: +a(0) - b(¢;)dt  with g =0 4.2)
and set ¢! by
de! — Vo (g[8 dy] — a0) - Vb(¢) @} |dt = o () dh, +a'(0) - b(¢y)dt  with ¢ = 0.
Forn=2,3,..., weset¢" =¢"(h,y) by
de; — Vo @[] dv] —a(0) - Vb(g)[¢r]dt
=dk(p.¢'.....¢" "1 h), +dk(p.0'.....¢" \1y), with¢f=0. (4.3)

Here k(¢, ¢!, ..., ¢" '\ h); and k(¢, @', ..., ¢" 1 ), are defined by

1
k(p.9'.....0" ' h), /Z > Evko(@)[ L@k dhg], (44

1 . .
kK@.9' 0" hi)= D0 0 Ve@oley. el dr]

0 k=2 (iy,..., ik)ES]';

t
n 0 '
+/ > “IE.) VEb(g) [ ... ¢t ds

0 k=2 (i1,.i)eS]

n-ln-j (0 :
+/ 3 “j”;) VEb(@) ¢, ..., pit]ds
0 == Gy ines; !
+ / La(0)- b(gy) ds. *5)
n!
0

where the sum on the right-hand side runs over
={G1,....i) eN*|ij > 1forall 1 < j<kandiy+-- +ix =n}.

Before providing the main theorem of this section, we recall a lemma which will play a key-
role in the sequel.

Lemma 4.2. Let y € BV(X). We define by M(y):[0, 1] - L(Y,Y) the solution of

dM; =d2(y); M, with My =Idy, (4.6)
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where
ds2(y); :==Vo(¢)[-.dyi1+a0)-Vb(p)dt, 1=0. (4.7)
Then we have the following assertions:
(1) Forallt € [0, 1], the inverse M()/),_1 exists and it is the solution of
dM ' =M " d2(y), with My " =1dy. (4.8)

(2) Fork e BV(Y), we define by I' (k,y) :=T(k, M(y)) e BV(Y), i.e,
t
Lk, y) =My f M) dks, t>0. 4.9)
0

Then it is the unique solution of
dI; — Vo (), dy]l —a(0) - Vb(¢y)[111dt = dk;  with I =0.

(3) I':BV(Y) x BV(X) — BV(Y) extends to a continuous map from G2,(Y) x BV(X) to
G2,(Y). (In the sequel, we denote it again by (k,y) € GR,(Y) x BV(X) > I'(k,y) €
G2, (Y), and usually abbreviate as I" (k) if the dependence of y is not significant.)

Proof. Since (1) and (2) are shown in Lemma 3.1 of Inahama [7], we only give the proof of (3).
Let ¥,y € BV(X). We set a control function w; by

N
o105, =yl + 1P ea+e y = Pliuwn+ Y _|ai©]- ¢ —s5), 0<s<r<I.
i=1
We note that w; satisfies
Ve = ¥s| VIV — Vsl S wi(s, 1), |y =P — (v = P)s| Sewi(s, 1), 0<s<r< L.

First, we set y; := (y;,a1(0)t,...,an(0)t) and ;t = (y;,a1(0)t, ..., an(0)r). These are of
BV()~( ). We consider ¢ = ¥p(y) and qAb =Yy (7). Since ¢ is the solution of the differential equa-
tion

de: =0 (p)dy, with ¢p =0,

we may apply Theorems 2.3.1 and 2.3.2 in Lyons and Qian [15]. Then there exists a positive
constant K; depending only on ||Vo |0, [Vb1lloos - -+, I VON |0 and w1 (0, 1) such that

¢ — sl < Kiwi(s, 1), (@ — ) — (¢ — )| <eKiwi(s, 1), (4.10)

hold forO0 <s <t < 1.
Next, we consider £2(y). By (4.7) and (4.10), we have the following estimates:
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N
12 = )| IV lloolly s+ Y _|ai )] - | Vbillo - (¢t = 5)
i=1

< (IVollo + max [Vbilloo) - @1(s. 1), (“.11)
I<iKN

SIS

(20) —2(), - (2 —2®),]

<IVollsolly = Pl + [ V20| e — @l is.all Pl s

N
+ 3 [ai O 1Vbilloollp = Bll1 5.1+ (¢ = )

i=1

<e[IVoloo+ K110, D) (| V20| o + max IVbills)} @150, @12)
1<i<N
Here we set a control function w; by
@2(5.0) = {1V0 lloo + (1 + K101 0. D) - (| V20 | + max 1Vbillsc) jor s.0).
Then (4.11) and (4.12) imply
|2 — )|V [20) — 2F)s| < wa(s, 1), (4.13)

(20 —2m), — (20) —2(),| <ewr(s, 1), (4.14)

for 0 < s <r < 1. Hence, we may apply Theorems 2.3.1 and 2.3.2 in [15] again for differential
equations (4.6) and (4.8), and we also have that

(M) — M)V M) = M) < Kawa(s, 1),

(M) =M@)), = (M) —M@)),| < eKawas,1),

(M) =M, — (M) =M@, | <eKawa(s. D),
hold for 0 < s < < 1, where K3 is a positive constant depending only on w, (0, 1). We note that
these estimates means that the maps y € BV(X) — M(y) € BV(L(Y,Y)) and y € BV(X) >

M)~ e BV(L(Y,Y)) are locally Lipschitz continuous. Hence by recalling Lemma 2.1, we
can see our desired continuity. This completes the proof. O

Next we introduce another maps which are similar to ¢! and ¢2. For given y € BV(X) and

each 1, h € BV(X), we define x = x(h) := x(h; ) and ¥ = ¥ (h, h) :== W (h, h; y) through
Y -valued differential equations

dxi — Vo (@)xi,dy) —a) - Vb(@)[x:1dt = o (¢)dh;  with xo=0,  (4.15)

and
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Ay — Vo (e[, dyi] — a(0) - Vb(@)[¥]1dt
= Vo (¢ x (h: y)i. dhi] + Vo (@) [x (h: y)i. dhy]
+ V230 (@) [x (i v)ew x (s v dyi]
+a(0) - Vb(@)[x (h: y)e. x(h: y),]dt  with Yo =0. (4.16)

‘We should note that

x(h;y) = DW(y)h], ¥ (h; y) = D2W(y)[h, hl. (4.17)

By recalling Definition 4.1 and Lemma 4.2, we can easily see the representation of Z;(y), j € N,
and the following relationship between ¢!, ¢ and x, 1.

Lemma 4.3. Let ¥y :BV(X) — BV(Y) and E;(y) € BV(Y), j € N, be defined as in Section 3.
For h € BV(X), we consider x (h), ¥ (h, h) € BV(Y) as above. Then we have

Ei(y) =F( / a'(0) ~b<¢s)ds> ,

0 t

o' (h,y) = x () + E1 ()i,

1
¢*(h,y) = S W)+ Y sy + Ea(v))

hold fort > 0. Here Y (h; y) € BV(Y) is defined by

Y(h;y) = F(/Z(VG)(%)[El(V)s,dhs] + (V20) (@)[2x (h)s + E1(0)s, El(y)s»dys])

0 t

4T ( / (2d'(0) - b(@y) [ x (h)s + E1(1)s]

0
+a(0) - Vb(¢s)[2x ()5 + E1(¥)s. B1(¥)s]) dS> . 120
t

Now we are in a position to state the main theorem in this section.

Theorem 4.4. Let y € BV(X) be given and ¢ = ¢" (h, y),n € NU {0}, be as in Definition 4.1.
Then, the map ¢" :BV(X) x BV(X) — BV(Y) extends to a continuous map ¢" : G§2,(X) x

BV(X) — G§2,(Y). Moreover, there exists a positive constant ¢ = c(||y ||l1) independent of h e
G$2,(X) and y € BV(X) such that the following estimate holds:

l¢" oy, <c(1+&Mm)" (4.18)
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Proof. As we will see the continuity is almost obvious from the integration theory in the sense of
rough paths. Since we prove the estimate (4.18) by mathematical induction, we divide the proof
into two steps. Throughout the proof, we set k := &(h). By recalling (4.10), the boundedness of
llvll1 leads us to the boundedness of ||@]|;.

Step 1. We consider the case n = 1. We set a control function w; by
— —pni —pni 2
01(5.0) = 71 a1 + & PN o+ P WRI)S e O<s << L

Then we can see that w1 (0, 1) <14 || |1. Itis also easy to see

1711 s,y < ki (s, )P, 172l pja.is.) < k21 (s, )P and (|7 115,01 < @1 (5, 7).
(4.19)

We denote by (1, ¢) := t(h, ¢) for h € G2,(X) and ¢ € BV(Y). We note that (1, $);(s,?) =
(h1(s, 1), ¢; — ¢5). Then by (4.19), we have

| )i (s. )| <c (U +0)wi(s. )P, (B d)a(s. D] <c(l+ 1) w1(s.0)*P (420)
LetVi:=X®Yand Vo, :=X®YDY.Weset f: V] — L(V], V2) by
fG,x), ml = (n1,m2, 0 (x2)n1)  forxi,m € X, x2,m €Y.
Clearly, f € C,‘,’O(Vl, L(V1, V2)). Hence, the integration with respect to f defines a continuous
map from G$§2,(V1) to G§2,(V2). Itis also bounded on every bounded set in the following sense:
if v € G§2, (V1) satisfies &y, (V) < ¢ for a constant ¢ > 0, then &y, (ff(v) dv) < ¢ holds for some

constant ¢’ > 0 which depends only on ¢, p and f, but not on v.
Therefore we have the following composition of continuous maps:

(1, y) € GR2,(X) x BV(X) —> (h. 9) € G2,(V}) —> /f(h, $)d(h, ) € G2,(Va),

where [ = G2, © (dge,(x) x ¥o). Hence by (4.20), we have

‘(/f(h,@d(h,qﬁ)) (s,1)
1

Kff(h,tb)d(h,qﬁ)) (s.0)
2

holds for some constant ¢ > 0 depending only on p, ro and f, but independent of 2, y € BV(X)
with ||y [l1 < ro. ~
Here we note that if /4 is a smooth rough path lying above 7 € BV(X),

<c(l+K)w(s,0'P, 4.21)

<c(l+ 1) 2w (s, )P (4.22)

t

(/f(h,¢)d(h,¢)> (s.0) = (ﬁl(s,t),cﬁr—¢s,/0(¢u)dhu>,
1

N
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where the third component on the right-hand side is the usual Riemann—Stieltjes integral.
Then by (4.21) and (4.22), we can conclude that

t

/0(¢u)dhu

s

t u
/(/0(¢u)dhu> ®dhy,

s s

<c(l+&Mm)wi(s. )P,

< c(l + S(ﬁ))za)l(s, 0P,

Next, let M (y); be as in Lemma 4.2 and set M(y), =Idy & Idy & M (y);. Note that, if ||y |1
is bounded, then ||M(y) I+ ||]\;I(y)’l I1 is bounded, too. Clearly, M(y) satisfies the assumption
of Lemma2.1 with B=V,=X@®Y @Y.Byusing M(y), we can define I” in the same manner
as (4.9). Furthermore we set g(h, ¢) € BV(V;) by

t

g(h, @) := (0,0, /a/(O) -b(gbs)ds), t=0.

0

Then we can see that
F(/ f(h,¢)d<h,¢>) .00+ (g, d),(s.0) = (hy — hy. b — 5. ¢ — ;)
1

holds at least if 7 € BV(X). Clearly, the map (4, y) — (h, ¢, ¢1) extends to a continuous map
from G£2,(X) x BV(X) to G§2,(V>). By Lemma 2.1, the third component of the first level path
satisfies that

¢} —pi| <c(1+ER))wn(s, )7,

t

[@i-ohywan,

s

<c(1+EM) wa(s, Y7,

for a control function w; defined by
(5.0 = o1(5.0) + (=) + [+ [T D) e 0S5 <<

Note that w»(0, 1) is dominated by a positive constant independent of 4,y € BV(X) with
l¥l1 < ro. Hence we have (4.18) forn = 1.

Step 2. Weset V, =X pY n+1 for n € N. In order to use mathematical induction, we aim
to show Proposition P(n) below. Note that P(1) has already been shown in Step 1. As before,
y € BV(X) is arbitrarily given.
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Proposition P(n). The map (h,y) — (h,¢,¢1, ..., @") extends to a continuous map from
G2,(X) x BV(X) to G2 (Vy+1). There exists a control function w such that

6 — )| < (1 +EM) 0.7,
(7 - dh)(s, 0| < (1 +E@) o, 0P, j=1,...n,

holds for all h € BV(X) and y € BV(X) with ||y |1 < ro. Here

t

(@7 - dh)(s, 1) := /(tﬁﬁ - ¢’sj) ® dhy

S
and (0, 1) is dominated by a positive constant ¢ = c(rg) which may depend on n, but not on

h,y € BV(X) with ||y |[1 < ro.

From now, we will prove Proposition P(n) under Proposition P(n — 1). First we treat the
Ijrst term on the right-hand side of (4.3). For simplicity, we set k; := k(¢, d)l, ey ¢"‘1; h); and
ki :=k(o, ¢1, e, ¢”_1; ¥):. Then we easily see that

! n—1
1 . .
kt—kA:/Z > Hvka(@)[ 0l dhy].

s k=1 ipesy!

For each (iy, ..., i) in the above sum and s < ¢, we set

Jsi,lt ’’’’ . = kaf(d’s)[ Ail,...,(bék,ﬁl(s,t)]
+Vk+lg(¢s)[o,¢§17.._7¢;‘k7.][(¢.dh)(s’t)]

+> VEa @[l g el o] [(07 - dh)(s. 1),

j=1

For a partition D = {s =1 <t < --- <ty =t} of the interval [s,t], we set J; (D) :=
ZzN=1 Jti_1.i;- It is well known that lim|p|—¢ Js,: (D) = k; — ks, where |D| denotes the mesh
of the partition D.

Here we set a control function w3 by

_ - — i —pni 2
03(5.1) = (¢ = ) + 1711wt + 11015 + 6P NRID (o o+ 621020205 10

n—1 n—1
o - _ )
+ Y ARG o+ Y A+ PIED2 T ap P
j=1 j=0
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for_O < s <t < 1. Since we assume P(n — 1), w3(0, 1) is dominated by a constant independent
of h € G§2,(X) and y € BV(X) with |y |l1 < ro. It is easy to see that

PR Z > i,|J;‘};~~*fk|<C(1+x)"(w3(s,z)l/f’+w3(s,;)2/p) (4.23)

i1,eennit) €S

holds for some constant ¢ > 0 independent of / and y € BV(X) with ||y |1 < ro.
Now we estimate |J; ; — J5,, — Ju 1| for s <u < t. By Chen’s identity, we see that

Jsilt ----- ik Jl] ,,,,, ik _ Jil ,,,,, iy
s , s

s,u u,t
={vka(¢s>[¢>§il,...,¢>§ik,fu(u,t)]—vko(qsll)[as;},...,¢;;k,/21(u,r>]}
+V* o @)oo b o] [B1(s,u) @ i (u, 1)]

+ |(v’<+la<¢>s>[-, ¢;11, o gike]
— V¥ o (), ¢u,...,¢;k,.])[(¢.dh)(u,t)]}

+kao(¢s b e gt e[ @Y1 (s ) @ By (u,1)]

Jj=1

k y ;i :
{Z Vi @[8l1 o 00 e g o]

— V(@) [Bi b e bt o) [ - d) r)]}
=1+ +Is. (4.24)
By using P(n — 1), it is easy to see that | I3| + | I5| < c(1 4+ «)" w3 (s, 1)3/P for some constant ¢ > 0

independent of  and y € BV(X) with ||y |1 < ro.
Fory = (0, y1, ..., yt) € Y¥1 weset g: V¥ — L(X,Y) by

8(y) := Vo (3) V1, -+, ks o]y x-
Then, by straightforward computation,
VZg()[Ay, Ayl = V20 (y0)[Ayo, Ay, V1 -+ s Yi» @]

k
+2) Vo (30 Ay yi. . Ayja ke o]
j=1

+2 Z Vka(yo)[yl,...,Ay,-,...,ij,...,yk,o].
1<i<j<k
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It is well known that

1 0’
gy + Ay) —g(y) — Vg(y)[Ayl = / dG’/dG V2g(y + 6 Ay)[ Ay, Ay].
0 0

By letting y; = ¢£j and Ay; = Li,j — ¢§j = El(s, u)for j=0,1,...,k, we see from (4.24) that

1 0’

I +12+I4=—/d9’/d9 V2g(y + 6 Ay)[ Ay, Ayl[hi(u, 1)].
0 0

Then we have
|+ L+ Ll < c(1+ )" w3 (s, 1)YP

for some constant ¢ > 0 independent of 4 and y € BV(X) with |y ||| < ro. Therefore, we see
that

n—1
1 . o S
s =Jou=Judd <30 D0 Bl = at = gl
k=1 (i1,....ipesi!
<e(l+1)"w3(s, )7, (4.25)

where ¢ is a positive constant independent of s < u < ¢, 4 and y € BV(X) with ||y ||; < ro.
Then it is a routine to see from (4.25) that

[J6.0(D) = Js.1| < 2%P¢(p/3)(1 + k) w3(s, )P (4.26)

for any partition D of the interval [s, #], where ¢ denotes the ¢-function. Combining this with
(4.23), we have

ke = k] =| lim J.:(D)]
|D|—0

<1+ 1) (0305, OP + w3(s, )P + w3(5,0)3/7)
<4 1) ws(s, )P, 4.27)

Next we estimate the p/2-variation norm of (s, 1) > ff (ky —kg)®dh,.Foreach (i1, ...,i;) €
S,’C’f1 and s < t, we set

Ko%= (VEa (gl ..., oik, o] @ 1dy) [ha(s, )] € Y ® X,

n—1
K=Y > ki!K;'};"""k.

k=1 Gy,.ipesy™
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Clearly, it holds that
Kool S c(1+1)"Haws(s,0)*7

for some ¢ > 0 independent of s < ¢, # and y € BV(X) with ||y ||; < ro.
Let D be a partition of the interval [s, £] as above. We set K, ;(D) by

N

K 1(D) = Z(Kt,-_l,t,- + ki (to, ti—1) ® hi(ti—1,17)). (4.28)
i=1

It is well known that limp—o Ky (D) = [ (k, — ks) ® dh, holds.
For each (i1, ..., i) in the above sum and s < u < t, we see from P(1),...,P(n — 1) and
Chen’s identity that

K = K = Kl = Tt @ (. 1)
<|(VEa(g)[oll, ... 0k, o] = Vo (4 [0l ..., d%, o]) ® Idx [h2(u, 1)]|
+ (Vo (g)[e, i1, ..., ¢, o][(¢ - dh) (s, )]) ® hy (u, 1)
k . .
Z [(VEa (@)@l ... s o ™. ¢, o][(¢ - dh)(s,0)]) @ hi(u, 1)
<c(l+ )" Mas(s, )P, (4.29)
Summing up with respect to (i, ..., i),
|Ks.t — Ko — Kut = Jou @ B, )] < c(1+6)" (s, )77, (4.30)

where ¢ > 0 is independent of s < u < ¢, h and y € BV(X) with ||y ||; < ro
Then it is a routine to see from (4.26), (4.28) and (4.30) that

|Ks1(D) — K| <c2P2(p/3)(1 4+ 1) as(s, )37,

Therefore, we have

= ]l Jim Ky (D)] < el 410" (s, 0777, (4.31)

t
/(ku - kv) & dhu
s

where ¢ > 0 is independent of s < ¢, i and y € BV(X) with |y [|1 < ro.
From (4.3) we see that

de) — Vo (@)|¢). dvi] — a(0) - Vb(y)[¢) | dt = dk; + dk;,
where k satisfies that

Ikl 15,01 < 1+ )" (Y I,y + & — )}
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Therefore, we see that

|k + k) — (k +k)s| < c(1 4+ k)" w3(5, )7,
t

/((k + k) — (k+k)) ® dhy| < c(1+ 1) ws(s, )P (4.32)

N

Here, ¢ > 0 is independent of s <1, h € G2,(X) and y € BV(X) with ||yl < ro. Note
that we have seen that (h,y) — (h, ¢, P1,..., Ip—1,k + Ig) extends to a continuous map from
G£2,(X) x BV(X) to G§2,(V,41), which maps a bounded subset to a bounded subset in
G'QP(Vn-H)-

Finally, let M (y); be as in Lemma 4.2 and set ]l;l(y)t =Idx @ Idy.—1 & M(y); and a control
function

w3(s, 1) ;= 3(s, ) + [MO|y g+ 1M O

Then by using Lemma 2.1 for M(y), and (h, ¢, P1,...,0n—1,k + lg), we can draw the same
argument as in Step 1. Hence, we obtain P(rn). This completes the proof. O

By combining Lemma 4.3 and Theorem 4.4, we can easily see

Corollary 4.5. Let x; = x (h; ¥)s, vy =Y (h, h; v); and Y =Y (h; y); be as in Lemma 4.3. Then
the maps (h,y) € BV(X) x BV(X) — x(h; y), ¥ (h,h;y),Y(h;y) € BV(Y) extend to con-
tinuous maps from G$2,(X) x BV(X) to G§2,(Y). Moreover, there exists a positive constant
c=c(|lylh) independent Of]’_l € G$2,(X) and y € BV(X) such that

[xsynll, + Y B, <e(1+8M), ||¢(fz,/3;y>1||,,<c(1+5(ﬁ>)2. (4.33)
5. Estimate for remainder terms

In this section, we estimate the remainder terms of the Taylor expansion for the differen-
tial equation (3.2). Let y € BV(X). For ¢ € (0, 1] and h € BV(X), we define R} = R} (h) =
RI(h,y),n eN, by

n—1
RI(h.y) =@ ((y +eh.2%)), —p— > el (h.y).
j=l

The following theorem gives an estimate of the remainder term R defined above.

Theorem 5.1. Forn e N, ¢ € (0, 1], and h,y € BV(X), let R} = R} (h,y) be as above. Let rg
and r1 be any positive constants. Then, there is a positive constant ¢ = c(ro, r1) such that

||Rg(h,y)1||p <c(e+&eh) =ce"(1+&M)" (5.1
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holds for all y with |71 < ro and h with &(eh) < r1. Moreover, for fixed ¢, (h,y) € BV(X) x
BV(X) + R} (h,y) € BV(Y) extends to a continuous map from G$2,(X) x BV(X) to G2, (Y).
(We denote it again by x € G§2,(X) x BV(X) = RI(X) =R} (X,y) € G2,(Y).)

Proof. We show the estimate (5.1) by mat@matical induction. We divide the pgof int_o_several
steps. Throughout the proof, we set « := &£(eh) for simplicity. We also note that eh; = &' h; holds
fori=1,2.

Step 1. We consider the case n = 1. Set a control function w by

— —puT —puT 2
(s, 1) = 71l + & PIeR N |  + 6P leRall D5 1

+ ”Flul,[s,z] + Hﬁlul,[m] +5_1”F1 _’\_OlHl,[ Oss<r<L

s,t]’

Then it is easy to check that there exists a positive constant ¢ = c¢(rg,r1) > 0 such that
w(0,1) <c, and that, for j =1, 2,

|e(7, Ao)j(s, D]+ |y +eh, )f)j(s’ 0| < co(s. )77,
(7. Ao)j(s, 1) —u(y +eh, )&)j(s, D] < ele + ) (s, 1)/P

hold. Then by Lyons’ continuity theorem (Lyons and Qian [15, Theorem 6.2.1]), it holds that
there exists a positive constant ¢’ = ¢’ (rg, r1) such that

|2((7.2°)) ;6s.0) = Z((y + &R, 2%)) (5, D] < e F i) (s, )7 for j=1,2. (5.2)

Here, z(x) € G£2, (X @Y) is the unique solution of the differential equation (3.1). Note that
the Y-component of z(x) coincides with @ (x). The Y-component of the above inequality (5.2)
immediately implies that there exists a positive constant ¢ = c(rg, 1) such that

|RL(h)1 (s, 0)| < (e +EER))w(s, )P

holds. Therefore we obtain our desired estimate ||R} (/)| pScle+é (eh)) for some positive
constant ¢ = c(rg, r1).
Step 2. Next we prove that

t

/R; (h)1(s,u) ® edhy,

s

e|(RL(h) - dh)(s, )| = <(e+6) w(s, )Y (5.3)

for some control function w such that (0, 1) < ¢ = c(rg, r1). In what follows, we denote
D (L(y +¢&h,2%))1 by ¢° = ¢*(h, y) for simplicity of notation. Then by considering ¥ ® X-
component of (X @ Y)®? = (X ® RN) @ Y)®2, we see from (5.2) that

t

t
/(d’,ﬁ —¢5) ®d(yu +ehy) —/(¢u —¢5) ®dyu

N

<cle+K)w(s, )P, (5.4)
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From the estimate for REl (h) = ¢° — ¢, we see that

t '
/(Qﬁ; - ¢s€) ®d]/u - /(d)u - ¢)s) ®dyu < C(S + K)CU(S, I)Z/P. (55)
(5.4) and (5.5) imply that
t
/(d)i — ¢%) @ edhy| < (e + K (s, )P, (5.6)

s
From (3.2) we see that

t

r u
/R;(hn(s,u)@edhu =//(a(¢s) o) dy ® e dh,

N

r u
+//(a(£) -b(¢3) —a(0) - b(¢y)) dv ® e dh,

r u
—i—//o((pfj)edhv@edhu. (5.7)

From Step 1 and the fact that 1 + 1/p > 2/p, the first and second terms on the right-hand side
of (5.7), regarded as Young integrals, are easily dominated by ¢ (e + k)%w (s, 1)*/P, respectively.

Next we fix the interval [s, #] and consider fs' [ o(@i)edh, ® edhy. For s < 1, we define
Jsp=(0(@)) ® Idx)[e2ha(s, 1)]. By straightforward computation, |Js /| < ck?w(s, 1)?P and,
fors <u <t,

}Js,t - Js,u - Ju,t - O‘(d)i)é%](s, M) ® 5'_171(“’ t)|
=|((o(¢%) — o (¢f)) ® Idx)[eha(u, )]| < ek’ (s, )7 (5.8)
Similarly, by using the results in Step 1, we easily see that

t

/ o (#)e dhy — o (95T (5. 1)

N

t

/a(qsg)s dhy — o (¢5)ehi(s,t) — Vo (¢5)[(¢° - edh) (s, 1)]

N

<

+|Vo (¢2)[(¢° - edh) (s, )]

<ckw(s, )P + ckaw(s, )P < ckw(s, )P, (5.9)
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Here, we used the integration theory for first level paths.
For any partition D ={s =1ty < --- <ty =t} of [s, t], we set

ti—1

N
Js 1 (D) = Z(Jti_|,t,- + / o (#5)edhy ® ehy (ti—1, li))- (5.10)

i=1 :

It is well known that lim|p|—0 Js /(D) = f; [ o(¢f)edh, ® edhy. Lett; € D (i #0, N) be as
above. From (5.8)—(5.10),

|Js,t(D \ ti) - Js,t(D)i
1

[ o@edn, —o(o; Jef vt

ti—1

< e (i, tig)|

+ vt = Ji — Joi — 0 (85, )eh1(tio1, 1) @ ehy (8, ti41) |

<otz tip)VP.
By a routine argument, we see that
[Js.e = T (D)| < 2P 3/ piicao(s. )7,
which implies (5.3).

Step 3. We denote by (Rf - dh)(s,t) := fs’(Rg(h)u — R'(h)s) @ dh, and V,, = X & Y"1 ag
before. Here we aim to prove the following proposition.

Proposition Q(n). The map
(h,y) > (eh, @((y +€h,2%)) . d. 1. ... ¢u_1, R})

extends to a continuous map from GS§2,(X) x BV(X) to G$2,(Vy42). Moreover,

|RZ(h) — R ()| < (e + EeM) 0 (s. )7,
t

/(Rg (h)u — RI(R)s) @ e dhy | < (6 + ER)) " (s, 1)*/P (5.11)

N

hold for all h € BV (X) with %‘(s_h) <rypandy € BV(X) with |V |1 < ro. Here, w(0, 1) is domi-
nated by a positive constant ¢ = c(rg, r1) which depends only on ry and ry.

We will show Q(n 4 1) under assuming Propositions Q(1), ..., Q(n). We also set ng“ =
nit!(h) by
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1
d773+ (h) = (‘f’f)g dhy — o (¢)edhy
n—1
. o
-3 > EV Kooy, ... ek, e dhy).
=1 GininelU)Z s

Since we assume Q(n), the right-hand side can be regarded as integral in the rough path sense.
We set

Joo = (0(¢5) — o (ds))ehi (s, 1)

n—1
D DI DI ) (L AT
k=1 (i];'~~vik)EU;;} Sk

+ Vo (¢2)[(¢° - edh) (s, )] — Vo (gp)[(@ - edh)(s,1)]

- i > %VH]U((])X)[., gl ... ek plk o][(¢-edh)(s,1)]

= GneinelU)) s

x Vka((bs)[s’ld);' peees o kPl o[V (p1 - edh)(s, )], s <t (5.12)

We will show that | Js ;| < c(e + £(eh))" M (w(s, )P +w(s, 1)¥P) for some control function
w such that w (0, 1) < ¢ = ¢(rg, r1). First we will consider the first and the second terms on the
right-hand side of (5.12). By the Taylor expansion of o at ¢y,

(0(65) — o (ps))ehi(s, 1)

n—1

. _

=2 Vo @I[RI (s, ..., Ri(h)s, £ (s, 1)]
k=1"

en 1
/d@l /dGnV” (65 + 6, R{ ()[R (W), ..., R{ ()5, €1 (s, )], (5.13)
0

where
RE(h) =@ —p=ep' +---+&"¢" 1 + RER). (5.14)

From the estimates for R{ (k) and from the boundedness of V"o, we easily see that the second
term on the right-hand side of (5.13) is dominated by c(e 4 )" w (s, 1)1/?, where k = £(eh).
Put (5.14) in the first term on the right-hand side of (5.13) and, then, expand it. In that expansion,
terms of order 1, ..., n is exactly the same as the second term on the right-hand side of (5.12).
(Here, we say a term is of order k if its absolute value is dominated by c(¢ + (s, n)l/P)
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Because of the cancellation, the first and the second term on the right-hand side of (5.12) is
dominated by c(e + k)" law(s, 1)!/P.

Next, we will consider the last three terms on the right-hand side of (5.12). Set Z =Y ® X
and fi(y,z) := Vo (y)[z] for y € Y and z € Z. Clearly, f| € Cl‘;f’loc(Y @ Z,Y). It is easy to see
that

VEL(y, D[AG, 2). ... Ay )] = Vi o (p)[Ay, ..., Ay, 2]
+kV¥a(y)[Ay, ..., Ay, Az]. (5.15)

It is also easy to see that

fily+ Ay, z+ Az) —f1(y,2)
n—1

1
= V09[40, 2. .. A, 2)]
k=1"

>

n—1

I
+/d91~~- do, V' (y + 0, Ay, 2+ 0, AD)[A(y, 2), ..., A(y. 2)].  (5.16)
0

(=}

Now we will use (5.15) with y = ¢5, Ay = ¢ — @5 = R; (h),z= (¢ -edh)(s,t), and
Az= (d)s -adh)(s, t)—(¢p-edh)(s,t)= (R; (h) -8dh)(s, 1).

Note that Az is of order 2 by (5.3) while Ay and z are of order 1. Therefore, the second term on
the right-hand side of (5.16) is dominated by c(¢ + )" Hew(s, 1),
We put (5.14) and

Az = (R{(h)-edh)(s,t) = ((e¢" + - +&"'¢""' + RE(M)) - edh)(s, 1),  (5.17)

in the first term on the right-hand side of (5.16) and, then, expand it. We will use P(n), Q(k), 1 <
k < n, and the symmetry of V¥ . In that expansion, terms of order 1, ..., n, is exactly the same
as the fourth and the fifth terms on the right-hand side of (5.12). Therefore, the third, the fourth,
and the fifth terms on the right-hand side of (5.12) are dominated by ¢ (e +x)"lw (s, 1)%/P. Thus,
we have obtained the desired estimates for |J; ;|.

Now we show that, forall s <u <1t,

st = Jsu — Judl (e +EED) " w(s, 1)>/P

holds for some control function w such that w (0, 1) < ¢ =c(rg, r1).
Here we apply (2.12) to (5.12). In this case, (minus of) the first term on the right-hand side of

(2.12) is given by the integration fol dn' fon, dn of the following quantity:

V20 (5 o) [$51(5. 1) ® BF 1 (5, 1) ® £y (1, 1)]
— V20 (psu)[@1(5,u) ® Py (5, u) ® ehy(u,1)]
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1 o
_ Z Z Evk+20‘(¢s,u:n)[. o ;lu e e’ ;]fu:n’ .]

. . n—1 oj
..... ir)€e j:lSk

X [&1(& ) Qdi(s,u) ®ehy(u, t)]

n—1

_22 Z Zk'vk+10(¢sun)[ lld)bun,...,., 1A¢Aun’ ]

k= 1(!1 ..... lk)EUn ISI j 1

x [p1(s, u) ® &' i (s,u) @ ehy (u, 1]

n—1

1
_22 Z Z ﬁvka(d’s,u:n)[ ¢su77""’.’”' lkd)sun’ ]

k=1 iy, inel ot s) 1<i<I<k

.....

x [eli i1 (s, u) ® e (s, u) ® ehy (u, 1)], (5.18)

where ¢§.’fu:,7 is a shorthand for q&é’( + nq_ﬁil" (s, u), etc. Similarly, (minus of) the second term on the

right-hand side of (2.12) is given by the integration fol dn of the following quantity:
V20 (65 1) [ 1(5. 1) ® (¢° - £ d) (u, 1)] — V20 (Gyen) [ @1 (5. 1) ® (¢ - e dl) (u, 1)]

n—1
1
—Z Z ka+20(¢HH7)[° o ¢w,7,.., lk¢vu7]’ ]
=1 ineUiz) st

X [p1(s,u) ® (¢ - edh)(u,1)]

n—1 k
_Z Z Z%V"H—lo—((bs,u:n)[ [](/J)sun,..., lk(bsun’ ]

k=1 (i1ses ir)e ’Jl;}Sli j=1

x [¢71(s,u) ® ("¢ - sdh)(u, 1) + 611 (5, 1) ® (- £ dh)(u, )]

—Z Z Z %Vka((ﬁs,u:n)[ ¢vun""’ e lk¢sun’ ]

k=1 (i1 lk)GUn IS] l</<l<k

x [si.fﬁl(s, W) ® ("¢ - edh)(u, 1) + £ty (s, u) @ (1 ¢'7 - £ dh)(u, 1)]. (5.19)

Now we will show that (5.18) and (5.19) are dominated by c(e + k)" lw(s, 1)*/P. Here, we
note that neither ¢ nor w (0, 1) must depend on 5. For y,z € Y, we setf, € Cgf’loc(Yz, L(X,Y))

by f2(y,2) ;= V2o ()[z @z, o],
Then for k € N, we have

V(0L D [AD, 2. AL 2)]
=V 26 ())[Ay, ..., Ay, 2@z, o] + 2kVEH o (y)[Ay, ..., Ay, 2 Q Az, o]
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+k(k—DV¥a()[Ay, ..., Ay, AzQ Az, o]. (5.20)

By the Taylor expansion for f>, we see that
L (y+ Ay, 2+ Az) —£2(y, 2)

n—1
1
= VR0 9140, 2. AR, 2]
k=1 """
911—1

1
+ [doreee [ a6, 97020+ 0,4y, 2 4 0,80[A0.2). .. A2] 62D
0

(=}

As before, we set y = ¢ .y and z = D105, u). By recalling Proposition Q(7), we can write as
AY = @5 o — b = REMW) s, u ) =8¢l o+ 4+ " Q0+ REGD) (s, u ),
and
Az=@F1(s,u) = $1(s, ) = RL(W) (s, u) = &6 (s,u) + - +&"~'¢"~ (s, u) + RE(R) (s, ),

Then, from (5.20), the remainder term on the right-hand side of (5.21) is dominated as follows:

|V'"2(y + 604y, 2+ 0A)[A(Y.2). ..., Ay, 2). eh1(u.1)]|,
Scle+0)" o, 07, (5.22)

where c is independent of 1,6 and of s <u < ¢.

Then, we expand the first term on the right-hand side of (5.21) by using (5.20). In the same
way as before, the terms of order k, 1 < k < n, are exactly the same as the third, the fourth, and
the fifth terms on the right-hand side of (5.18). Hence, they cancel each other. Notice that we
have repeatedly used the symmetry of V¥o.

In a similar way, we will estimate (5.19). In this case we set, for y,z€e Y andw e Y ® X,
f3(y, 2, w) := V20 (y)[z, w]. Then, it is easy to see that f3 € C,;’,"ZOC(Y2 DY QX),Y).

By using the Taylor expansion for f3, we obtain in the same way that (5.19) is dominated by
c(e + )" lw(s, 1)3/P. In this case, however, we also need the following identity:

Aw = ((¢° — ) -edh)(u, 1)
= (RL(h) - edh)(u,1)
=(e¢' -edh)(u, )+ + (" '¢" " -edh)(u,t) + (RI(h) - edh)(u,1),

where we used Proposition Q(n) for the last term above.
Then by combining these, we obtain the desired estimate for |Js; — Js , — J,.¢|. By a routine
argument, we see that

mt =t <ele + 0" Mo, )P,
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where ¢ and w (0, 1) are independent of s, ¢, ¢ and h € BV(X).
Next, we will prove the estimate

t

/(ng*;l Nt @ edhy| <cle +10)"Po(s, P, (5.23)

N

|(n"t - edh)(s, )| =

where ¢ and w (0, 1) are independent of s, ¢, ¢, and h € BV(X). We set, for s <1,
K= ((0(¢§) — o'(¢s)) ® Idx)[a_hz(s, t)]
n- 1 o
- Z Z o — (Vo (g [ 911, ..., % ¢lk, o] @ Idx)[eha(s, 1)]. (5.24)
k=1 Gy ineli) s]
Then, in the same way as above, we can see that
[Ksil < cle+6)"Par(s, )P,
where ¢ and (0, 1) are independent of s, ¢, h, €. o
Now, we will estimate |Ks; — K5y — Kyt — Jsu @ €h1(u,t)| for s <u < t. Here Jg, is

defined in (5.12). By using Chen’s identity, we obtain that

Ks,t - Ks,u - Ku,t - Js,u ® 3_h1(“, =11 — I,

where
I = (0(¢%) ®Idx — o (¢f) ® Idx)[eha(u, 1)]
— (0(¢) ®Idx — 0 (¢) @ Idx)[eh2(u,1)]
n—1
1 o
-y Yo g(Vie@olengr . el o] @ ldx
k=1 Gy inelUi) ]
— Vo (gu)[e gL, ... ik, o] @ 1dx)[eha(u, 1)]
and

= (Vo (9)[(9° - £ dm)5.0)) @ 1 e, 1) — (Vo @)[(@ - € ) s, )]) @ 1, 1)
n—1 1 L .
-3 > G (Vo @oe. e, .. gt o]
=1 Gy ineliTls]
x [(¢ -edh)(s, u)]) ® ehi(u,t)
1

n—1 X
_Z Z EZ ng(¢) u¢ “’gik(bék’.]

k=1 (i|,-~-Jk)€U';;i5k j=1
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x [(e'1¢" - edh)(s,u)]) ® ehy(u,1).
In the same way as before, we can see that the Taylor expansion leads us to
|Kx,t — Ks,u — Kuyt — Js,u ®5%1(u’ t)’ < il + 12|
<cle + )" Pals, 07,

where ¢ and w (0, 1) are independent of s, u, 7, ¢, and h € BV(X). We have already obtained

|(J —17"+11(s u))®8h1(u t)| <cle 4+ 1) Pws, P,

For a partition D = {s =ty < --- <ty =t} of the interval [s, ¢], we set

N

K, (D) := Z(Kti,l,z,- + 1 (to, ti—1) @ ehy (ti—1, 1;)). (5.25)
i=1

It is well known that lim|p|—¢ K, (D) = f ("1 — 1) ® & dh,,. From above inequalities, we
see from a routine argument that

|Kst(D) = K| <c2P8(p/3) - (6 + 10" P (s, 0)/7.
Combining this with the estimate for | K ;|, we obtain that

t
/(nzJrl ”+1) Qedhy,| <cle+ k) Pws, )P,

N

|(n"t! - edh) (s, )| =

Thus, we have shown the desired estimates for n*+1; (s, 7) and for (n" ! - e dh)(s, 1).
From (4.3) in Definition 4.1, we see that

AR (), — Vo (¢)[RET (). dyi] — a(0) - Vb(@)[RET (), ] dt = dn (1) + dC,.

where C; is a continuous path of finite total variation, which is explicitly given by

dC; = (o(¢f) — o (¢))dyi — Vo @)[¢f — ¢1. dyi]

n

D DI DR TS L N

k=2 Giy,...inxeUr_, S
+a(e) - b(¢f) di — a(0) - b)) di — a(0) - Vb(@)[¢f — ] d1
e DD DI 0] ELT Y P

k=2 (iy,...i0xelU}_; S
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n—1 n—

-3 / > # VEb(p) [ gl ..., e it ] dt

J=Uk=1 Gy ipeldisist

—~e'a ()
1!

“b(er)dr.
1=1

Here we note that the terms 77”+1

can easily see as before that

C do not involve ¢". By the Taylor expansion for o and b, we

IC; — Csl < cle +1)" (s, 1),

where ¢ and w (0, 1) are independent of s, ¢, ¢, and h € BV(X).
Therefore, (n”+1 +C)i(s,t) and [(n} 1 C) - edh](s, 1) satisfy the desired estimates. By

using Lemma 2.1, Rg"” 1(s,t) and (Rg“‘1 -edh)(s, t) satisfy the desired estimates, too. Thus, we
have obtained Q(n + 1). This completes the proof. O

6. Proof of the main result
In this section, we prove our main results. First, we devote ourselves to give the proof of

Theorem 3.2 based on the argument of Albeverio, Rockle and Steblovskaya [3]. We consider the
precise asymptotic behavior of the following integral as & N\ O:

1(e) :=exp(Fa(y)/e*) exp(c(y)/e)

‘ f G(cp(t(g—w,v))l)exp[_gle(@(t(mAf))l)}pl(dw)

G2,(X)
- (o (5w 2 cy) 1 - . _
= ( (L(ew,)» ))l)exp T—;F (<D((8w,k ))1) Pi(dw) (6.1)
G2,(X)
= [ @)
G2,(X)xHRN)
xexp[%—giFA( (t(m,)\))l)}(ﬂj’s®8)\s)(dwd)»). (6.2)

where F is a non-negative bounded continuous function on P(Y) defined by Fa():=F()—
Fa(y). In (6.2), H(RN) denotes the closure of H(RY) := Lg’l(RN) in BV(RY). We work on
this subspace since it is clearly separable and complete unlike BV(R™).

We divide the proof into several steps.

Step 1. Let B(¢, p’ ) be an open ball centered at ¢ with radius p’ in P(Y) on which D'F, i =
1,...,n+3,and D'G,i=1,...,n+ 1, exist and are bounded. Let y € H and ¢ € H(Y) be as
in condition (H2). For p > O and y € H, wedenote by y + U, :={x +y € G2,(X) | £(X) < p}
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and by (y + U,)¢ the complement set of ¥ + U, in G§2,(X). Then by the continuity of the
maps X — x =y, {Y + Uy} >0 forms a fundamental system of neighborhood of ). Then by the
continuity of the Itd map, there exists p > 0 such that @ (¢(x, 1))1(0,-) € B(¢) if x e y + U,
and A € {A € HRN) | ||~ — A9l < p}. Here B(¢) is the neighborhood of ¢ in P(Y) which is
denoted in condition (H3). In the following we assume that p > 0 is sufficiently small so that it
satisfies the above condition. Later, we will choose p > 0 sufficient small so that the integrability
theorem of Fernique-type holds.
We divide the integral 7 (¢) into as

I(g) = Io(e) + 11 (e),

where Ip(¢) and I;(e) are defined as (6.2), with G(® (1(éw, A®));) replaced by 1)7+U,, (Ew) -
G(P(L(Ew, 2%))1) and 14y, )c (Ew) - G(P (L(Ew, A7))1), respectively.

Here we investigate the decay of the integral I;(e). We recall that the family of measures
{Pe ® 8¢ }e>0 satisfies a large deviation principle on the space G£2,(X) x H(RY) with a good
rate function A given by

AG.) = { Hikl3,. i &, 1= (h, 29) for some h € H,
00, otherwise.

It is a corollary of the large deviation principle for Brownian rough paths. See [8, Lemma 3.9]
for the proof. As a consequence of this large deviation principle, we have the following assertion:
there exist positive constants a and &g such that

exp(—c(y)/e) - [l ()]
< [ le@Em )] o] - S Fal@lemi),) [Pram

F+Up)*

1 -
=11Gll / exp[——zFA (@((. A))l)]@g ® 8c)(dD d2)
&
(F+Up) xHRN)

< |IGllos - exp(—a®/e?) (6.3)
holds for all 0 < & < gg. See [7, Lemma 8.2] for the proof. Then we have
|I1(e)| <ce™, meN, 0<e<e, (6.4)
where c is a positive constant depending on |G ||, @, c(y) and m.

Step 2. Let us now consider the integral Ip(¢). By using the Cameron—Martin formula for Brown-
ian rough paths (Proposition 2.4), we can calculate Iy(e) as

1 -~
1y o0, EW)G (@ (1 (£, Ag))l)exp[c(e—y) - LRao((em m))l)}m(m)

GR2,(X)
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~ [ e, GFRG(@(@FT. 1))
G2,(X)

1 ~
x exp[ci—y) — pfal@wty. Ag))l)]ﬂ%,—y(dw)

_ f Lyou, @ T )G(@((w T7.25)),)

G2,(X)
. exp[c(gw - LR, AS))I):| exp([‘fz@ . ‘2;”%1)%(1@)
= [ BuGEEDG(@(ETFr.),)
62
con[ W L ko), |12 0o 4

= [ 1. @6euETy.),)
G2,(X)

1 - . - 2
X exp[% - 8_2FA(¢ (((ew+y, )»8))1)] exp(— [1Go) ”y”H>P1(dw), (6.5)

€ 2¢2

where Py _, is the law of P; induced by the map @ — ew —y. We note that w >
@ (t(sw + y, A%))1 is the continuous extension of the map i +> W(eh + y). Thus all the in-
tegrands are everywhere defined on G2, (X) and we may change variables.

Then by using the Taylor expansion for F and Theorems 4.4 and 5.1, we can develop
F(®((ew+y,A%))1) into a Taylor expansion with respect to a parameter ¢ € (0, 1]. For
n € NU {0}, we have

n+2
F(@((ewFy.2%)),) = Y "I (@) (@) + Ry (e, ) (). (6.6)
m=0

Here the functions Jl(pm)(q))(-) :GR2p(X) - R,m=0,...,n+2, are given by

I (@)(@) := F(¢),
" . :
J}W@(@)::Z—( > DkF(¢)[¢ll(w)1,...,¢lk(w)1]>, m=1,...,n+2,
k=1"

(i1, i) ES

where S and ¢"(w) = ¢f(w, y),i=1,...,n+ 2, are defined in Definition 4.1 and Theo-
rem 4.4, respectively.

Besides, the remainder term Rg’”)(s, $):G2,(X) — Ris given by
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n+2

n — 1 -7 . — An+3 /. —
R Vepm=) - > DF@RP G, R )]

k=1"" iy, ipespts

] 1

n+3 _ T ¢
+(n+3)!/D F(0¢+ (1 —0)@((ew+y.2%)),)
0

x [RE@)1, ..., RY(w)1]d6, (6.7)

where Ié;’+3(m; ):GRy(X) > R,m=1,...,n+3, are defined by
R (m; w) :=¢"¢™ (W), m=1,....,n+2, and R'"P(n+3;w):=R"®).

We note that all the functions in (6.6) are continuous on G£2,(X).

For our later use, we need estimates on J}’")(¢)(w), m=0,...,n+2, and R(F"+3) (e, p)(w).
By Theorem 4.4, we have

m

k
") 1 o
\Jé><¢><w>|<25( 2 MkH||¢f<w>1||,,)
(1.

k=1 wies?  j=I
m 1 _ m m
<c{l;ﬁ(’]’:_ll>}~(1+g(w)) =c(l+&w))", (6.8)

where c is a positive constant independent of w.
On the other hand, by Theorem 5.1, we can obtain the following estimate for the remainder

3 — _ _
term R (¢, ¢)(w) under ||7]]; < ro and £(&W) < p:

n+2 k
n = ! R [ i W
|RE (e ) ()] < Z(g 2. MR wh”p)
(

k=1 it,.i)esits =l

Mn+3
(n+3)!

n+3
M, n
gcizk_!k | ('fo> } e (1)

k=1

|RD @

= ce"B(1+ )", 6.9)

where ¢ = c(n + 3, 19, p) is a positive constant independent of w € G§2),(X).
Next we recall condition (H2). Since the function F4 : H — R attains its minimum at a unique
point y, it holds that
0= (y. )+ DF@)[x(h)]
= (v, Wy + DF@)[¢' ()] —c(v)
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for any 1 € H. Here we used Lemma 4.3 for the second line. By Theorem 4.4, 1 — ¢! (1) extends
a continuous map on G £2,(X). Hence the extension

1

/J/(t)dwl(t)+DF(¢)[¢1(@)1]=C(V) (6.10)

0
holds PP, -almost surely, where fol y'(t) dw (¢) is the stochastic integral and we write [y ](w) for

it. For the more detailed derivation of (6.10), the readers are referred to see [7, pp. 190, 191].
Then (6.10) leads us that

I (@) (@) = DF(@)[¢" (@)1] = c(y) — [y1(@) 6.11)

holds P, -almost surely.
Now we return to the integral Ip(¢). By (6.5), (6.6) and (6.11), we can proceed as

cy) i@ ||y||%>

Io(e) = / IUP/E(E)G(q?(t(Sw+J/»)L8))1)'eXp< P & 2¢2

GR,(X)

1] -
X exp[—g { Fa(p) +e(c(y) — [y1(@))

n+2
+ "I @ @) + Ry (e, ) (@) Hm (dw),

m=2

- / 1y, (D) G(® (((Ew F7.27)),) - exp(—;” (@) ()
G2,(X)

n+2
X exp (— D em 2 @) (@) + e PRY T (e, ¢)(w)>1P1 (dw)

m=3

- / 1y, (@) G( (((Fw +7.2%)),) - exp(—T (@) ()

G2,(X)

n+2

x exp (— > em‘zfé””(«b)(w))Pl(dw)
m=3

i / 1y, ()G(® (((Ew +7.47)),) - exp(~I " @)(@)

G2,(X)

n+2

X exp (— > sm—ZJ;”’)(qs)(w)) : {exp<—8i2R§i’+3’ (e, ¢)(w)) - 1}1?1 (dw)
m=3

=:Io1(e) + 13" (o). (6.12)
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Next we expand in a similar way G (@ (t(ew + y, Af))1) in a Taylor series with respect to ¢,
and insert this expansion into Iy 1 (¢). Then we obtain

Ioi(e) = / 1U,,/g(w)'(ZSjJéj)(d))(w))'GXp(—JIgz)(¢)(E))

G2,(X) j=0

n+2
x exp(— > em2ym (qb)(ﬁ))Pl(dw)

m=3

+ / 1y, @R e, )(@) - exp(~ 12 @) (@)
G2,(X)

n+2
x exp(— > em2gm (¢)(ru)>JP>1 (dw)

m=3

= Toa(e) + 17 (e). (6.13)

Moreover by expanding the exp-function appearing in the right-hand side of Ip 2(g), we can
rewrite as

n

Ioa(e) = / 1y,,, () - <Zsf Jé”(qb)(w)) ~exp(—J 7 () ()

G2,(X) j=0

n(_1)k
X {14—2( k‘)
k=1 ’

+ / 1y, (D) - (Zs-’ Jéj)(cﬁ)(w)) -exp(—J 7 () (D))

j=0

n+2 k
( > em—zJ;’”(@(w)) }Pl(dm
m=3

G2,(X)

o0 (_l)k n+2 k
X{ > A (Zemszvm)(@(w)) ]Pl(dw)

k=n+1 m=3

= Ios(e) + 1 (o). (6.14)

We denote by G(k, n) the set of all maps 7w :{1,...,k} - {3,...,n+2}fork=1,...,n. By
using this notation, we can rewrite Ip 3(¢) as follows:

Io3(e)=Y &l / 1y, (@) (@) @) - exp(— I () (@)) Py ()
=0 Ga,x)
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k k ;
X Z 8]+Zi=|(ﬂ(l)—2) 1_[.]1(:77(1))((#)(@)1@1 (dw). (6.15)
reG(k,n) i=1
We now have the disjoint union G(k,n) =G, (j, k,n) UG(j, k,n) U G'(j, k, n), with

k
G, k,n):= {JT e Gk, n) 'j‘l‘Z(JT(i)—Z) <n},

i=1

k
G(j k,n) = {n € Gk, n) \j+2(ﬂ(i>—2) ="}v

i=1

k
Gh(j, k,n):= {77 €Gk,n) ’ j +Z(7r(i) -2)> n}

i=1
For our later use, we also set
k
GG k,n) = {n €G(k,n) ‘ J+ Y (ri)—2) < n]
i=1
=G0, k,m)UG(j, k,n).
By inserting these into the right-hand side of the second term of (6.15), we obtain

Ioa(e) = {ng / 1y, (@) I (@) @) - exp(—J 7 () (@) P1 (d)

=0 Ga,x)

n n _1 k .
S / 1, (@)1 @) @) - exp(— I (¢) @)

J=0k=1 T G x)
k k [
x 3 ef+Zf=1<ﬂ<i>2>]‘[1}”“”(¢)@)Pl(dw)}
7€, (k) i=l
- (=D TN P 7D b\
XX 0y @I @@ - exp(=I (@) (@)
J=0 k=1 G2,(X)

k
< 3 8f+25-‘1<n<f>—2>1‘[1;”“”@)@)1?’1(@)}

neGt(j.k,n) i=1

= Ipa(e) + 117 (o). (6.16)

We observe that I 4(¢) contains only terms where ¢ is taken to a power less than or equal to n
and Iél), ey 134) contain only terms with higher powers of ¢.
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Finally, we want to remove the characteristic function IU/J /e (w) from Iy 4(e). We divide
5
Ip.4(e) by Io.a(e) = lo5(e) + 1§ (¢), where

Ios(e):=Y &l / 13 (@)(@) - exp(— I (9) ()P (d D)

=0 Ga,x)

k
9 Z 8j+zl-k:1(n(i)—2) 1—[ J;n(z))(q))@)lpl (dw), (6.17)
7eG, (j.k.n) i=l

1) ==Y el / 1w, @IS (@)(@) - exp(— I () (@))P1 (d D)
=0 Ga,x)

IR / 10,00 @1 @) @) - exp(— 1 ) ()

J=0k=1 T Gt x)
k
« Z 8j+fo=1(7r(i)—2)HJ;n(i))(¢)(w)HD1 (dw). (6.18)
7eGy (ko) i=l1

Here we note that Theorem 4.4 and Lemma 6.4 denoted below, the integrand in (6.17) is inte-
grable on G£2,(X) with respect to IP1. (See Step 3 for more detailed discussions.)
We remark that I 5(e) can also be written as Iy 5(¢) = 22’120 ay (y)e™ with

a0(y) = G($) f exp(—J7 () (@) P (d)

G2,(X)

and
m—1 m (—l)k )
o (y) 1= / IMO@+ 3D 1 (@) (@)
G2,(X) j=0 k=1
k .
x Y J]IFP@ @)t - exp(=I @) (@))P1 ()
7eG(jk,m) i=1

form =1, ..., n. This proves the asymptotic expansion (3.3) claimed in Theorem 3.2, provided

we give suitable estimates on Zi:l Iék) (e) given below. Note that we have already estimated
I1(¢) in Step 1.
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Step 3. We start by estimating the term Io(l)(s). By the mean value theorem, there exists some
constant 6 € (0, [RY*) (¢, ¢) ()| /&2) such that

1 1
exp<—8—2R(F"+3><e,¢>(w>> - 1’ < e9<;|R(F’”3)<&¢>@|)

holds. Moreover by using the estimates (6.8) and (6.9), we obtain the following estimates for
weUp:

eI @@ <ere+ ) (1+E@) . k=120, (6.19)

1 n _
SIREP e )@ < e (14 8@)" <eate + ) (1 HE@), (620

where ¢1 = c¢1 (k) and ¢3 = ca(n, r) are positive constants.
Then we have

117(©)| < 1G 1o f exp(—J57 () (D))
G2,(X)

n+2
x exp[( > ci(m)(e+ p)'”) (1 +s<w))2}

m=3
x exp[cz(s +o) 1+ 5(w>)2] Ae2e" N (14 £G@) " Py (@)

n+3

<ce"t! f exp(—J2 (@) @) - exp[es (1 4+ £@)) (1 + £@))" Py (dw),

o 6.21)

where ¢3 = c3(n, rg, €, p) is a positive constant, and note that the constant c3 converges to 0 as
g, o\ 0.

Now we use the fact that exp(—J?) (¢)(-)) belongs to LY(G$2,,(X), IPy) for some g > 1. (This
is shown in Lemma 6.4 below.) We take ¢, p > 0 sufficiently small such that 4c3g < B(g — 1)
holds. Moreover by Proposition 2.3, it holds that for any m > 0,

/ exp(mé(zﬂ))l?’l(dw)+ / E(w)"Pi(dw) < oo. (6.22)

G2,(X) G2,(X)
Then Holder’s inequality leads us that

n+3

exp(—J2 (@) @) - exp[es (1 + £@)) (1 + £@))" Py (dw)

G2,(X)

) B _ 1/q
< / exp(—qJ (¢)(w))1P>1<dw>}
G2,(X)
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g-1
X { / exp(jcw1 (1 +$(E))2>]P’] (dli)} !

GR,(X)

2g(n+3) qZ__ql
x / (1+&@)) T Pl(dw)} < 0. (6.23)

GR,(X)

By combining (6.21) and (6.23), we see that I{" (¢) < ¢1 (n)&"*+! holds.

The contribution for 1(52) (e) is treated in the same way as above and we can easily see the

estimate 1(52) &) < ca(n)e" .

Next we proceed to estimate the term 1(53) (¢). We use an elementary inequality

xn
al Ml xeR, neN.

<

By inserting this estimate and recalling (6.19) and (6.20), we have the following estimate:

1P @) < f 1y, (@) - (Ze-" Ifé%)(w)‘) -exp(—J7 () (@)

G2,(X) j=0

1 n+2 S n+1
X{(n+1)!<n§£m |7F (d’)(“’)')

n+2
x exp( > g’"—2|J;m)(¢)(w)|> }IP’l (dw)

m=3

< f 10, @ (S @ @) ) - expl-I @ @)
S D! R V= '
GR,(X) /=0

X

n+2 n+l n+2
{ ( > a’"—3|J;’”>(¢)(w>|) exp( > s’”‘zlJé’”)(m(w)!) }IPH ()

ghtl B n . . @ B
< / 1y, (W) - ZC(J)(é“-HO)/ -exp(—Jp (¢)())

(n+ 1! .
G2,(X) j=0

n+2 n+1
x {(Z cm)(e +p)" - (1+ %‘(@)3)

m=3
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n+2
X exp|: Z cm)(e+p)" 2 (1+ E(w))z} }Pl(dw)

m=3

< cet! / exp(—I 2@ @) - (1 + @) "™ - exp(c'(1 + W)) )P (diw),
G2,(X)
(6.24)

where ¢’ = ¢/(n, ¢, p) is a positive constant, and note that the constant ¢’ converges to 0 as
g, p \ 0. Now we take ¢, p > 0 sufficiently small. Then we may apply Proposition 2.3. Therefore
by using Holder’s inequality and (6.22), we get, in a similar way as for the term I(gl)(s), that
15 (&) < e3(me"*.

Let us now consider the term 1(54) (¢). We note that the number of elements of G(k, n) is less
than n*. Then we have

n n 1 )
@< Y Y / 7 @) @) - exp(=77 (@) ()

j=0 k=1 G2,(X)

k
x Y RO T 15O () ) [Py (d)
neG(jkon) =

n k
<ce" 1) Z % f eXp(_JI(:Z) (¢)(w))
k=1 G x)
x (1+&@)" 2Py @w). (6.25)

Hence Holder’s inequality and (6.22) lead us that 154) (&) < can)e" L,

Finally, we give an estimate on the term 1(55) (¢). By using similar estimate to (6.25), we have

197 @)| <Y / 1w, @) (1 + @) exp(—J () (@))P; (dD)
=0G62,(x)

nook
+c(n+1)z% [ 1w, (@) - exp(—J 2 (@) (@)
k=1 Gl x)

x (14 &))" ™"y (dw).

Here we see the following Gaussian estimate holds by remembering Proposition 2.3:

2
Py <$(w) z g) <6Xp[—ﬂ<§> ] / exp(B& (w)*) Py (diD). (6.26)

P
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For the constant ¢ > 1 denoted in Lemma 6.4 below, we take positive constants g1, g2 such that

1 <q1 <q and 1/q1 + 1/q2 = 1. Then by Holder’s inequality and (6.26), we may continue to
estimate as

187 )| < Py (@) > p/e) "/ ®

% . 1/q1
x [Z{ / (1+ @) - exp(—q1 7 (9)(@)) Py (dw)}

J=0 G£2,(X)
. nq1+kn+2)q) () /a1
+ZF{ / (1+¢&@@)) -exp(—q1Jg (¢)(w))IE”1(dw)}
k=t G$2p(X)

2
ol 2(2)]

Therefore this estimate leads us that |1(§5) (&)] < c5(m)e™ holds for all m € N.

Hence by getting together this estimate and the previous estimates on I, I(gl) ey 154) , we
complete the proof of the asymptotic expansion formula (3.3).

Step 4. In the following, we discuss the higher integrability of exp(—J% (¢)(-)) based on [7]
and [9]. First we give an explicit representation of the Hessian A which are defined in Section 3.
By recalling (4.17) and using Lemma 4.2, we have that for each h, h € H,

(Ah, by = DF(¢)[ D*Wo(y)[h, k1] + D*F (¢)[ D¥o(y)[h], D¥o(y)[h]]

= DF(¢) [r( f (Vo) (@) [x (s, dhs] + (Vo) (@) [ x (), dhs])
0

+ r( / (V20) (@) [x ()ss x (h)s, dys] +a(0) - V2b(es) [ x (B)s, x (h)s] ds)]

0
+D*F(p)[x (), x ()] (6.27)

holds, where x (h) := x (h; y) is defined through the differential equation (4.15).
We define a bilinear map V:'H x ' H — P(Y) by

V(h, h), = r( / (Vo) (@) [ x (M), dhs] + (Vo) (ps) [ x (B)s. dhs]) . 120, (628)
0 t
and define a bounded self-adjoint operator AonH by
(Ah, )y := DF(@)[V(h,b)] forh,h e H. (6.29)

Then by (6.27), (6.28) and (6.29), we obtain
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((A—A)h, h),,
= DF($) [r ( / (V20)(9)[x ()5, x (h)s, dys] + a(0) - VZb(gs) [ x (h)s, x(/bs]dsﬂ
0

+ D*F()[x (), x()]. (6.30)

By drawing the proof of Lemma 5.1 in [7], we can see the following: there exists a positive
constant ¢ such that || x (h) || p(yy < cllh]l p(x) holds for any & € H C BV(X). Hence (6.30) leads
us that

[((A = Dok, k) | <l x| peyy - Tx B pyy <l pex) - 1P

for some constant ¢ > 0. Now we may apply [10, Theorem 4.6] to an abstract Wiener space
(P(X), H,P}) to obtain that A — A is of trace class operator on H.

The following properties on the operators A and A are taken from Lemma 4.6 in [9].

Lemma 6.1.

(1) A and A are self-adjoint Hilbert—Schmidt operators on H. ~
(2) The continuous extension of the quadratic form defined by A — A is expressed as

(A - A)yw, W)= D*F (@) x (@)1, x (@)1]

+DF(¢)|:F</(V20)(¢s)[x(w)l(s)7X(w)l(s),dys]
0

+ / a(0) - Vb(@)[ x (@)1(s), x ()1 (s)] dS)]-

0

Next, we consider the stochastic integration of the kernel associated with A. Since H =
L2([0, 11,H) = LZ([O, 1],R) ® H, any self-adjoint Hilbert—Schmidt operator S on H corre-
sponds to a kernel function Kg € LZ([O, 1] x [0,1], H ® H) with Ks(u,s) = Ks(s,u)* for
almost all (u,s). Here ® denotes the Hilbert—Schmidt tensor product. The correspondence
S+ Kg is isometric. Then for the X-valued Brownian motion w = (w;)og/<1, an iterated sto-
chastic integral

1 s
Ks(w) ::2//Ks(u,s)[dwu,dws]
0 0

is well defined. Clearly, this random variable is in L? (IP}) with expectation 0. The correspondence
S Kg € LZ(IE”’l) is isometric.
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For y € Y, we define Q»(y) € L*(X,X:Y) by

1
Q2(x1, x2] = S (Vo) W[oMx1, x2]yo, ¥ x2 € X,

Then by Theorem 3.1 in [10], we can define Tr(Q>)(y) € Y by

Tr(Q2)(y) :=/Qz(y)[x,x]u(dx), yev.
X

The following lemma is essentially shown in Corollary 7.3 and Lemma 7.4 in [7].

Lemma 6.2.

(1) For each a € P(Y)*, a oV is a Hilbert-Schmidt symmetric bilinear form on 'H. (We also
denote by a o'V the self-adjoint Hilbert—Schmidt operator on 'H associated with this bilinear
form.)

(2) Forany a € P(Y)*, it holds that

a(@(w)) = Iéaov(wl), P -almost surely,
where

Ow) =y (w, w)) —F</Tr(Q2)(¢s)dS)

0

- F</(V20)(¢s)[x(@)1(S),X(E)1(S),dys]

0

+a(0) - VZb(es) [x (@)1 (5), x (@)1(5)] dS)-

In particular, DF (¢)[® (w)] = I%A(El) holds Py -almost surely.

Next we present the following integration formula. See the proof of Lemma 8.3 in [7] for
details. This formula plays an important role to compute the quantity .

Lemma 6.3. It holds that
e g _
exp —E(Kg(wl) —((A = Aw, w)) |P)(dw)
G2,(X)
— e~ 2 TA=D) ety (1dgy 4+ A) 12,

where dety denotes the Carleman—Fredholm determinant.
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Now we discuss the integrability of exp(—J ;:2) (#)(-)). By Lemma 4.3, we have

1
I (@)(@) = DF($)[¢*(@)1] + S D F@)[¢' @)1, ' ()]

= L oFr@) v o1 +y@) + 500
2

+ D*F()[x (@)1 + E1(y), x (@)1 + E1(»)))

1
= 5(DF(¢)[w(w, W)1] + D*F(P)[x @)1, x )1])

1 _ 2 — =
+ E(DF(¢>)[Y(w>1] +2D*F(@)[x )1, E1(y)])

1
+ 5 (DF@[5:0)] + D F@)[E1(00). 81(0)])

= IP() @) + I @) @) + I @)

Here we note that J &% (¢)() = 0 and J? (¢) = LDF(¢)[E2(y)] hold if a’(0) = 0. By
Lemmas 6.1 and 6.2, we can proceed as follows on the term J ;2’1)(¢)(E):

1{ . ' ~
12V @) ) =3 (le) +DF () [r< / Tr(Qz)(¢>s)dS>] +((A = Ay, @))-
0

Then Lemma 6.3 implies

exp(—J " (9) ()P (dD)
G2,(X)

= exp(—% Tr(A — A) — DF(¢) [r(/ Tr(Qz)(¢S)ds>:|) dety(Idy + A)~V2. (6.31)

0

On the other hand, by condition (H4), there exists a constant go > 1 such that (Idy +
qoA) is strictly positive. Hence by (6.31) and qul(pz’l)(¢>)(w) = Jqf;)(qs)(w), we can see
that exp(—J](pz’])(q&)(-)) € L9(GS2,(X),Py) holds. Moreover, by Corollary 4.5, we have
|J;2’2) (@) ()| < c(1 4 &(w)) for Pi-almost surely w € G2, (X). Therefore for any 1 < g < qo,
by (6.22) and Holder’s inequality, we have

exp(—qJ > (¢)(@))Py (diD)
G2,(X)

q/90
<exp(—qJ 37 (9)) - / exp(—qoJ &2 (@) ()P (dw)}
G2,(X)
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1—q/q0
x{ / exp(—%Jﬁ”(@@))wmdw)}

GR,(X)

q/90
<exp(—q/5V (@) - { / exp(—qoJ ) () (@))Py (dw)}
G2,(X)

1—q/q0
x{ / exp[c(1+g(w))]Pl(dw)} < 00.
G2,(X)

Hence we have shown

Lemma 6.4. There exists a constant ¢ > 1 such that

2
exp(—J17 ($)() € LI (GR,(X). Py).
Finally, by summarizing above all arguments, we can state

Theorem 6.5. We have the asymptotic expansion (3.3) and the coefficients {ay, ), _, are given by

a0 =ap(y) == G() / exp(—J () (@))P; (d),
G2,(X)

m—1 m

1@+ Y o 19 @

Ay =ay(y) = I
G2y x) =0 k=1

k
x Y HJ}”“”(@@)}~exp(—J§>(¢>(w))Pl<dw>,

reG(j,k,m) i=1

form=1,...,n,
where
n 1 )
Jﬁ(¢)(w>:=za< Z D"F<¢>[¢“(w)1,...,¢’k(w)1]),
k=1 (i1
and
k
g(j,k,m):z{n:{l,...,k}—>{3,...,m+2}’j+2(n(i)—2)=m}.
i=1

In particular, if a’(0) = 0, then c(y) = 0 and the coefficient o has the explicit representation
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1 N 1 \
060=G(¢)~3XP(—§TF(A —A)— DF(¢)|:552(7/)+F(fo(Qz)(¢s)dS>])

0
x dety (Idy + A)~Y/2,

where dety denotes the Carleman—Fredholm determinant.

Remark 6.6. If «)(0) = 0 for odd j, then by putting a(—¢) := a(e), ¢ > 0, we can extend
a:[0,1] = RY to a smooth even function defined on the interval [—1, 1]. Moreover, by the
symmetry of the law of the Brownian motion, our functional integral E[G (X¢) exp(—F (X?)/&2)]
is an even function of . Hence we see that the coefficients «,, are equal to zero for odd m.

Finally, we generalize Theorem 6.5 to the case where the phase function has finitely many
non-degenerate minima.

Theorem 6.7. We assume that the phase function F 5 has a finite set M :={y1, ..., yx} of mini-
mum points and conditions (H3) and (H4) hold separately for every y;, i =1, ..., k. We denote

by c(M) :=inflc(y) |y e My and T :={j € {1,...,k} | c(yj) = c(M)}. Then we have the
following asymptotic expansion formula:

E[G(X®)exp(—F(X?)/e?)] = exp(—Fa(y1)/e*) exp(—c(M) /)
X (a0+a1£+-~-+an8"+0(8"+1)), (6.32)

where the coefficients {am}fnzo in (6.32) are given by a;,, = Zjej an(yj), 0<m<n.

Proof. We denote ¢; := ¥y(y;), i =1,...,k, and choose p, p’ > 0 sufficiently small such that
open balls B(¢;, o) C B(¢;),i =1, ..., k, are pairwise disjoint in P(Y) and

{2(u(x.2),0.) | X e7; + U,

2 =20, <p} C B@i,0'/4
holds. Here B(¢;) is the neighborhood of ¢; € P(Y) in condition (H3). We define a cut-off

function n € C°(R, R) by n(x) =1 for |x| < p/2, n(x) =0 for |x| > p and 0 < n < 1. For each
i=1,...,k, we define a continuous function G; : P(Y) — R by

Gi(»):=n2lly —dillpr)) -Gy, yeP).

We define Gy := G — Zf-;l G;, so that Zf:o Gi=G.Foreachi =1,...,k, we also define a
continuous function F; : P(Y) — R by

Fiy):={1=n(ly = ¢ilpm)} + F(), yeP).
Then the functions {.7-',~}f,‘:1 and {g,-}j.;o satisfy conditions (H1)—-(H4) in Section 3, where each

Fida=Fio¥+]| - 2 /2 achieves its minimum at the unique point y; € H. Moreover we can
H
see thatfori=1,...,k,
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G, (@ (e 1) x| - 5 F(@((ew. 1)) [Frcam)

G2y (X)
1
- gi(¢(t(m,Ae))l)exp[—g—z.ﬂ(é(t(m,Ag))l)]Pl(dw).
GS2,(X)

Then by noting above, we have

G(GD(L(e_w,)\S))l)expl:—g%F(@(L(e_w,)f))l)iI]P’l ()

G2,(X)

-> [ a (<p(t(s—w,Af))l)exp[_slzzv@(t(g—w,m))l)]n»] (dm)
=062,x)

= [ G tlem ), o] - F@lem ), [ercam

GR,(X)

+ ﬁ / G (& (u(sw. As))l)exp[—gizfi(@(t(e_w, Ae))l)}Pl(dw)

=16, x)
k
=:To(e) + ZL (e). (6.33)
i=1
For the term Zy(¢), we note that the following equality holds:
exp(Fa(y) - Zo(e)
1 -
= [ G, exp[—;FA(<D ((5w., ﬁ))l)]xpl ().
iz (7i+Up)*
Here we recall the estimate (6.3). Then there exists positive constants a and gq such that
exp(Fa(n)) - |Zo(e)| <KlIGllos - exp(—a®/e?) (6.34)

holds for all 0 < ¢ < gg.

For each term Z;(¢),i = 1,...,k, we may apply Theorem 3.2. Therefore we get together
estimates (3.3) on Z;(¢), ..., Zx(e) with (6.34), and insert these into (6.33). Then we can obtain
the desired asymptotic expansion formula (6.32). O
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