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Abstract

We consider perpetuities of the form

D = B1 exp (Y1)+ B2 exp (Y1 + Y2)+ · · · ,

where the Y j ’s and B j ’s might be i.i.d. or jointly driven by a suitable Markov chain. We assume that the Y j ’s
satisfy the so-called Cramér condition with associated root θ∗ ∈ (0,∞) and that the tails of the B j ’s are
appropriately behaved so that D is regularly varying with index θ∗. We illustrate by means of an example
that the natural state-independent importance sampling estimator obtained by exponentially tilting the Y j ’s
according to θ∗ fails to provide an efficient estimator (in the sense of appropriately controlling the relative
mean squared error as the tail probability of interest gets smaller). Then, we construct estimators based on
state-dependent importance sampling that are rigorously shown to be efficient.
c⃝ 2012 Published by Elsevier B.V.
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1. Introduction

We consider the problem of developing efficient rare-event simulation methodology for
computing the tail of a perpetuity (also known as infinite horizon discounted reward). Perpetuities
arise in the context of ruin problems with investments and in the study of financial time series
such as ARCH-type processes (see for example, [19,26]).

In the sequel we let X = (Xn : n ≥ 0) be an irreducible finite state-space Markov chain (see
Section 2 for precise definitions). In addition, let ((ξn, ηn) : n ≥ 1) be a sequence of i.i.d.
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(independent and identically distributed) two dimensional r.v.’s (random variables) independent
of the process X . Given X0 = x0 and D0 = d0 the associated (suitably scaled by a parameter
∆ > 0) discounted reward at time n takes the form

Dn (∆) = d0 + λ (X1, η1)∆ exp (S1)+ λ (X2, η2)∆ exp (S2)+ · · ·

+ λ (Xn, ηn)∆ exp (Sn)

where the accumulated rate process (Sk : k ≥ 0) satisfies

Sk+1 = Sk + γ (Xk+1, ξk+1) ,

given an initial value S0 = s0. In order to make the notation compact, throughout the rest of the
paper we shall often omit the explicit dependence of ∆ in Dn (∆) and we will simply write Dn .
We stress that ∆ > 0 has been introduced as a scaling parameter which eventually will be sent
to zero. Introducing ∆, as we shall see, will be helpful in the development of the state-dependent
importance sampling algorithm that we study here.

The functions (γ (x, z) : x ∈ S, z ∈ R) and (λ (x, z) : x ∈ S, z ∈ R) are deterministic and
represent the discount and reward rates respectively. For simplicity we shall assume that λ (·) is
non-negative. Define

φ(s0,d0,x0) (∆) , P (D∞ > 1|S0 = s0, D0 = d0, X0 = x0)

= P (T∆ <∞|S0 = s0, D0 = d0, X0 = x0) , (1)

where T∆ = inf{n ≥ 0 : Dn (∆) > 1}.
Throughout this paper the distributions of λ(x, η1) and γ (x, ξ1) are assumed to be known

both analytically and via simulation, as well as the transition probability of the Markov chain
X i . Our main focus on this paper is on the efficient estimation via Monte Carlo simulation
of φ (∆) , φ(0,0,x0) (∆) as ∆ ↘ 0 under the so-called Cramér condition (to be reviewed in
Section 2) which in particular implies (see Theorem 1 below)

φ (∆) = c∗∆θ∗(1+ o (1)) (2)

for a given pair of constants c∗, θ∗ ∈ (0,∞). Note that

φ (∆) = P


∞

k=1

exp (Sk) λ (Xk, ηk) >
1
∆


,

so ∆ corresponds to the inverse of the tail parameter of interest.
Although our results will be obtained for s0 = 0 = d0, it is convenient to introduce the slightly

more general notation in (1) to deal with the analysis of the state-dependent algorithms that we
will introduce.

Approximation (2) is consistent with well known results in the literature (e.g. [22]) and it im-
plies a polynomial rate of decay to zero, in 1/∆, for the tail of the distribution of the perpetuity
∞

k=1 exp (Sk) λ (Xk, ηk). The construction of our efficient Monte Carlo procedures is based on
importance sampling, which is a variance reduction technique popular in rare-event simulation
(see, for instance, [4]). It is important to emphasize that, since our algorithms are based on im-
portance sampling, they allow to efficiently estimate conditional expectations of functions of the
sample path of {Dn} given that T∆ <∞. The computational complexity analysis of the estima-
tion of such conditional expectations is relatively straightforward given the analysis of an impor-
tance sampling algorithm based on φ (∆) (see for instance the discussion in [1]). Therefore, as
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it is customary in rare-event simulation, we concentrate solely on the algorithmic analysis of a
class of estimators for φ (∆).

Asymptotic approximations related to (2) go back to [23] who studied a suitable multidi-
mensional analogue of D∞. In the one-dimensional setting a key reference is [22]. Under i.i.d.
assumptions, he gave an expression for the constant c∗ which is only explicit if θ∗ is an inte-
ger. More recent work on this type of asymptotics was conducted by Benoite [6], who assumed
that the interest rate process {λ(Xn, ηn)} itself forms a finite state Markov chain, and by En-
riquez et al. [20], who obtained a different representation for c∗ if the X i are i.i.d. (we will refer
to this important special case as the i.i.d. case). Collamore [13] studied the case when the se-
quence {λ(Xn, ηn)} is i.i.d. (not dependent on Xn) and {γ (Xn, ξn)} is modulated by a Harris
recurrent Markov chain {Xn}. Since in our case we need certain Markovian assumptions that
apparently have not been considered in the literature, at least in the form that we do here, in
Section 2, we establish an asymptotic result of the form (2) that fits our framework.

Our algorithms allow to efficiently compute φ (∆) with arbitrary degree of precision, in
contrast to the error implied by asymptotic approximations such as (2). In particular, our
algorithms can be used to efficiently evaluate the constant c∗, whose value is actually of
importance in the statistical theory of ARCH processes (see for example, Chapter 8 of [19]).

The efficiency of our simulation algorithms is tested according to widely applied criteria in the
context of rare event simulation. These efficiency criteria requires the relative mean squared error
of the associated estimator to be appropriately controlled (see for instance the text of [4]). Let us
recall some basic notions on these criteria in rare-event simulation. An unbiased estimator Z∆ is
said to be strongly efficient if E(Z2

∆) = O(φ (∆)2). The estimator is said to be asymptotically
optimal if E


Z2

∆


≤ O(φ (∆)2−ε) for every ε > 0. Jensen’s inequality yields E Z2

∆ ≥ φ (∆)
2,

so asymptotic optimality requires the best possible rate of decay for the second moment of
the underlying estimator. Despite being a weaker criterion than strong efficiency, asymptotic
optimality is perhaps the most popular efficiency criterion in the rare-event simulation literature
given its convenience yet sufficiency to capture the rate of decay.

We shall design both strongly efficient and asymptotically optimal estimators and explain the
advantages and disadvantages behind each of them from an implementation standpoint. Some
of these points of comparison relate to the infinite horizon nature of D∞. We are interested in
studying unbiased estimators. In addition, besides the efficiency criteria we just mentioned, at
the end we are also interested in being able to estimate the overall running time of the algorithm
and argue that the total computational cost scales graciously as ∆ −→ 0. Our main contributions
are summarized as follows:

(1) The development of an asymptotically optimal state-dependent importance sampling
estimator for φ (∆) (see Theorem 3). The associated estimator is shown to be unbiased and
the expected termination time of the algorithm is of order O (log(1/∆)p) for some p <∞ (see
Proposition 2 in Section 6).

(2) An alternative, state-independent, estimator is also constructed which is strongly efficient,
see Theorem 2. The state-independent estimator, however, often will have to be implemented
incurring in some bias (which can be reduced by increasing the length of a simulation run).

(3) New proof techniques based on Lyapunov inequalities. Although Lyapunov inequalities
have been introduced recently for the analysis of importance sampling estimators in [7], the
current setting demands a different approach for constructing the associated Lyapunov function
given that the analysis of φ (∆) involves both light-tailed and heavy-tailed features (see the
discussion later this section; also see Proposition 1 in Section 5).
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(4) A new class of counter-examples showing that applying a very natural state-independent
importance sampling strategy can in fact lead to infinite variance (see Section 3.2). This
contribution adds to previous work by Glasserman and Kou [21] and further motivates the
advantages of state-dependent importance sampling.

(5) The development of an asymptotic result of the form (2) that may be of independent
interest (see Theorem 1).

As we mentioned earlier, importance sampling is a variance reduction technique whose
appropriate usage leads to an efficient estimator. It consists in sampling according to a suitable
distribution in order to appropriately increase the frequency of the rare event of interest. The
corresponding estimator is just the indicator function of the event of interest times the likelihood
ratio between the nominal distribution and the sampling distribution evaluated at the observed
outcome. The sampling distribution used to simulate is said to be the importance sampling
distribution or the change-of-measure. Naturally, in order to design efficient estimators one has to
mimic the behavior of the zero-variance change-of-measure, which coincides precisely with the
conditional distribution of {Dn} given D∞ > 1. Now, assume that S0 = 0 = D0. As is known in
the literature on ARCH (it is actually made precise in [20]), the event T∆ <∞ is typically caused
by the event E∆ = {maxk≥0 Sk > log(1/∆)}, which is the event that the additive process {Sk}

hits a large value; see Section 2 for more discussion. In turn, the limiting conditional distribution
of the underlying random variables given E∆ as ∆ ↓ 0 is well understood and strongly efficient
estimators based on importance sampling have been developed for computing P(E∆) (see [12]).
Surprisingly, as we will show by means of a simple example, directly applying the corresponding
importance sampling estimator which is strongly efficient for P(E∆) can actually result in
infinite variance for any ∆ > 0 when estimating φ (∆) (see Section 3.2).

Given the issues raised in the previous paragraph, the development of efficient simulation
estimators for computing φ (∆) calls for techniques that go beyond the direct application of
standard importance sampling estimators. In particular, our techniques are based on state-
dependent importance sampling, which has been substantially studied in recent years (see for
example, [17,18,7,9]). The work of Dupuis and Wang provides a criterion, based on a suitable
non-linear partial differential inequality, in order to guarantee asymptotic optimality in light
tailed settings. It is crucial for the development of Dupuis and Wang to have an exponential
rate of decay in the parameter of interest (in our case 1/∆). Blanchet and Glynn [7] develop a
technique based on Lyapunov inequalities that provides a criterion that can be used to prove
asymptotic optimality or strong efficiency beyond the exponential decay rate setting. Such
criterion, however, demands the construction of a suitable Lyapunov function whose nature varies
depending on the type of large deviations environment considered (light vs. heavy-tails). The
construction of such Lyapunov functions has been studied in light and heavy-tailed environments
(see for instance, [9,7]).

The situation that we consider here is novel since it has both light and heavy-tailed features.
On one hand, the large deviations behavior is caused by the event E∆, which involves light-
tailed phenomena. On the other hand, the scaling of the probability of interest, namely, φ (∆) is
not exponential but polynomial in 1/∆ (i.e. the tail of the underlying perpetuity is heavy-tailed,
in particular, Pareto with index θ∗). Consequently, the Lyapunov function required to apply the
techniques in [7] includes new features relative to what has been studied in the literature.

Finally, we mention that while rare event simulation of risk processes has been considered in
the literature (see for instance [2]), such simulation in the setting of potentially negative interest
rates has been largely unexplored. A related paper is that of [5] in which deterministic interest
rates are considered. A conference proceedings version of this paper ([11], without proofs)
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considers the related problem of estimating the tail of a perpetuity with stochastic discounting,
but the discounts are assumed to be i.i.d. and premiums and claims are deterministic. Finally,
we also note a paper by Collamore [12], who considered ruin probability of multidimensional
random walks that are modulated by general state space Markov chains.

During the second revision of this paper Collamore et al. [14] proposed an independent
algorithm for the tail distribution of fixed point equations, which include perpetuities as a
particular case. We shall discuss more about this algorithm in Section 7.

The rest of the paper is organized as follows. In Section 2 we state our assumptions and
review some large deviations results for φ (∆). Section 3 focuses on state-independent sampling.
The state-dependent sampling algorithm is developed in Section 4, and its efficiency analysis and
cost-per-replication are studied in Sections 5 and 6. In Section 7 we include additional extensions
and considerations. Section 8 illustrates our results with a numerical example.

2. Some large deviations for perpetuities

As discussed in the Introduction, we shall assume that the process (Sn : n ≥ 0) is a Markov
random walk. As it is customary in the large deviations analysis of quantities related to these
objects, we shall impose some assumptions in order to guarantee the existence of an asymptotic
logarithmic moment generating function for Sk .

First we have the following assumption:

Assumption 1. We assume that X is an irreducible Markov chain taking values in a finite state
space S with transition matrix (K (x, y) : x, y ∈ S). Moreover, we further assume that the ξk’s
and γ (·) satisfy

sup
x∈S,θ∈N

E exp (θγ (x, ξ1)) <∞, (3)

where N is a neighborhood of the origin.

If Assumption 1 is in force, the Perron–Frobenius theorem for positive and irreducible
matrices guarantees the existence of (uθ (x) : x ∈ S, θ ∈ N ) and exp (ψ (θ)) so that

uθ (x) = Ex [exp (θγ (X1, ξ1)− ψ (θ)) uθ (X1)]. (4)

The function uθ (·) is strictly positive and unique up to constant scalings. Indeed, to see how the
Perron–Frobenius theorem is applied, define

E exp (θγ (x, ξ1)) = exp (χ (x, θ))

and note that (4) is equivalent to the eigenvalue problem

(Qθuθ ) (x) = exp (ψ (θ)) uθ (x) ,

where Qθ (x, y) = K (x, y) exp (χ (y, θ)).
We also impose the following assumption that is often known as Cramér’s condition.

Assumption 2. Suppose that there exists θ∗ > 0 such that ψ (θ∗) = 0. Moreover, assume that
there exists θ > θ∗ such that ψ (θ) <∞.

In order to better understand the role of Assumption 2, it is useful to note that under
Assumption 1, given X0 = x0, τ (x0) = inf{k ≥ 1 : Xk = x0} is finite almost surely and D =
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∞

k=1 exp (Sk) λ (Xk, ηk) admits the decomposition

D = B + exp (Y ) D′, (5)

where D′ is identical in distribution to D, and

Y = Sτ(x0), B =
τ(x0)
j=1

λ

X j , η j


exp(S j ), (6)

and D′ is equal in distribution to D and independent of

B, Sτ(x0)


. In other words, D can be

represented as a perpetuity with i.i.d. pairs of reward and discount rates. This decomposition will
be invoked repeatedly during the course of our development. Now, as we shall see in the proof of
Theorem 1 below, it follows that θ∗ > 0 appearing in Assumption 2 is the Cramér root associated
to Y , that is,

E exp (θ∗Y ) = 1. (7)

Note also that since the moment generating function of Y is convex, and θ∗ > 0, we must have
that EY < 0 and therefore by regenerative theory we must have that Eγ (X∞, ξ1) < 0.

An additional final assumption is imposed in our development.

Assumption 3. Assume that supx∈S Exλ (X1, η1)
α <∞ for each α ∈ (0,∞).

Finally, for the purpose of implementing our algorithms we note that both θ∗ and (uθ∗ (x) : x ∈
S ) are available. The following examples are given to illustrate the flexibility of our framework.

Example 1. ARCH sequences have been widely used in exchange rate and log-return models
(see for example, [19]). In these models the object of interest, An , are the standard deviations
of the log-return. The simplest case of ARCH sequences is the ARCH(1) process, which
satisfies

A2
n+1 = (α0 + α1 A2

n)Z
2
n+1.

Typically, the Zn’s are i.i.d. standard Gaussian random variables, and α0 > 0 and α1 < 1. The
stationary distribution is a perpetuity. We can directly work with the stationary distribution of
this process or transform the problem into one with constant rewards (equal to α0) by noting
that

Tn+1 , α0 + α1 A2
n+1 = α0 + α1(α0 + α1 A2

n)Z
2
n+1 = α0 + α1Tn Z2

n+1.

We obtain that

T∞ − α0
D
= B1 exp (Y1)+ B2 exp (Y1 + Y2)+ · · ·

where Bi = α0 and Yi = log

α1 Z2

i


for i ≥ 1. Assumptions 1–3 are in place in this setting.

Example 2. A changing economic environment can be modeled by say, a two-state Markov
chain denoting good and bad economic states. We can then model the discounted return of a
long-term investment under economic uncertainty as a perpetuity with this underlying Markov
modulation. Denoting X i ∈ {good, bad}, i = 1, 2, . . . as the Markov chain, our return can be
represented as

D = B1 exp(Y1)+ B2 exp(Y1 + Y2)+ · · ·
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where Bi = λ(X i , ηi ) and Yi = γ (X i , ξi ) are the return and discount rate at time i , and ηi and
ξi are i.i.d. r.v.’s denoting the individual random fluctuations.

We now state a result that is useful to test the optimality of our algorithms.

Theorem 1. Under Assumptions 1–3,

φ (∆) = c∗∆θ∗(1+ o (1))

as ∆↘ 0.

The proof of Theorem 1 will be given momentarily, but first let us discuss the intuition
behind the asymptotics described in the theorem. It is well known that under our assumptions
exp(max{Sk : k ≥ 0}) is regularly varying with index −θ∗ < 0 (a brief argument indicating the
main ideas behind this fact is given in Section 3.1). The principle of the largest jump in heavy-
tailed analysis indicates that the large deviations behavior of D is dictated by a large jump of
size b/∆ arising from the largest contribution in the sum of the terms defining D. Given that
the reward rates are light-tailed, such contribution is likely caused by exp(max{Sk : k ≥ 0}), as
made explicit by Enriquez et al. [20] in the i.i.d. case. Therefore, the large deviations behavior
of D is most likely caused by the same mechanism that causes a large deviations behavior in
exp(max{Sk : k ≥ 0}). This type of intuition will be useful in developing an efficient importance
sampling scheme for estimating the tail of D.

Proof of Theorem 1. Note that Eqs. (5) and (6) allow us to apply Theorem 4.1 from [22]. In
particular, in order to apply Goldie’s results we need to show that

Ex0 exp

θ∗Sτ(x0)


= 1, (8)

Ex0 exp

θ Sτ(x0)


<∞, (9)

for some θ > θ∗ and that

Ex0 Bα <∞ (10)

for some α > θ∗ (conditions (8)–(10) here correspond to conditions (2.3), (2.4) and (4.2)
respectively in [22]). First we show (8). Note that Eq. (4) implies that the process

Mθ∗
n =

uθ∗ (Xn)

uθ∗ (x0)
exp (θ∗Sn)

is a positive martingale. Therefore, we have that

1 = Ex0 Mθ∗
n∧τ(x0)

= Ex0 [exp

θ∗Sτ(x0)


I (τ (x0) ≤ n)] + Ex0


uθ∗ (Xn)

uθ∗ (x0)
exp (θ∗Sn) I (τ (x0) > n)


.

By the monotone convergence theorem we have that

E

exp


θ∗Sτ(x0)


I (τ (x0) ≤ n)


−→ E exp


θ∗Sτ(x0)


as n ↗∞. On the other hand note that (4) implies that the matrix


Kθ∗ (x, y) : x, y ∈ S


defined

via

Kθ∗ (x, y) = K (x, y)
uθ∗ (y) exp (χ (y, θ∗))

uθ∗ (x)
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is an irreducible stochastic matrix. Now let
Kθ∗ (x, y) : x, y ∈ S \ {x0}


be the submatrix of

Kθ∗ (·) that is obtained by removing the row and column corresponding to state x0. Observe thatK n
θ∗

1

(x0) = Ex0


uθ∗ (Xn)

uθ∗ (x0)
exp (θ∗Sn) I (τ (x0) > n)


.

By irreducibility we have that Kθ∗ (·), therefore

Ex0


uθ∗ (Xn)

uθ∗ (x0)
exp (θ∗Sn) I (τ (x0) > n)


−→ 0

as n ↗∞, obtaining (8). The bound (9) follows easily by noting that

Ex0


exp


θ Sτ(x0)


=

∞
k=1

Ex0


exp (θ Sk) ; τ (x0) > k − 1, Xk = x0


=

∞
k=1

Ex0 [exp (θ Sk−1) K (Xk−1, x0) exp (χ (θ, x0)) ; τ (x0) > k − 1].

So, if we define, for x ≠ x0

vθ (x) = exp (χ (θ, x0)) K (x, x0)
uθ (x0)

uθ (x)
,

and

Rθ (x, y) = exp (χ (θ, y)) K (x, y)
uθ (y)

uθ (x)

for x, y ≠ x0 we see that

Ex0


exp


θ Sτ(x0)


=

∞
k=1


Rk
θvθ


(x0) .

Note that Rθ∗ = Kθ∗ is strictly substochastic. So, by continuity there exists θ > θ∗ for which Rθ
has a spectral radius which is strictly less than one and therefore (9) holds. Finally, we establish
(10). Observe that

B ≤ τ (x0) max
1≤k≤τ(x0)

λ (Xk, ηk) exp (max{Sk : 1 ≤ k ≤ τ (x0)}) .

Therefore, for 1/p + 1/q + 1/r = 1 and p, q, r > 1 we have that

E Bα ≤ Eτ (x0)
α max

1≤k≤τ(x0)
λ (Xk, ηk)

α exp (max{αSk : 1 ≤ k ≤ τ (x0)})

≤ (Ex0τ (x0)
pα)1/p

× (Ex0 max
1≤k≤τ(x0)

λ (Xk, ηk)
qα)1/q

× (Ex0 exp (max{rαSk : 1 ≤ k ≤ τ (x0)}))
1/r .

Since Ex0τ (x0)
pα
+ Ex0 max1≤k≤τ(x0) λ (Xk, ηk)

qα < ∞ for all p, q ∈ (0,∞) it suffices to
show that

Ex0 exp (max{θ Sk : 1 ≤ k ≤ τ (x0)}) <∞ (11)

for some θ > θ∗. In order to do this define T (b) = inf{k ≥ 0 : Sk > b} and note that

Px0(max{Sk : 1 ≤ k ≤ τ (x0)} > b) ≤ Px0(T (b) ≤ τ (x0)).
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Bound (9) implies that Sτ(x0) decays at an exponential rate that is strictly larger than θ∗.
To analyze Px0(T (b) ≤ τ (x0)), let Pθ∗x0 (·) (respectively Eθ∗x0 (·)) be the probability measure
(resp. the expectation operator) associated to the change-of-measure induced by the martingale
(Mθ∗

n : n ≥ 0) introduced earlier. Note that

Px0(T (b) ≤ τ (x0)) = Eθ∗x0


exp


−θ∗ST (b)

 uθ∗ (x0)

uθ∗

XT (b)

 I (T (b) ≤ τ (x0))


≤ c exp (−θ∗b) Pθ∗x0

(τ (x0) ≥ T (b)) .

The probability Pθ∗x0 (τ (x0) > T (b)) decays exponentially fast as b ↗ ∞ by using a standard
large deviations argument on T (b) /b and because τ (x0) has exponentially decaying tails.
Therefore we obtain (11), which in turn yields the conclusion of the theorem. �

3. State-independent importance sampling

In order to design efficient estimators we will apply importance sampling. It is well known
(see for example, [24]) that the zero-variance importance sampling distribution is dictated by
the conditional distribution of the process (in this case the triplet {(Sn, Dn, Xn)}), given the
occurrence of the rare event in question. As we discussed in the previous section, the occurrence
of the event T∆ <∞ is basically driven by the tail behavior of max{Sn : n ≥ 0}. In turn, the large
deviations behavior of Markov random walks (such as S) is well understood from a simulation
standpoint and, under our assumptions, there is a natural state-independent change-of-measure
that can be shown to be efficient for estimating the tail of max{Sn : n ≥ 0}.

The present section is organized as follows. First, we shall explain the change-of-measure
that is efficient for estimating the tail of max{Sn : n ≥ 0} because it will serve as the basis
for our change-of-measure in the setting of perpetuities (but some modifications are crucial to
guarantee good performance). After that, we shall show by means of an example that this type of
importance sampling algorithm can lead to estimators that have infinite variance. We then close
this section with a modified state-independent importance sampling algorithm that is strongly
efficient but biased.

3.1. The standard approach

As we indicated in the proof of Theorem 1, given θ and X0 = x0 Eq. (4) indicates that the
process

Mθ
n = exp(θ Sn − nψ (θ))

uθ (Xn)

uθ (x0)
, n ≥ 0

is a positive martingale as long as ψ (θ) < ∞ and therefore it generates a change-of-measure.
The probability measure in path-space induced by this martingale is denoted by Pθx0

(·) and in
order to simulate the process ((Dn, Sn, Xn) : n ≥ 0) according to Pθx0

(·) one proceeds as follows.

1. Generate X1 according to the transition matrix

Kθ (x, y) = K (x, y) exp (χ (y, θ)− ψ (θ)) uθ (y) /uθ (x) ,

which is guaranteed to be a Markov transition matrix by the definition of uθ (·) and χ (·, θ).
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2. Given X1 = y, sample γ (y, ξ1) according to exponential tilting given by

Pθ (γ (y, ξ1) ∈ dz) = exp (θ z − χ (y, θ)) P (γ (y, ξ1) ∈ dz) .

3. Simulate λ (y, η1) according to the nominal conditional distribution of η1 given that X1 = y
and γ (y, ξ1).

The previous rules allow to obtain (D1, S1, X1) given (D0, S0, X0). Subsequent steps are
performed in a completely analogous way.

Note that if one selects θ = θ∗ then we have that ψ (θ∗) = 0 and also Sn/n −→ ψ ′ (θ∗) > 0
a.s. with respect to Pθ∗x0 (·). If σ (y) = inf{n ≥ 0 : Sn > y} then

Px0 (max{Sn : n ≥ 0} > y) = Px0(σ (y) <∞)

= Eθ∗x0
[1/Mθ∗

σ(y); σ(y) <∞]

= Eθ∗x0


exp(−θ∗Sσ(y))

uθ∗ (x0)

uθ∗

Xσ(y)

 .
In the last equality we have used that σ(y) < ∞ a.s. with respect to Pθ∗x (·). The importance
sampling estimator

Z ′y = exp(−θ∗Sσ(y))
uθ∗ (x0)

uθ∗

Xσ(y)

 ,
obtained by sampling according to Pθ∗x0 (·) is unbiased and its second moment satisfies

Eθ∗x0


Z ′2y

= Eθ∗x0

exp(−2θ∗Sσ(y))
u2
θ∗
(x0)

u2
θ∗


Xσ(y)


≤ c exp (−2θ∗y) ,

for some constant c ∈ (0,∞). Since, under our assumptions (see for example, [3], Theorems 5.2
and 5.3 on Page 365) Px0(σ (y) < ∞) = γ∗ exp (−θ∗y) (1 + o(1)) as y ↗ ∞ for a suitable
γ∗ ∈ (0,∞) we obtain that Z ′y is strongly efficient for estimating Px0(σ (y) <∞) as y ↗∞.

3.2. Standard importance sampling can lead to infinite variance

A natural approach would be to apply directly the previous change-of-measure for estimating
T∆ <∞. Nevertheless, we will show by means of a simple continuous-time example that can be
fit in the discrete time setting (through simple embedding) that such approach does not guarantee
efficiency. In fact, the estimator might even have infinite variance.

Example 3. Let (X (t) : t ≥ 0) be Brownian motion with negative drift −µ and unit variance.
We are concerned with φ (∆) = P(


∞

0 exp (X (t)) dt > 1/∆). In particular, here we have
ψ (θ) = t−1 log E exp (θX (t)) = −µθ + θ2/2 (in the discrete time setting ψ (θ) will be
−µθ + θ2/2 multiplied by the discretization time scale). In order to analyze the second moment
of the natural estimator described previously we need to evaluate θ∗ so that ψ (θ∗) = 0. This
yields θ∗ = 2µ and the resulting importance sampling algorithm proceeds by simulating X (·)
according to a Brownian motion with positive drift µ and unit variance up to time T∆ = inf{t ≥
0 :

 t
0 exp (X (s)) ds ≥ 1/∆} and returning the estimator Z∆ = exp (−θ∗X (T∆)). The second

moment of the estimator is then given by Eθ∗ [Z2
∆; T∆ <∞] = E[Z∆; T∆ <∞], by a change
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of measure back to the original one (here we have used Eθ∗ (·) to denote probability measure
under which X (·) follows a Brownian motion with drift µ and unit variance). We will show that
if θ∗ ≥ 1 then E[exp (−θ∗X (T∆))| T∆ < ∞] = ∞. By the definition of θ∗ we will conclude
that if µ ≥ 1/2 then

E [Z∆; T∆ <∞] = E[exp (−θ∗X (T∆))| T∆ <∞]P (T∆ <∞) = ∞

which implies infinite variance of the estimator. In order to prove this we will use a result of [27]
(see also [16]) which yields that D =


∞

0 exp (X (t)) dt is equal in distribution to 1/Z , where Z
is distributed gamma with a density of the form

fZ (z) =
exp (−λz) λθ∗ zθ∗−1

Γ (θ∗)
,

for some λ > 0. In particular, a transformation of variable gives the density of D as

fD(y) =
exp(−λ/y)λθ∗

Γ (θ∗)yθ∗+1

and hence

P (D > 1/∆) =

∞

1/∆

exp(−λ/y)λθ∗

Γ (θ∗)yθ∗+1 dy

=
exp(−λ∆)λθ∗∆θ∗

θ∗Γ (θ∗)
+


∞

1/∆

exp(−λ/y)λθ∗+1

θ∗Γ (θ∗)yθ∗+2 dy

where the second inequality follows from integration by parts. Note that
∞

1/∆

exp(−λ/y)λθ∗+1

θ∗Γ (θ∗)yθ∗+2 dy ≤
λθ∗+1

θ∗Γ (θ∗)


∞

1/∆

1

yθ∗+2 dy =
λθ∗+1∆θ∗+1

θ∗(θ∗ + 1)Γ (θ∗)
= O(∆θ∗+1)

as ∆ ↘ 0. Hence P (D > 1/∆) ∼ c∆θ∗ where c = exp(−λ∆)λθ∗/(θ∗Γ (θ∗)). Now, let W be
a random variable equal in law to ∆[D − 1/∆] given that D > 1/∆. Note that conditional on
T∆ <∞, we have

D =

∞

0
exp(X (t))dt

=

 T∆

0
exp(X (t))dt +


∞

T∆

exp(X (t))dt

=
1
∆
+ exp(X (T∆))


∞

T∆

exp(X (t)− X (T∆))dt

=
1
∆
+ exp(X (T∆))D

′

where D′ has the same distribution as 1/Z and is independent of exp (X (T∆)) given that
T∆ < ∞. We have used the strong Markov property and stationary increment property of
Brownian motion in the fourth equality. Hence the random variable X (T∆) satisfies the equality
in distribution

W =d ∆ exp (X (T∆)) D′.
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Now, it is clear that E[

D′
−θ∗
] = E Z θ∗ < ∞, so it suffices to show that if θ∗ ≥ 1 then

E

W−θ∗


= ∞. Using the definition of W , transformation of variable gives

fW (w) =
∆−1λθ∗

Γ (θ∗) P (D > 1/∆)
exp (−λ/(w/∆+ 1/∆)) (w/∆+ 1/∆)−(θ∗+1).

Therefore, we have that there exists a constant c0 ∈ (0,∞) such that

E

W−θ∗


=


∞

0
fW (w)w−θ∗dw

≥ c0


∞

0
∆−1 exp (−λ/(w/∆+ 1/∆)) (w/∆+ 1/∆)−(θ∗+1) (∆w)−θ∗ dw

≥ c0

 1

0
exp (−λ∆) 2−(θ∗+1)w−θ∗dw = ∞.

The problem behind the natural importance sampling estimator is that one would like the
difference [ST∆ − log(1/∆)] to stay positive, but unfortunately, this cannot be guaranteed and in
fact, this difference will likely be negative. The idea that we shall develop in the next subsection
is to apply importance sampling just long enough to induce the rare event.

3.3. A modified algorithm

We select θ = θ∗ and simulate the process according to the procedure described in Steps 1 to
3 explained in Section 3.1 up to time

T∆/a = inf{n ≥ 0 : Dn > a},

for some a ∈ (0, 1). Subsequent steps of the process {(Sk, Dk, Xk)}, for k > T∆/a are simulated
under the nominal (original) dynamics up until T∆. The resulting estimator takes the form

Z1,∆ = exp

−θ∗ST∆/a

 uθ∗ (x0)

uθ∗

XT∆/a

 I (D∞ > 1). (12)

We will discuss the problem of implementing this estimator in a moment, in particular the
problem of sampling I (D∞ > 1) in finite time. First we examine its efficiency properties. We
assume for simplicity that the rewards are bounded, we will discuss how to relax this assumption
right after the proof of this result.

Theorem 2. In addition to Assumptions 1 and 2, suppose that there is deterministic constant
m ∈ (0,∞) such that λ (x, η) < m. Then, Z1,∆ is a strongly efficient estimator of φ (∆).

Proof. It is clear that Z1,∆ is unbiased. Now, define

Un = exp (−Sn) {Dn − a}/∆

for n ≥ 1. The process {Un} will be helpful to study the overshoot at time T∆/a . Note that

Un+1 = λ (Xn+1, ηn+1)+ exp (−γ (Xn+1, ξn+1))Un, (13)

and also that we can write T∆/a = inf{n ≥ 0 : Un > 0}.
It is important to observe that

D∞ = a + exp

ST∆/a


∆UT∆/a + exp


ST∆/a


D′∞, (14)
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where D′∞ is conditionally independent of ST∆/a , UT∆/a given XT∆/a . In addition, D′∞ is obtained
from the original / nominal distribution. Decomposition (14) implies that

I (D∞ > 1) ≤ I (exp

ST∆/a


D′∞ > (1− a)/2)+ I (exp


ST∆/a


∆UT∆/a > (1− a)/2),

and therefore, by conditioning on (Sn, Dn, Xn) for n ≤ T∆/a we obtain that the second moment
of Z1,∆ is bounded by

Eθ∗(0,0,x0)


exp


−2θ∗ST∆/a

 uθ∗ (x0)

uθ∗

XT∆/a

φ(0,0,XT∆/a )


exp


ST∆/a


2∆/(1− a)


(15)

+ Eθ∗(0,0,x0)


exp


−2θ∗ST∆/a

 uθ∗ (x0)

uθ∗

XT∆/a

 I (exp

ST∆/a


∆UT∆/a > (1− a)/2)


. (16)

We will denote by I1 the term in (15) and by I2 the term in (16). It suffices to show that both I1
and I2 are of order O


∆2θ∗


.

Theorem 1 guarantees the existence of a constant c1 ∈ (1,∞) so that

φ(0,0,x0) (∆) ≤ c1 exp

θ∗ST∆/a


∆θ∗/(1− a)θ∗ .

Using this bound inside (15) we obtain that

I1 ≤ m1
∆θ∗

(1− a)θ∗
Eθ∗(0,0,x0)


exp


−2θ∗ST∆/a

 uθ∗ (x0)

uθ∗

XT∆/a

 (17)

for some constant m1 > 0 and thus, since

Eθ∗(0,0,x0)


exp


−θ∗ST∆/a

 uθ∗ (x0)

uθ∗

XT∆/a

 = φ (∆) = O

∆θ∗


(18)

we conclude that I1 = O

∆2θ∗


.

We now study the term I2. Just as in the proof of Markov’s inequality, note that for any β > 0

I2 ≤ ∆β


2

1− α

β
Eθ∗(0,0,x0)


exp


−2θ∗ST∆/a


exp


βST∆/a

 uθ∗ (x0)

uθ∗

XT∆/a

Uβ
T∆/a


. (19)

We could pick, for instance, β = 3θ∗/2 and use the fact that uθ∗

XT∆/a


≥ δ for some δ > 0 to

obtain that

Eθ∗(0,0,x0)


exp


−2θ∗ST∆/a


exp


βST∆/a

 uθ∗ (x0)

uθ∗

XT∆/a

Uβ
T∆/a



≤
uθ∗ (x0)

δ


Eθ∗(0,0,x0)


exp


−θ∗ST∆/a

1/2 
Eθ∗(0,0,x0)


U 2β

T∆/a

1/2
. (20)

If we are able to show that

Eθ∗(0,0,x0)
(U 2β

T∆/a
) = O (1) (21)

as ∆ ↘ 0, then we an conclude, owing to (18), that the right hand side of (20) is of order
O

∆θ∗/2


. Thus, combining this bound on (20), together with (19) we would conclude that

I2 = O

∆2θ∗


as required. It suffices then to verify (21), however, this is immediate since under

our current assumptions we clearly have that UT∆/a ≤ λ

XT∆/a , ηT∆/a


≤ m. �
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We shall comment on two important issues behind this result. First, we have assumed that the
rewards are bounded in order to simplify our analysis. Note that the only place that used this
assumption is in establishing (21). It is possible to estimate the expectation in (21) only under
Assumption 3 using a Lyapunov bound similar to the one that we will discuss in Lemma 1.

Second, the estimator Z1,∆ is unbiased only if we can generate D∞ in a finite time. Generating
unbiased samples from D∞ under our current assumptions is not straightforward (see for
example [15] on issues related to steady-state distributions for iterated random functions, and
[10] for algorithms that can be used to sample D∞ under assumptions close to the ones that we
impose here). Alternatively, one might recognize that D∞ is the steady-state distribution of a
suitably defined Markov chain. In the presence of enough regeneration structure, one can replace
the indicator in (12) by an estimator for the tail of D∞ based on the corresponding regenerative
ratio representation. Note that this replacement would involve a routine simulation problem as
there is no need to estimate any rare event. However, once again after using a regenerative-ratio
based estimator one introduces bias.

We shall not pursue more discussion on any of the two issues raised given that the class
of estimators that we shall discuss in the next section are not only unbiased but are also
asymptotically optimal as ∆ −→ 0 and can be rigorously shown to have a running time that
grows at most logarithmically in 1/∆.

4. State-dependent importance sampling

An issue that was left open in the previous section was that the estimator that we constructed
is biased from a practical standpoint. In this section, we illustrate how to construct an efficient
importance sampling estimator that terminates in finite time and is unbiased. The estimator
based on applying state-independent importance sampling up until time T∆ has been seen to
be inefficient. Examples of changes-of-measure that look reasonable from a large deviations
perspective but at the end turn out to have a poor performance are well known in the rare-event
simulation literature (see [21]). It is interesting that estimating the tail of D∞ provides yet another
such example. These types of examples have motivated the development of the theory behind the
design of efficient state-dependent importance sampling estimators, which is the basis behind
the construction of our estimator here. We shall explain some of the elements behind this theory
next.

We will follow the approach based on Lyapunov inequalities (see [7,8]). Let us introduce
some notation for Wn = (Sn, Dn, Xn). The transition kernel associated to W is denoted by Q (·),
so

Pw0 (W1 ∈ A) = P (W1 ∈ A|W0 = w0) =


A

Q (w0, dw) .

A state-dependent importance sampling distribution for W is described by the Markov transition
kernel

Qr (w0, dw1) = r (w0, w1)
−1 Q (w0, dw1) , (22)

where r (·) is a positive function properly normalized so that
Qr (w0, dw1) =


r (w0, w1)

−1 Q (w0, dw1) = 1.

The idea behind the Lyapunov method is to introduce a parametric family of changes-of-
measure. As we shall see, in our case, this will correspond to suitably defined exponential
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changes-of-measure. This selection specifies r (·). The associated importance sampling estima-
tor, which is obtained by sampling transitions from Qr (·), takes the form

Z∆ = r (W0,W1) r (W1,W2) · · · r

WT∆−1,WT∆


I (T∆ <∞) .

Using P(r)w (·) (resp. E (r)w (·)) to denote the probability measure (resp. the expectation operator)
induced by the transition kernel Qr (·) given that W0 = w, we can express the second moment
of Z via

v∆ (w) = E (r)w Z2
∆ = EwZ∆.

Note that conditioning on the first transition of the process W one obtains

v∆ (w) = Ew[r (w,W1) v∆ (W1)],

subject to the boundary condition v∆ (w) = 1 for w ∈ R × [1,∞) × S . We are interested in
a suitable upper bound for v∆ (w), which can be obtained by taking advantage of the following
inequality proved in [7].

Lemma 1. If h∆ (·) is non-negative and satisfies

Ew[r (w,W1) h∆ (W1)] ≤ h∆ (w) (23)

subject to h∆ (w) ≥ 1 for w ∈ R× [1,∞)× S , then

v∆ (w) ≤ h∆ (w) .

Our strategy in state-dependent importance sampling is aligned with the intuition behind the
failure of the natural state-independent importance sampling strategy described in the previous
section; it consists in applying importance sampling only when it is “safe” to apply it. In other
words, we wish to induce T∆ < ∞ by exponentially tilting the increments of S, but we want
to be careful and maintain the likelihood ratio appropriately controlled. So, for instance, cases
where Dn might be close to the boundary value 1, but Sn is significantly smaller than log(1/∆)
are of concern. In those cases, we shall turn off importance sampling to avoid the accumulation
of a large likelihood ratio in Z∆. In summary, suppose that the current position of the cumulative
discount rate process S is given by s and that the position of the discounted process D is d. We
shall continue applying exponential tilting as long as (s, d, x) belongs to some region C where
it is safe to apply importance sampling. We do not apply importance sampling if (s, d, x) ∉ C .
The precise definition of the set C will be given momentarily.

Using the notation introduced earlier leading to the statement of our Lyapunov inequality in
Lemma 1 we can describe the sampler as follows. Let C be an appropriately defined subset of
R × R × S . Assume that the current state of the process W is w0 = (s0, d0, x0) and let us
write w1 = (s1, d1, y) for a given outcome of the next transition. The function r (·) , rθ∗ (·)
introduced in (22) takes the form

r−1
θ∗
((s0, d0, x0), (s1, d1, y)) = I ((s0, d0, x0) ∈ C)

uθ∗ (y)

uθ∗ (x0)
exp (θ∗(s1 − s0))

+ I ((s0, d0, x0) ∉ C) . (24)

The construction of an appropriate Lyapunov function h∆ (·) involves applying Lemma 1. In
turn, the definition of the set C is coupled with the construction of h∆ (·). We shall construct
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h∆ (·) so that h∆ (s, d, x) = 1 implies (s, d, x) ∉ C . Moreover, we shall impose the condition
h∆ (·) ∈ [0, 1]. Assuming h∆ can be constructed in this way we immediately have that the
Lyapunov inequality is satisfied outside C . We then need to construct h∆ on C . We wish to find
an asymptotically optimal change-of-measure, so it makes sense to propose

h∆ (s, d, x) = O(P(s,d,x) (T∆ <∞)2−ρ∆),

where ρ∆ ↘ 0 as ∆ ↘ 0 (recall the definition of asymptotic optimality given in the
Introduction). On the other hand, we have that

P(s,d,x) (T∆ <∞) = P(0,0,x) (d + exp (s)∆D∞ > 1)

= P(0,0,x)


D∞ > exp (−s)


1− d

∆


≈ exp (sθ∗) [∆/(1− d)]θ∗ . (25)

Motivated by the form of this approximation, which is expected to hold at least in logarithmic
sense as exp(−s)[(1− d)/∆] −→ ∞, we suggest a Lyapunov function of the form

h∆ (s, d, x)

= min{c2θ∗−ρ∆
∆ exp ([2θ∗ − ρ∆]s) [∆/(1− d)+]

2θ∗−ρ∆uθ∗ (x) uθ∗−ρ∆ (x) , 1}.

The introduction of the function uθ∗ (x) uθ∗−ρ∆ (x) in a multiplicative form as given above is
convenient for the purpose of verifying Lyapunov inequalities for importance sampling in the
setting of Markov random walks (see [9]). The constant c∆ > 0, which will be specified
in the verification of the Lyapunov inequality, is introduced as an extra degree of freedom to
recognize that approximation (25) may not be exact. The exponent on top of c∆ allows to make
the estimates in the verification of the Lyapunov inequality somewhat cleaner. Note that we have
h∆ (·) ∈ [0, 1] and the set C is defined via

C = {(s, d, x) : h∆ (s, d, x) < 1}. (26)

We do not apply importance sampling whenever we reach a state (s, d, x) satisfying h∆

(s, d, x) = 1.
We shall close this section with a precise description of our state-dependent algorithm. The

following procedure generates one sample of our estimator.
State-dependent algorithm

Step1: Set ρ∆ = 1/ log(1/∆) and c∆ = (B2/B1)ρ
−(1+1/(2θ∗−ρ∆))
∆ with 0 < B1, B2 < ∞ as

indicated in Proposition 1 below. Initialize (s, d, x)← (0, 0, x0).
Step2: Initialize likelihood ratio L ← 1.
Step3: While at (s, d, x), do the following:

1. If (s, d, x) ∈ C defined in (26) i.e. h∆(s, d, x) < 1,
i. Generate X1 from the kernel

Kθ∗(x, y) = K (x, y) exp(χ(y, θ∗)− ψ(θ∗))
uθ∗(y)

uθ∗(x)
.

Say we have realization X1 = y.
ii. Given X1 = y, sample γ (y, ξ1) from the exponential tilting

Pθ∗(γ (y, ξ1) ∈ dz) = exp(θ∗z − χ(y, θ∗))P(γ (y, ξ1) ∈ dz).
Say we have γ (y, ξ1) = z.
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iii. Sample λ(y, η1) from the nominal distribution of η1 given X1 = y and γ (y, ξ1)

= z.
Say we have λ(y, η1) = w.

iv. Update

L ← L × exp(−θ∗z)
uθ∗(x)

uθ∗(y)
.

Else if (s, d, x) ∉ C i.e. h∆(s, d, x) = 1,
i. Sample X1 from its nominal distribution. Given X1 = y, sample γ (y, ξ1) and
λ(y, η1) from their nominal distributions. Say the realizations are γ (y, ξ1) = y
and λ(y, η1) = w.

2. Update
(s, d, x)← (s + z, d +∆w exp(s + z), y).

3. If d > 1, output L and stop; else repeat the loop.

The variance analysis of the unbiased estimator L as well as the termination time of the
algorithm are given in the next sections.

5. Efficiency of state-dependent importance sampling

In order to verify asymptotic optimality of L we first show that h∆ (·) satisfies the Lyapunov
inequality given in Lemma 1. We have indicated that the inequality is satisfied outside C . On the
other hand, one clearly has that h∆ (s, d, x) = 1 for d ≥ 1, so the boundary condition given in
Lemma 1 is satisfied. Consequently, in order to show that h∆ (·) is a valid Lyapunov function
and that v∆ (w) ≤ h∆ (w) we just have to show the following proposition.

Proposition 1. Suppose that Assumptions 1–3 are in force and select b0 < ∞ such that 0 <
1/[infθ∈(0,θ∗)x∈S uθ (x)]2 ≤ b0.

(i) Select b1 > 0 such that for each δ ∈ (0, θ∗)

exp (ψ (θ∗ − δ)) ≤ 1− δµ+ b1δ
2

where µ = dψ(θ∗)/dθ > 0.
(ii) Pick b2 ∈ (0,∞) such that

sup
x∈S,δ∈(0,θ∗)

Ex [λ(X1, η1)
2θ∗−δ exp((θ∗ − δ)γ (X1, ξ1))] ≤ b2

and make the following selection of B1, B2, ρ∆ and c∆:
(iii) Select 0 < B1, B2 < ∞ and ρ∆, c∆ > 0 so that ρ∆ ↘ 0, ρ∆ ∈ (0, θ∗), c∆ =

(B2/B1)ρ
−(1+1/(2θ∗−ρ∆))
∆ , B1ρ∆ < 1 and

b0b2ρ∆

B2θ∗−ρ∆
2

+
(1− ρ∆µ+ b1ρ

2
∆)

(1− B1ρ∆)
(2θ∗−ρ∆)

≤ 1.

Then, h∆ (·) satisfies the Lyapunov inequality (23) on C assuming that r (·) = rθ∗ (·) is given
as in (24).

Proof. First, b0 is finite because uθ∗(·) is strictly positive and S is finite. The fact that the selec-
tions in (i) and (iii) are always possible follows from straightforward Taylor series developments.
The selection of b2 in (ii) is possible because of Assumptions 2 and 3 combined with Holder’s
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inequality. We shall prove the concluding statement in the result using the selected values in (i),
(ii) and (iii). Assume that (s, d, x) is such that h∆ (s, d, x) < 1. To ease the notation we write
γ1 = γ (X1, ξ1) and λ1 = λ (X1, η1). We need to show that

Ex h∆ (s + γ1, d + exp (s + γ1)∆λ1, X1) Lθ∗ [X1, γ1] ≤ h∆ (s, d, x) , (27)

where

Lθ∗ [X1, γ1] =
uθ∗ (x)

uθ∗ (X1)
exp (−θ∗γ1) .

We divide the expectation in (27) into two parts, namely, transitions that lie in a region that cor-
responds to the complement of C and transitions that lie within C . To be precise, set a∆ ∈ (0, 1)
and put

A = {exp (γ1) λ1 ≥ a∆ exp (−s) (1− d)/∆}

and write Ac for the complement of A. The expectation in (27) is then equal to J1 + J2, where

J1 = Ex (h∆ (s + γ1, d + exp (s + γ1)∆λ1, X1) Lθ∗ [X1, γ1]; A),

J2 = Ex (h∆ (s + γ1, d + exp (s + γ1)∆λ1, X1) Lθ∗ [X1, γ1]; Ac).

We first analyze J1/h∆ (s, d, x). Note that

J1

h∆ (s, d, x)
≤

Ex (Lθ∗ [X1, γ1]; A)

h∆ (s, d, x)

≤
uθ∗ (x)

inf
y∈S

uθ∗ (y)
×

Ex [exp (−θ∗γ1) ; A]

h∆ (s, d, x)
.

Now we note that

Ex

exp (−θ∗γ1) ; A


= Ex (exp (−θ∗γ1) ; exp (−γ1) ≤ λ1∆ exp(s)/[(1− d)a∆])

≤


∆

1− d

θ∗ exp(θ∗s)

aθ∗∆

× Ex


λ
θ∗
1 ; λ1 ≥ exp(−γ1 − s)a∆(1− d)/∆


.

Moreover, applying Markov’s inequality we obtain that for each β > 0

Ex


λ
θ∗
1 ; λ1∆ exp(γ1 + s)/[a∆(1− d)] ≥ 1


≤

∆β exp(βs)

[a∆(1− d)]β
Ex


λ
θ∗+β

1 exp(βγ1)

.

Selecting β = θ∗ − ρ∆ we obtain (using (ii))

J1

h∆ (s, d, x)
≤


∆

1− d

2θ∗−ρ∆ exp((2θ∗ − ρ∆) s)

a2θ∗−ρ∆
∆

×
uθ∗ (x) Ex [λ

2θ∗−ρ∆
1 exp((θ∗ − ρ∆)γ1)]

inf
y∈S

uθ∗ (y) h∆ (s, d, x)

≤
b2

(a∆c∆)
2θ∗−ρ∆ inf

y∈S
uθ∗ (y) inf

y∈S
uθ∗−ρ∆ (y)

≤
b2b0

(a∆c∆)
2θ∗−ρ∆

.
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To analyze J2 we note that on

Ac
= {exp(γ1 + s)λ1∆/(1− d) < a∆}

we have that
h∆ (s + γ1, d + exp (s + γ1)∆λ1, X1)

h∆ (s, d, x)

= exp((2θ∗ − ρ∆)γ1)


1−

∆ exp(s + γ1)λ1

1− d

−(2θ∗−ρ∆) uθ∗ (X1) uθ∗−ρ∆ (X1)

uθ∗ (x) uθ∗−ρ∆ (x)

≤ exp((2θ∗ − ρ∆)γ1) (1− a∆)
−(2θ∗−ρ∆) uθ∗ (X1) uθ∗−ρ∆ (X1)

uθ∗ (x) uθ∗−ρ∆ (x)
.

Therefore, we have that

J2

h (s, d, x)
≤ (1− a∆)

−(2θ∗−ρ∆)

× Ex


exp((2θ∗ − ρ∆)γ1)

uθ∗ (X1) uθ∗−ρ∆ (X1)

uθ∗ (x) uθ∗−ρ∆ (x)
Lθ∗ [X1, γ1]


= (1− a∆)

−(2θ∗−ρ∆)Ex


exp((θ∗ − ρ∆)γ1)

uθ∗−ρ∆ (X1)

uθ∗−ρ∆ (x)


= (1− a∆)

−(2θ∗−ρ∆) exp (ψ (θ∗ − ρ∆)) .

Recall that we have assumed in (ii) that b1 is selected so that

exp (ψ (θ∗ − ρ∆)) ≤ 1− ρ∆µ+ b1ρ
2
∆.

Thus we obtain
J2

h (s, d, x)
≤ (1− a∆)

−(2θ∗−ρ∆)(1− ρ∆µ+ b1ρ
2
∆).

Combining our estimates for J1 and J2 together we arrive at

J1

h (s, d, x)
+

J2

h (s, d, x)
≤

b0b2

(a∆c∆)
2θ∗−ρ∆

+
(1− ρ∆µ+ b1ρ

2
∆)

(1− a∆)
(2θ∗−ρ∆)

.

Let a∆ = B1ρ∆ and c∆ = (B2/B1)ρ
−(1+1/(2θ∗−ρ∆))
∆ for ρ∆ < θ∗, substitute in the previous

inequality and conclude that

J1

h (s, d, x)
+

J2

h (s, d, x)
≤

b0b2ρ∆

B2θ∗−ρ∆
2

+
(1− ρ∆µ+ b1ρ

2
∆)

(1− B1ρ∆)
(2θ∗−ρ∆)

≤ 1,

where the previous inequality follows by the selection of B1 and B2 in Assumption (iii). This
concludes the proof of the proposition. �

The next result summarizes the asymptotic optimality properties of the algorithm obtained out
of the previous development.

Theorem 3. Select ρ∆ = 1/ log(1/∆) and c∆ = (B2/B1)ρ
−(1+1/(2θ∗−ρ∆))
∆ with 0 < B1, B2 <

∞ as indicated in Proposition 1. Then, the resulting estimator L obtained by the State-dependent
Algorithm has a coefficient of variation of order O(c2θ∗

∆ ) and therefore, in particular, it is
asymptotically optimal.
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Proof. The result follows as an immediate consequence of the fact that h∆ is a valid Lyapunov
function combined with Theorem 1. �

6. Unbiasedness and logarithmic running time of state-dependent sampler

Throughout the rest of our development, in addition to Assumptions 1–3, we impose the
following mild technical assumption.

Assumption 4. For each x ∈ S , V ar (γ (x, ξ)) > 0.

The previous assumption simply says that γ (x, ξ) is random. The assumption is immediately
satisfied (given Assumption 2) in the i.i.d. case. As we shall explain a major component in our
algorithm is the construction of a specific path that leads to termination. Assumption 4 is imposed
in order to rule out a cyclic type behavior under the importance sampling distribution.

We shall show that the state-dependent algorithm stops with probability one (and hence avoids
artificial termination which causes bias, a potential problem with the algorithm in Section 3.3)
and that the expected termination time is of order (log(1/∆))p for some p > 0. To do so let us
introduce some convenient notation. Let Zn , (1− Dn)e−Sn , and put Yn = (Xn, Zn) for n ≥ 0.
The dynamics of the process Y = (Yn : n ≥ 0) are such that

Yn+1 = (Xn+1, Zne−γ (Xn+1,ξn+1) −∆λ(Xn+1, ηn+1)).

It is then easy to see that our state-dependent algorithm, which mathematically is described by
Eqs. (24) and (26), can be stated in the following way in terms of Yn : given Yn ,

• Apply exponential tilting to γ (Xn+1, ξn+1) (using the tilting parameter θ∗) if

Zn > c∆∆uθ∗(Xn)
1/(2θ∗−ρ∆)uθ∗−ρ∆(Xn)

1/(2θ∗−ρ∆).

• Transition according to the nominal distribution of the system if

0 < Zn ≤ c∆∆uθ∗(Xn)
1/(2θ∗−ρ∆)uθ∗−ρ∆(Xn)

1/(2θ∗−ρ∆).

• Terminate if Zn ≤ 0.

Note that the region when Zn > c∆∆uθ∗(Xn)
1/(2θ∗−ρ∆)uθ∗−ρ∆(Xn)

1/(2θ∗−ρ∆) corresponds
to the region C (recall Eq. (26) in Section 4). If 0 < Zn ≤ c∆∆uθ∗(Xn)

1/(2θ∗−ρ∆)

uθ∗−ρ∆(Xn)
1/(2θ∗−ρ∆) we say that Yn is in C ′. Finally, we say that Yn is in B if Zn ≤ 0.

In other words, the set B is the termination set. Let us write m = infx∈S{uθ∗
(x)1/(2θ∗−ρ∆)uθ∗−ρ∆(x)

1/(2θ∗−ρ∆)} and M = supx∈S{uθ∗(x)
1/(2θ∗−ρ∆)uθ∗−ρ∆(x)

1/(2θ∗−ρ∆)}.
Note that 0 < m < M < ∞. A key observation is that the set C ′ is bounded. This will help in
providing bounds for the running time of the algorithm as we shall see.

We will obtain an upper bound for the algorithm by bounding the time spent by the process in
both regions C and C ′. Intuitively, starting from an initial position in C , the process moves to C ′

in finite number of steps. Then the process moves to either C or B. If the process enters C before
B, then from C it again moves back to C ′ and the iteration between region C ′ and C repeats
until the process finally hits B, which is guaranteed to happen by geometric trial argument. Our
proof below will make the intuition rigorous and shows that the time for the process to travel each
back-and-forth between C and C ′ is logarithmic in 1/∆, and that there is a significant probability
that the process starting from C ′ hits B before C . This, overall, will imply a logarithmic running
time of the algorithm. More precisely, we will show the following lemmas. The reader should
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keep in mind the selections

ρ∆ = 1/ log(1/∆) and c∆ = (B2/B1)ρ
−(1+1/(2θ∗−ρ∆))
∆ = O


log(1/∆)1+1/(2θ∗)


given in Theorem 3.

Recall the notations Pθ∗(·) and Eθ∗ [·] to denote the probability measure and expectation
under the state-dependent importance sampler. Note that under Pθ∗(·) no exponential tilting is
performed when the current state Yn lies in C ′.

Lemma 2. Denote TC∪B = inf{n > 0 : Yn ∈ C ∪ B}. Under Assumptions 1–4 we have

Eθ∗y0
[TC∪B] = O(cp

∆ log c∆)

uniformly over y0 ∈ C ′ for some constant p > 0.

Lemma 3. Let TC = inf{n > 0 : Yn ∈ C} and TB = inf{n > 0 : Yn ∈ B}. If Assumptions 1–4
hold, then, uniformly over y0 = (x0, z0) ∈ C ′,

Pθ∗y0
(TB < TC ) ≥

c1

cp
∆

for some constant c1 and p (the p can be chosen as the same p in Lemma 2).

Lemma 4. Denote TC ′∪B = inf{n > 0 : Yn ∈ C ′ ∪ B} and suppose that Assumptions 1–4 are in
force. For any y0 = (x0, z0) ∈ C, we have Pθ∗y0 (TC ′∪B <∞) = 1 and

Eθ∗y0
[TC ′∪B] = O


log


z0

mc∆∆


.

The first lemma shows that it takes on average a logarithmic number of steps (in 1/∆) for
the process to reach either B or C from C ′. The second lemma shows that there is a significant
probability, uniformly over the initial positions in C ′, that the process reaches B before C . The
third lemma states that the time taken from C to C ′ is also logarithmic in 1/∆. Lemmas 2 and
4 guarantee that each cross-border travel, either from C to C ′ or from C ′ to C , takes on average
logarithmic time. On the other hand, Lemma 3 guarantees that a geometric number of iteration,
with significant probability of success, will bring the process to B from some state in C ′. These
will prove the following proposition on the algorithmic running time.

Proposition 2. Suppose that Assumptions 1–4 hold. Then, for any y0 = (x0, z0), we have
Pθ∗y0 (TB <∞) = 1 and

Eθ∗y0
[TB] = O


cp
∆ log c∆ + log


1

c∆∆


for some p > 0.

We now give the proofs of the lemmas and Proposition 2.

Proof of Lemma 2. Our strategy to prove Lemma 2 is the following. Given any initial state
y0 = (x0, z0) ∈ C ′, we first construct explicitly a path that takes y0 to B within O(log c∆) steps
(which we call event A(x0) below), and we argue that this path happens with probability Ω(c−p

∆ )

for some p > 0. Then we look at the process in blocks of O(log c∆) steps. For each block, if the
process follows the particular path that leads to B, then TB , and hence TB∪C , is hit; otherwise the
process may have hit C , or may continue to the next block starting with some state in C ′. In other
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words, TB∪C is bounded by the time from the initial position up to the time that the process fin-
ishes following exactly the particular path in a block. We note that a successful follow of the par-
ticular path is a geometric r.v. with parameter O(c−p

∆ ), and hence the mean of TB∪C is bounded

by O(c−p
∆ )× O(log c∆) and therefore the result. Now we make the previous intuition rigorous.

We first prove some elementary probabilistic bounds for γ (·) and λ(·). As in Section 4 we
simplify our notation by writing γn = γ (Xn, ξn) and λn = λ(Xn, ξn). We first argue that for any
y = (x, z) ∈ C ′,

Pθ∗y


e−γ1

uθ∗(x)
1/θ∗

uθ∗(X1)1/θ∗
≤ u1


> 0 (28)

for some 0 < u1 < 1. Note that the initial conditioning in the probability in (28) depends on y
only through x .

We prove (28) by contradiction. Suppose (28) is not true, then there exists some Markov state
w such that

Pθ∗w


e−γ1

uθ∗(w)
1/θ∗

uθ∗(X1)1/θ∗
≥ 1


= 1.

Now if this happens and additionally

Pθ∗w


e−γ1

uθ∗(w)
1/θ∗

uθ∗(X1)1/θ∗
> 1


> 0,

which obviously implies

Pθ∗w


eγ1

uθ∗(X1)
1/θ∗

uθ∗(w)1/θ∗
< 1


> 0,

then

Eθ∗w


eθ∗γ1

uθ∗(X1)

uθ∗(w)


< 1,

which contradicts the definition of θ∗. Hence we are left with the possibility that

Pθ∗w


e−γ1

uθ∗(w)
1/θ∗

uθ∗(X1)1/θ∗
= 1


= 1,

but this contradicts our non-degeneracy assumption, namely, Assumption 4.
Using (28), note that we can pick u2 > 0 small enough such that

Pθ∗y


e−γ1

uθ∗(x)
1/θ∗

uθ∗(X1)1/θ∗
≤ u1, e−γ1 ≥ u2


> ϵ1 > 0 (29)

for any y = (x, z) ∈ C ′. This follows from a contradiction proof since the non-existence of u2
would imply e−γ1 = 0 a.s.

On the other hand, it is easy to see that there exists r1 and r2 and a small enough u3 > 0 such
that

Pθ∗r1
(X1 = r2, λ(r4, η1) ≥ u3) > ϵ2 > 0 (30)

since otherwise λ1 = 0 a.s.
We will now construct the path A(x0) as discussed earlier in the proof. This path will de-

pend on the initial position y0 = (x0, z0) ∈ C ′, but it has length O(log c∆) uniformly over
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any initial position in C ′. The path has the property that whenever the Markov state hits r1,
it would go to r2 with λ(r2, ηn) ≥ u3 in the next state. Moreover, for every step, e−γ (Xn ,ξn)

uθ∗(Xn−1)
1/θ∗/uθ∗(Xn)

1/θ∗ ≤ u1 and e−γn ≥ u2. The path evolves in a periodic way i.e. it
hits r1 in every l steps for N times, where N is a number to be determined later. The existence
of l and the occurrence of such periodic cycles with positive probability is guaranteed by the
irreducibility of the Markov chain Xn . In other words, consider the event A(x0) given by

A(x0) =


for k = 1, . . . , N , Xa+kl = r1, Xa+kl+1 = r2, λ(r2, ηa+kl+1) ≥ u3;

for i = 1, . . . , a + Nl + b, e−γ (X i ,ξi )
uθ∗(X i−1)

1/θ∗

uθ∗(X i )1/θ∗
≤ u1, e−γ (X i ,ξi ) ≥ u2;

Xa+Nl+b = x0


where a is the number of steps for the initial state x0 to reach r1 and b is the number of steps
for the last hit on r2 back to state x0. Note that a and b all depend on x0, but we suppress the
dependence for notational convenience. N is an integer that we will pick momentarily.

Under A(x0) we have

Za+Nl+b = ze−γ1−···−γa+Nl+b −∆λ1e−γ2−···−γa+Nl+b

−∆λ2e−γ3−···−γa+Nl+b − · · · −∆λa+Nl+b

≤ zua+Nl+b
1 −∆u3(u

a+Nl
2 + ua+(N−1)l

2 + · · · + ua
2)

≤ zua+Nl+b
1 −∆u3ua

2
1− u(N+1)l

2

1− u2
.

Now pick N to be the smallest integer at least as large as

log((ua+b
1 Mc∆∆(1− u2)+∆u3ua+l

2 )/(∆u3ua
2))

l log(1/u1)
.

This implies that

N <
log((z0ua+b

1 (1− u2)+∆u3ua+l
2 )/(∆u3ua

2))

l log(1/u1)
+ 1

(note the definition of C ′ and M above) and a simple verification reveals that Za+Nl+b ≤ 0 on
A(x0). Hence if A(x0) occurs, then TB is hit before step a + Nl + b. Note that N = O(log c∆).

Now note that given y0 = (x0, z0) ∈ C ′, the probability that A(x0) happens is larger than
qa+Nl+b for some q > 0. If we divide the steps of the chain into blocks of size r + Nl, where
r = maxx∈S{a(x)+ b(x)}, then the number of blocks required for Zn to hit 0 (and hence TB∪C
is achieved) is bounded by a geometric r.v. with parameter qr+Nl . Taking also into account the
length of the blocks, we have

Eθ∗y0
TB∪C ≤

1
qr+Nl (r + Nl) = O(cp

∆ log c∆)

for some p > 0. �

Proof of Lemma 3. Given an initial position y0 = (x0, z0) ∈ C ′. It suffices to show that the path
A(x0) we have constructed in the proof of Lemma 2 does not hit TC before TB i.e. it does not hit
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TC for every step up through a + Nl + b. The conclusion of Lemma 3 then follows by noting
that Pθ∗y0 (TB > TC ) ≥ Pθ∗y0 (A(x0)). To prove TC is not hit for every step, we show that Zn <

c∆∆uθ∗(Xn)
1/(2θ∗−ρ∆)uθ∗−ρ∆(Xn)

1/(2θ∗−ρ∆) i.e. Zn ∈ B ∪C ′, for every n = 1, . . . , a+ Nl+b
by induction. Suppose Zn < c∆∆uθ∗(Xn)

1/(2θ∗−ρ∆)uθ∗−ρ∆(Xn)
1/(2θ∗−ρ∆), then

Zn+1 = Zne−γn+1 −∆λn+1

≤ c∆∆uθ∗(Xn)
1/(2θ∗−ρ∆)uθ∗−ρ∆(Xn)

1/(2θ∗−ρ∆) · u1
uθ∗(Xn+1)

1/θ∗

uθ∗(Xn)1/θ∗

< c∆∆uθ∗(Xn+1)
1/(2θ∗−ρ∆)uθ∗−ρ∆(Xn+1)

1/(2θ∗−ρ∆)

for small enough ∆, where u1 is defined in (28), by choosing the eigenvectors uθ∗−δ(x) that are
continuous in δ within a small neighborhood of 0 uniformly over all x ∈ S . Hence we have
proved our claim. �

Proof of Lemma 4. Suppose we start at y0 = (x0, z0) ∈ C . Consider γ̃n =
τn

i=τn−1
γi where

τn = inf{i > τn−1 : X i = x0}. Inside region C the random walk S̃n =
n

j=1 γ̃ j has positive
drift i.e. E γ̃n > 0. For the process to hit C ′ ∪ B, it suffices to have

z0e−γ1−···−γn −∆λ1e−γ2−···−γn − · · · −∆λn ≤ mc∆∆

or equivalently

∆(λn + mc∆∆)eγ1+···+γn +∆λn−1eγ1+···+γn−1 + · · · +∆λ1eγ1 ≥ z0.

This will be implied by the condition ∆(λn + mc∆∆)eγ1+···+γn ≥ z0, which in turn can be
achieved if Sn ≥ log(z0/(mc∆∆)). Note that if we only consider the steps when Xn = x0, then
the condition becomes S̃n ≥ log(z0/(mc∆∆)) where S̃n is now a positively drifted random walk.

This happens with probability one and the expected time for this to happen is O


log


z0
mc∆∆


,

which provides an upper bound for Eθ∗y0 [TC ′∪B]. �

Proof of Proposition 2. Consider an initial position at y0 = (x0, z0) ∈ C (if y0 = (x0, z0) ∈ C ′

the same analysis goes through resulting in a shorter mean running time). With probability one
Yn will enter C ′ ∪ B by Lemma 4. If TC ′ < TB then by Lemma 3 the process hits B with
probability that is bounded away from zero uniformly over YTC ′

, otherwise it goes back to C .
Hence by geometric trial argument the process will hit B eventually. We obtain the first part of
the proposition.

We now consider Eθ∗y0 TB . Suppose first that y0 = (x0, z0) ∈ C ′. Write

Eθ∗y0
TB = Eθ∗y0

[TB; TB < TC ] + Eθ∗y0
[TB; TB > TC ].

Let T̄B = TB − TC on the set TB > TC i.e. T̄B is the residual time to hit B once TC is first hit.
We can write

Eθ∗y0
TB = Eθ∗y0

TB∪C + Eθ∗y0
[T̄B; TB > TC ] = Eθ∗y0

TB∪C + Eθ∗y0
[Eθ∗YTC (y0)

T̄B; TB > TC ]

where YTC (y0) is the state at time TC (the y0 as a parameter emphasizes the dependence on the
initial position y0). We further write

Eθ∗y0
TB = Eθ∗y0

TB∪C + Eθ∗y0
[Eθ∗YTC (y0)

[T̄B∪C ′ + Eθ∗YT̄C ′
[
¯̄T B; T̄B > T̄C ′ ]]; TB > TC ] (31)

where ¯̄T B = T̄B − T̄C ′ on the set T̄B > T̄C ′ .
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Let f (y) = Eθ∗y TB . (31) leads to

f (y0) ≤ Eθ∗y0
TB∪C + Eθ∗y0

[Eθ∗YTC (y0)
T̄B∪C ′; TB > TC ] + sup

w∈C ′
f (w)Pθ∗y0

(TB > TC )

≤ Eθ∗y0
TB∪C + cEθ∗y0


log


YTC (y0)

mc∆∆


; TB > TC


+ sup
w∈C ′

f (w)Pθ∗y0
(TB > TC ) (32)

where c > 0 is a constant, using Lemma 4. Now consider

YTC (y0) = z0e−γ1−···−γTC −∆λ1e−γ2−···−γTC − · · · −∆λTC ≤ z0e−γ1−···−γTC

and hence

log


YTC (y0)

mc∆∆


≤ log z0 − γ1 − · · · − γTC − log(mc∆∆).

Now

Eθ∗y0
[−γ1 − · · · − γTC ; TB > TC ] ≤ Eθ∗y0

[|γ1| + · · · + |γTB∪C |; TB > TC ]

≤ Eθ∗y0
[|γ1| + · · · + |γTB∪C |]

≤ c̃Eθ∗y0
TB∪C

where c̃ = supx∈S Eθ∗ [|γ (X1, ξ1)||X1 = x] < ∞, by Wald’s identity and Assumption 1 in
Section 2. This gives

Eθ∗y0


log


YTC (y0)

mc∆∆


; TB > TC


≤ log z0 Pθ∗y0

(TB > TC )+ c̃Eθ∗y0
TB∪C − log(mc∆∆)

× Pθ∗y0
(TB > TC ). (33)

Putting (33) into (32) and using the fact that z0 ≤ Mc∆∆ for y0 = (x0, z0) ∈ C ′ yields

f (y0) ≤ Eθ∗y0
TB∪C + cPθ∗y0

(TB > TC ) log(Mc∆∆)+ cc̃Eθ∗y0
TB∪C − c log(mc∆∆)

× Pθ∗y0
(TB > TC )+ sup

w∈C ′
f (w)Pθ∗y0

(TB > TC ).

Now taking supremum on both sides and using Lemmas 2 and 3, we get

sup
w∈C ′

f (w) ≤ O


cp
∆ log c∆ + log


1

c∆∆


1

cp
∆


.

Suppose we start with y0 ∈ C , then combining with Lemma 4 concludes the proposition. �

7. Extensions and remarks

As noted in Eq. (5) the perpetuity D satisfies the distributional fixed point equation

D=d B + AD′,

where A = exp (Y ), D′ has the same distribution as D, and (A, B) is independent of D′. We wish
to compare our development to that of [14], which state their results in the absence of Markov
modulation, so to make the comparison more transparent we will omit the Markov chain {Xn}

from our discussion here. We have assumed that B is non-negative but we believe that this is not



3386 J. Blanchet et al. / Stochastic Processes and their Applications 122 (2012) 3361–3392

a strong assumption. We can typically reduce to the case of non-negative B. Indeed, if the Bi ’s
can take negative values, we can let Bi = |Bi | and define

D = B1 + exp (Y1) B2 + · · · . (34)

Note that the tail of D is in great generality equivalent (up to a constant) to that of D. Since
{D > 1/∆} ⊆ {D > 1/∆} we can use the likelihood ratio constructed to estimate the tail of D
but apply it to the event I (D > 1/∆). The same efficiency analysis applies automatically. So,
throughout our discussion we shall keep assuming that B is non-negative.

Now, one could consider more general fixed point equations, for instance,

D=d B + A max

D′,C


(35)

where D′ has the same distribution as D, (A, B,C) are independent of D′. This equation is the
focus of [14]. Their assumptions are similar to ours, primarily that θ∗ > 0 satisfying E Aθ∗

= 1 can be computed; that suitable moment conditions are satisfied for B and C , and that
the associated exponentially tilted distributions can be simulated. Their estimator for the tail
of D is biased, but it enjoys asymptotic optimality properties parallel to strong efficiency. In this
sense this estimator is close in spirit to our state-independent importance sampler. However, their
construction is completely different to ours, as we shall explain now.

Eq. (35) characterizes the steady-state distribution (if it exists) of the Markov chain, {Vn : n ≥
0}, defined via V0 = v0 and

Vn+1 = Bn+1 + An+1 max (Vn,Cn+1) , (36)

where {(An, Bn,Cn) : n ≥ 1} is an i.i.d. sequence. Collamore et al. [14] uses a regenerative ratio
representation for the steady-state distribution of {Vn}, assuming suitable minorization conditions
required for regeneration are in place. Clearly, there are advantages to simulating Vn (which is
Markovian) as opposed to the “backward” process, which corresponds to the discounted reward
process (whose limit is the perpetuity and it is not Markovian but requires keeping track of
Sn = Y1 + · · · + Yn). Nevertheless, one of the important features of importance sampling is that
it can be applied to estimate conditional expectations of sample path functions given the even
of interest (in this case D > 1/∆). This is also why we wanted our algorithms to be developed
under the presence of Markovian modulation, without resorting to a decomposition such as (5).

This feature, we believe, is quite attractive specially in some of the applications behind our
motivation to study discounted process, such as insurance and finance. The problem with using
the “forward” representation (i.e. {Vn} and the associated regenerative ratio) is that, while the
tail estimation of D is preserved, it is difficult to use the associated algorithms for estimation of
conditional sample path expectations.

Finally, we point out that a similar coupling idea to the one used in the construction of (34) can
be applied to reduce the analysis of (35) to the case of standard perpetuities. In particular, defineBn+1 = Bn+1 + An+1Cn+1, and plug this definition into (34) to define D. Then we have thatD ≥ D, where D is the limit of the ”backward” representation associated to (35). Since D and
D are typically tail equivalent (except for a constant), again we can proceed as indicated earlier.
Because {D > 1/∆} ⊆ {D > 1/∆} we can use the likelihood ratio constructed to estimate the
tail of D but apply it to the event I (D > 1/∆). Again, bias is introduced because of the infinite
horizon nature of D, but the rare-event simulation problem has been removed by the importance
sampling strategy constructed based on D.
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8. Numerical experiments

We run our algorithm for the ARCH(1) sequence in Example 1 with α0 = 1, 2 and α1 =

3/4, 4/5. In this example there is no Markov modulation. Using the transformation into Tn as
shown in Example 1, the tail probability of the steady-state distribution of the ARCH(1) process
with target level 1/∆ is equivalent to the tail probability of a perpetuity with λ(X i , ηi ) = α0,
γ (X i , ξi ) = logα1 + logχ2

i where χ2
i are i.i.d. chi-square r.v.’s, and target level α1/∆. One can

compute easily that

Eeθγ (X i ,ξi ) = (2α1)
θ Γ (θ + 1/2)

Γ (1/2)

and hence verify that Assumptions 1–3 are satisfied. Moreover, the conditions in Proposition 1
are also satisfied with appropriate selection of parameters (see the discussion below). Our choices
of α1 would correspond to θ∗ with values 1.68, 1.46 and 1.34 respectively. This implies a tail of
the steady-state ARCH(1) model that has finite third moment but not the fourth, which frequently
arises in the financial context (see, for example, [25]).

We test the performance of both our state-independent and state-dependent sampler proposed
in Sections 3 and 4 by comparing with crude Monte Carlo. To gauge the performance of our
algorithms as ∆ becomes small, we tune ∆ from 0.1 to 0.00001 to see the effect of the magnitude
of ∆ to the output performance.

For crude Monte Carlo, we truncate the maximum number of steps to be 1000 (so that the
sequence does not iterate indefinitely; note that this would certainly cause bias in the sample).

In the case of the state-independent importance sampler, we use a = 9/10 and n∗ =
10 log(1/∆) (where a is the proportion of the barrier that upon touching would lead to the stop
of importance sampling and n∗ is the number of steps we continue to simulate after T∆/a).

For the state-dependent sampler, we can verify that b0 = 1, b1 = sup0≤ζ≤θ∗(ψ
′′(ζ ) +

(ψ ′2 (ζ )))/2 and b2 = max{α2θ∗
0 , 1} satisfy the conditions in Proposition 2. To ensure that the

Lyapunov inequality holds for small ∆ one can choose B1 and B2 in Proposition 2 to satisfy
B2 ≥ 1 and

µ− 2B1θ∗ −
b0b2

Bθ∗2

> 0.

In particular we can choose B1 = 0.45µ/(2θ∗) and B2 = max{(b0b2/(0.45µ))1/θ∗ , 1}.
For each set of input parameters (i.e. α0, α1 and ∆) we simulate using crude Monte Carlo, the

state-independent sampler, and the state-dependent sampler. For each method we fix the running
time to be five minutes for comparison. In the following tables we show the estimate, empirical
coefficient of variation (standard deviation divided by the estimate), and 95% confidence interval
for our simulation. Tables are deferred to the Appendix below.

Next we also run the algorithm for a Markov modulated perpetuity. The modulating Markov
chain lies in state space {1, 2} and has transition matrix

K =

1
2

1
2

1 0


.

We use λ(1, η1) = λ(1) = 1 and λ(2, η1) = λ(2) = 2 a.s. Also, γ (1, ξ1) = log(2/3) + logχ2
i

and γ (2, ξ1) = log(3/4)+ logχ2
i , where again χ2

i are i.i.d. chi-square random variables.
Again we experiment using crude Monte Carlo and both state-independent and dependent

importance samplers. Similar to the ARCH(1) setup, a simple calculation reveals that eχ(1,θ) =
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(2 × (2/3))2θΓ (θ + 1/2)/Γ (1/2) and eχ(2,θ) = (2 × (3/4))2θΓ (θ + 1/2)/Γ (1/2). Moreover,
eψ(θ) = (eχ(1,θ) +

√
e2χ(1,θ) + 8eχ(1,θ)+χ(2,θ))/4, so θ∗ = 1.60. We take uθ (1) =

(
√

e2χ(1,θ) + 8eχ(1,θ)+χ(2,θ) + eχ(1,θ))/(4eχ(1,θ)) and uθ (2) = 0.
The computational effort needed for this Markov-modulated problem appears to be substan-

tially heavier than the case of ARCH model, and hence we perform a longer and more extensive
simulation study. We tune ∆ from 0.1 to 0.002, and for each scenario we run the simulation
for one hour for each method. For crude Monte Carlo, we use 100, 000 as our step truncation.
For state-independent importance sampler we use a = 9/10 and n∗ = 1000 log(1/∆). For
state-dependent importance sampler, we choose b0 = 1, b1 = supζ∈(0,θ∗)(ψ

′′(ζ ) + ψ ′2 (ζ ))/2,
and b2 = max{supx∈S λ(x)

2θ∗ , 1} supx∈S Ex eχ(X1,θ∗). Then taking B1 = 0.45µ/(2θ∗) and
B2 = max{(b0b2/(0.45µ))1/θ∗ , 1} will satisfy the Lyapunov inequality for small enough ∆.
The numerical outputs are shown in the Appendix below.

For the ARCH model, it is notable from the coefficient of variation and confidence interval
that both state-independent and state-dependent samplers perform better than crude Monte Carlo
starting from ∆ = 0.001. Crude Monte Carlo has much larger coefficient of variation when ∆ is
0.0005, and it merely fails (i.e. does not generate any positive sample) when ∆ is 0.00001. On
the other hand, the coefficient of variation for state-independent sampler remains at around 1 to 2
and that for state-dependent sampler remains under 50 for all the cases we considered. The state-
independent sampler appears to perform better than state-dependent sampler for our range of ∆,
although one should keep in mind there is bias issue in that algorithm. Similar results hold for
the Markov-modulated perpetuity, where crude Monte Carlo fails completely when ∆ is 0.005
or larger while the importance samplers still perform reasonably well.
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Appendix. Numerical output

ARCH model, parameter values: α0 = 1, α1 = 3/4

Crude Monte Carlo
Estimate C.V. 95% C.I.

∆ = 0.1 6.65× 10−2 3.75 [6.43× 10−2, 6.86× 10−2
]

∆ = 0.05 2.89× 10−2 5.80 [2.74× 10−2, 3.04× 10−2
]

∆ = 0.001 1.11× 10−4 95.05 [1.37× 10−5, 2.08× 10−4
]

∆ = 0.0005 2.11× 10−5 217.9 [−2.02×10−5, 6.24×10−5
]

∆ = 0.00001 0 N/A N/A

State-Independent Sampler
Estimate C.V. 95% C.I.

∆ = 0.1 6.84× 10−2 1.79 [6.82× 10−2, 6.86× 10−2
]

∆ = 0.05 2.84× 10−2 1.76 [2.83× 10−2, 2.85× 10−2
]

∆ = 0.001 1.10× 10−4 1.75 [1.09× 10−4, 1.10× 10−4
]

∆ = 0.0005 4.01× 10−5 1.79 [3.99× 10−5, 4.02× 10−5
]

∆ = 0.00001 1.34× 10−7 1.72 [1.33× 10−7, 1.35× 10−7
]
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State-Dependent Sampler
Estimate C.V. 95% C.I.

∆ = 0.1 6.80× 10−2 3.68 [6.63× 10−2, 6.96× 10−2
]

∆ = 0.05 2.82× 10−2 5.81 [2.67× 10−2, 2.96× 10−2
]

∆ = 0.001 1.45× 10−4 24.77 [7.70× 10−5, 2.14× 10−4
]

∆ = 0.0005 4.22× 10−5 29.93 [1.49× 10−5, 6.95× 10−5
]

∆ = 0.00001 2.48× 10−7 37.71 [−5.43×10−8, 5.49×10−7
]

ARCH model, parameter values: α0 = 2, α1 = 3/4

Crude Monte Carlo
Estimate C.V. 95% C.I.

∆ = 0.1 1.51× 10−1 2.37 [1.48× 10−1, 1.54× 10−1
]

∆ = 0.05 6.64× 10−2 3.75 [6.40× 10−2, 6.88× 10−2
]

∆ = 0.001 2.61× 10−4 61.92 [1.13× 10−4, 4.08× 10−4
]

∆ = 0.0005 8.19× 10−5 110.5 [1.64× 10−6, 1.62× 10−4
]

∆ = 0.00001 0 N/A N/A

State-Independent Sampler
Estimate C.V. 95% C.I.

∆ = 0.1 1.50× 10−1 1.92 [1.495×10−1, 1.503×10−1
]

∆ = 0.05 6.85× 10−2 2.48 [6.83× 10−2, 6.88× 10−2
]

∆ = 0.001 3.00× 10−4 1.87 [2.99× 10−4, 3.02× 10−4
]

∆ = 0.0005 1.09× 10−4 1.69 [1.09× 10−4, 1.10× 10−4
]

∆ = 0.00001 3.69× 10−7 1.69 [3.67× 10−7, 3.71× 10−7
]

State-Dependent Sampler
Estimate C.V. 95% C.I.

∆ = 0.1 1.50× 10−1 2.38 [1.46× 10−1, 1.54× 10−1
]

∆ = 0.05 6.92× 10−2 3.66 [6.57× 10−2, 7.27× 10−2
]

∆ = 0.001 5.54× 10−4 42.46 [−2.14×10−4, 1.32×10−3
]

∆ = 0.0005 1.61× 10−5 42.72 [−8.85×10−6, 4.11×10−5
]

∆ = 0.00001 9.13× 10−9 34.65 [−8.78×10−9, 2.70×10−8
]

ARCH model, parameter values: α0 = 1, α1 = 4/5

Crude Monte Carlo
Estimate C.V. 95% C.I.

∆ = 0.1 7.79× 10−2 3.44 [7.45× 10−2, 8.14× 10−2
]

∆ = 0.05 3.53× 10−2 5.23 [3.29× 10−2, 3.76× 10−2
]

∆ = 0.001 2.27× 10−4 66.39 [2.80× 10−5, 4.26× 10−4
]

∆ = 0.0005 9.13× 10−5 104.6 [−3.52×10−5, 2.18×10−4
]

∆ = 0.00001 0 N/A N/A
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State-Independent Sampler
Estimate C.V. 95% C.I.

∆ = 0.1 7.78× 10−2 1.72 [7.75× 10−2, 7.81× 10−2
]

∆ = 0.05 3.43× 10−2 1.56 [3.41× 10−2, 3.44× 10−2
]

∆ = 0.001 2.02× 10−4 1.57 [2.01× 10−4, 2.03× 10−4
]

∆ = 0.0005 8.00× 10−5 1.53 [7.96× 10−5, 8.05× 10−5
]

∆ = 0.00001 4.21× 10−7 1.55 [4.18× 10−7, 4.24× 10−7
]

State-Dependent Sampler
Estimate C.V. 95% C.I.

∆ = 0.1 7.84× 10−2 3.39 [7.62× 10−2, 8.07× 10−2
]

∆ = 0.05 3.47× 10−2 5.21 [3.27× 10−2, 3.67× 10−2
]

∆ = 0.001 1.31× 10−4 27.97 [4.61× 10−5, 2.16× 10−4
]

∆ = 0.0005 6.52× 10−5 23.15 [2.71× 10−5, 1.03× 10−4
]

∆ = 0.00001 8.09× 10−7 26.51 [−6.15×10−9, 1.62×10−6
]

ARCH model, parameter values: α0 = 2, α1 = 4/5

Crude Monte Carlo
Estimate C.V. 95% C.I.

∆ = 0.1 1.59× 10−1 2.30 [1.55× 10−1, 1.64× 10−1
]

∆ = 0.05 7.96× 10−2 3.40 [7.62× 10−2, 8.30× 10−2
]

∆ = 0.001 4.49× 10−4 47.20 [1.71× 10−4, 7.27× 10−4
]

∆ = 0.0005 2.69× 10−4 60.92 [5.39× 10−5, 4.85× 10−4
]

∆ = 0.00001 0 N/A N/A

State-Independent Sampler
Estimate C.V. 95% C.I.

∆ = 0.1 1.62× 10−1 1.67 [1.61× 10−1, 1.62× 10−1
]

∆ = 0.05 7.74× 10−2 1.57 [7.71× 10−2, 7.77× 10−2
]

∆ = 0.001 5.12× 10−4 1.57 [5.10× 10−4, 5.15× 10−4
]

∆ = 0.0005 2.03× 10−4 1.74 [2.01× 10−4, 2.04× 10−4
]

∆ = 0.00001 1.07× 10−6 1.59 [1.06× 10−6, 1.08× 10−6
]

State-Dependent Sampler
Estimate C.V. 95% C.I.

∆ = 0.1 1.61× 10−1 2.28 [1.56× 10−1, 1.65× 10−1
]

∆ = 0.05 7.77× 10−2 3.44 [7.33× 10−2, 8.22× 10−2
]

∆ = 0.001 4.32× 10−4 44.24 [−2.64×10−4, 1.13×10−3
]

∆ = 0.0005 1.39× 10−4 23.65 [6.72× 10−6, 2.71× 10−4
]

∆ = 0.00001 5.93× 10−7 32.41 [−5.70×10−7, 1.76×10−6
]
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Markov-modulated perpetuity

Crude Monte Carlo
Estimate C.V. 95% C.I.

∆ = 0.1 7.23× 10−2 3.58 [5.64× 10−2, 8.82× 10−2
]

∆ = 0.05 2.61× 10−2 6.12 [1.60× 10−2, 3.62× 10−2
]

∆ = 0.02 3.09× 10−3 17.98 [−4.07×10−4, 6.58×10−3
]

∆ = 0.005 0 N/A N/A
∆ = 0.002 0 N/A N/A

State-Independent Sampler
Estimate C.V. 95% C.I.

∆ = 0.1 5.82× 10−2 45.89 [5.55× 10−2, 6.10× 10−2
]

∆ = 0.05 2.08× 10−2 10.45 [2.04× 10−2, 2.11× 10−2
]

∆ = 0.02 5.24× 10−3 14.67 [5.13× 10−3, 5.34× 10−3
]

∆ = 0.005 5.92× 10−4 11.25 [5.73× 10−4, 6.10× 10−4
]

∆ = 0.002 1.37× 10−4 9.25 [1.34× 10−4, 1.40× 10−4
]

State-Dependent Sampler
Estimate C.V. 95% C.I.

∆ = 0.1 5.73× 10−2 4.05 [5.35× 10−2, 6.10× 10−2
]

∆ = 0.05 2.23× 10−2 6.62 [1.88× 10−2, 2.58× 10−2
]

∆ = 0.02 3.51× 10−3 16.83 [1.74× 10−3, 5.27× 10−3
]

∆ = 0.005 4.40× 10−4 47.68 [−4.23×10−4, 1.30×10−3
]

∆ = 0.002 2.35× 10−5 44.40 [−2.26×10−5, 6.96×10−5
]
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