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1. INTRODUCTION 

Let X be a smooth, projective surface over a field k. Say that X is 
rational if X, is birational with P2, over some extension field E. Say that E 
splits X if this birational isomorphism can be realized by a sequence of 
monoidal transformations centered at E-points. 

Write CH,,(X) for the Chow group of zero cycles on X modulo rational 
equivalence, and A,(X) for the kernel of the degree map CH,(X) + Z. Let 
E/k split A’, G = Gal(E/k). Bloch [l] and Colliot-Thtlene and Sansuc 
[S, 63 have studied a map 

@J: A,(X) -+ H’(G, Pic(X,)@ E*). 

Using the work of Mercurjev and Suslin on Brauer groups, Colliot-Thelene 
[3] succeeded in showing that if X is a smooth, rational surface over a 
local or global field, then @ is injective. It follows by results of Bloch [2] 
that if X has good reduction over a local field, then A,(X) = 0. 

For technical reasons, most of the early results and calculations dealt 
with conic bundle surfaces. In view of Iskovskih’s work [S] classifying 
rational surfaces into two groups, we were led to ask: How do the 
singularities of reductions of de1 Pezzo surfaces over local fields contribute 
to the Chow group of zero cycles? Our first result is 
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THEOREM 1. Let X be a de1 Pezzo surface of degree d3 5, defined over a 
local field k. Then A,(X) = 0. 

This happens because the cohomology groups vanish. The first 
interesting examples thus occur when d =4. In this case, Manin [9] has 
enumerated the possible values of H’(G, Pic(X,)), based on an analysis of 
the orbits of the galois action on the lines of the de1 Pezzo surface. So, we 
decided to study degree 4 de1 Pezzo surfaces in depth. 

We will say an E-split, E-rational de1 Pezzo surface of degree 4 is marked 
if the set of lines has been named via an intersection preserving correspon- 
dence with a fixed abstract conliguration of lines. 

THEOREM 2. A fine moduli space for the set of marked split nonsingular 
de1 Pezzo surfaces is M = P2 - C, where C is the union of lines through four 

.fixed points. To a point (a: b: c) E M we associate the surface 

bsv=ar(u-t)+(c-b)su 

btu = cu(r - s) + (a - b) rt. 

As in [ 121, this family can be extended, over iFp2 with the four points blown 
up, in several ways. The nature of the bad libres depends somewhat 
mysteriously on which actions of the Weyl group W(L),) (of 
automorphisms of the lines on a degree 4 de1 Pezzo surface) can be exten- 
ded to the family. 

Armed with these surfaces and with the knowledge that we could write 
down everything interesting about them, we proceeded to construct exam- 
ples. In this paper, we restrict our attention to surfaces of type IV in 
Manin’s list. This is the first case where the cohomology of the Picard 
group is nontrivial. The splitting field is a quadratic extension E = k(d). 
Each orbit of the galois action on the lines consists of a pair of intersecting 
lines and H’(G, Pic(X,)) = Z/22 @ Z/212. Using descent theory, we con- 
struct all the type IV surfaces. 

Suppose E/k is an unramified extension of local fields. Bad reduction can 
only occur if the point P = (a: b: c) specializes onto one of the lines of P2 
with four points blown up. It turns out that the type IV action is invariant 
under arbitrary permutations of these four points. We find then three kinds 
of bad reduction 

(e) P specializes onto one of the ei coming from blown up points; 

(f) P specializes onto one of the lines fii connecting two points; 

(p) P specializes onto one of the points ein7fj. 

Assume that char (k) = 0 and k has residue characteristic p > 2. Our 
main result is: 

4X I ‘97 2-9 
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THEOREM 3. Let E/k be an unramtfied quadratic extension of local fields. 
Let X be a degree 4 del Pezzo k-surface split by E. Then either A,(K) = 0 or 
X is a type IV surface with bad reduction. The type of bad reduction deter- 
mines 

A,(X) = Z/2 (f) 
= 0 (e) even 

= n/2 0 Z/2 (e) odd 

= Z/2 (P) even 

= n/2 0 n/2 (P) odd. 

Here the distinction between even and odd cases is defined using the 
parameters (a: b: c). We assume a, 6, c are relatively prime integers. Bad 
reduction occurs because one of 

a, b, c, b - a, b - c, b-a-c 

has positive valuation. We say the reduction is even or odd according as 
the smallest nonzero valuation among the above six quantities is even or 
odd. 

Bloch has suggested, for reasons related to the study of L-functions of 
rational surfaces, that the structure of the group A,(X) should be 
calculable from a knowledge of the components of the closed libre of a 
minimal regular model. While we do not consider this question directly, 
our theorem does shed some light on potential difficulties. In particular, the 
Neron model must reflect the difference between the even and odd cases of 
Theorem 3. 

2. DEL PEZZO SURFACES 

Let X be a smooth rational surface over a field k. We propose to study 
the group of zero cycles of degree zero on X by means of a homomorphism 

@: A,(X) -+ H’(G, Pic(X,) @ E*) 

where G is the galois group of a splitting extension Elk. This map was 
introduced by Bloch Cl] and Colliot-Thelene and Sansuc [6]. It can 
briefly be defined as follows. 

Since X, is E-birational to IP& the cohomology of the Gersten complex 
resolving XZ,XE : 
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is isomorphic to 

K,E Pic(X,)QE* Z. 

So, there are exact sequences 

0-r KZE(X)/K2E+ A + Pic(X,) 0 E* -+ 0 

O-, A -+uE(x)*+ u”iz -+O. 
X’E x2 t 

Here we write II0 for the degree zero part of the direct sum. The second 
exact sequence tells us that H’(G, A ) = A,,(X). So, the cohomology of the 
first exact sequence is 

... -H’(G, K,E(X)/K2E)-+Ao(X)z H’(G, Pic(X,)@E*)+ .... 

Colliot-Thelene and Coray [4], Bloch [ 11, Colliot-Thtlene and Sansuc 
[S], and Coliiot-Thtiene [3] show that if X is smooth and rational over a 
local or global field, then @ is injective and A,(X) is finite. For arithmetic 
purposes, the calculation of A,(X) thus reduces to a question of which 
cohomology classes are represented by points. 

We wish to recall the following facts. 

(2.1) If X is a smooth rational surface with good reduction over a local 
field, then A,(X)=0 [3]. 

(2.2) Let q E Z be prime. For any abelian group A, let A(q) denote the q- 
primary part. For E/k the splitting field of X, let E, be the fixed field of a q- 
Sylow subgroup G,. Then A,(X)(q)5 A,(X,J(q) and H’(G, Pic(X,) @ E*) 
4 H’(G,, Pic(X,)@ E*) [2]. 

(2.3) A,(X) and H’(G, Pic(X,)@ E*) are k-birational invariants of X 
c4, 101. 

PROPOSITION 2.4. Let X be a smooth rational surface over a local field. 
Then Brauer equivalence of points on X is the same as rational equivalence. 

Proof. Recall (Manin [lo]) the definition of Brauer equivalence: We 
identify H’(G, Pit X,) with the group Br(X, E)/Br(k; E) of Azumaya 
algebras on X, split by E, modulo constant algebras. Given an Azumaya 
algebra A and a point x, we get an element Cor,(,),k A(x) E Br(k). This 
extends by linearity and defines a pairing 

A,(X) 0 H’(G, Pit X,) -+ Br(k). 

We say that points are Brauer equivalent if they have the same image in 
Hom(H’(G, Pit X,), Br(k)). 
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When k is a local field, Br(k) = Q/Z and local class field theory identifies 
this Horn-group with H’(G, Pic(X,)@E*). Bloch [2] has checked that 
@: A,(X) -+ H’(G, Pic(X,)@E*) agrees with the map induced by this 
pairing. The result follows from the injectivity of @. (See also [3].) 

We now restrict ourselves to the case of de1 Pezzo surfaces. A non- 
singular rational surface is called a de1 Pezzo surface if its anticanonical 
sheaf is ample. The chief invariant of a de1 Pezzo surface is its degree 
d= (-K)‘, the self-intersection of the anticanonical class. The degree can 
only take on the values 1 ,< d G 9; when 3 d d d 9, the anticanonical class 
gives an embedding as a surface of degree d in p”, isomorphic over an 
algebraically closed field either to P2 with 9 -d points blown up or to the 
embedding of P’ x [FD’ in IFD8. For more detailed information, see Manin 
[lo] or Nagata [I 11. 

THEOREM 2.5. Let X he a de1 Pezzo surface of degree d3 5 over a field k. 
Write B,(X) jbr the group qf degree zero, zero cycles on X module Brauer 
equivalence. Then B,(X) = 0. 

COROLLARY. If X is de1 Pezzo of degree d > 5 over a local field, then 
A,(X) = 0. 

Pro@ Philosophically, this result holds because PGL(3) allows us to 
choose 4 3 9 -d points on IFp2. There simply is not enough freedom to get 
interesting phenomena. We will prove the theorem by showing that either 
X is already k-birational to P2 or H’(G, Pic(X,)) = 0. 

degree 9. These surfaces are all Severi-Brauer twisted forms of IFD’. So, 
Pit X,= Z with trivial galois action and H’(G, Pit X,) = 0. 

degree 8. Here there are two possibilities. In the first case, X is 
isomorphic to the blowup of P’ at a k-point, so is already birational to P2. 
In the second case, X is a twisted form of P1 x P’ so that Pit X, = Z 0 Z is 
a permutation module, and H’(G, Pit X,) = 0. 

degree 7. Manin has shown that these surfaces are all k-birationally 
trivial. For, the configuration of lines is 

and the pair of nonintersecting lines can be blown down as a set over k. 

degree 6. Here we use the fact (2.2) that it is enough to consider p-tor- 
sion independently, via the p-Sylow subgroup. The configuration of lines 
forms a hexagon, with group of symmetries D,. The 2-Sylow subgroup is 
Z/2 @Z/2 and one of the orbits consists of a pair of skew lines. These lines 
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can thus be blown down over k, making the surface k-birational to a 
degree 8 surface. The 3-Sylow subgroup H/3 has an orbit consisting of three 
skew lines. Blowing this set down gives a k-birational map to a 
Severi-Brauer surface. In both cases, we have X birational to something for 
which B,(X) = 0. 

degree 5. The group of automorphisms of the lines on X has order 
23. 3. 5. We consider 2-torsion, 3-torsion, and 5-torsion separately. 

The 2-Sylow subgroup is isomorphic to D, acting in the obvious way on 
the four blown up points of P2. So, one of the orbits consists of four skew 
lines, which may be blown down again to get X birational to a Severi- 
Brauer surface. 

The 3-Sylow subgroup Z/3 can be taken to have generator (e,e,e,) 
where the exceptional curves e, arise from the blown up points. So, the set 

{ e,, ez, e3 1 can be blown down over k to find X birational to a degree 8 
surface. 

Finally, we come to a case where we must actually calculate a 
cohomology group. We introduce the following graph to represent the lines 
on x’,<: 

ef 
f 14 
e4 
f24 

fl3 
E3 

fl, 
f23 
f 34 
e2 

e3 

Each vertex represents a line; two vertices are connected if and only if the 
corresponding lines intersect. The generator cr of the 5-Sylow subgroup 
cycles the entire graph up one step. 

The group Pic(X,) % Z5 with generators 1, e,, e2, e3, e4. The remaining 
lines are defined by ,f, = I- ei- ei in the Picard group. The first 
cohomology group, since G is cyclic, is defined as Ker(N)/Im( 1 - cr). One 
calculates that 

N(al+ h,e, + b2e2 + h3e3 + h,e,) 

=(3a+h,+h,+h,+h4)(-K) 

where -K = 31- e, - e2 - e3 - e4 is the anticanonical class, and 

(1-c)(el-4 =e, -e4 

(1 - a)(/- e2) =e, -e, 

(1 - fl)(e3) =e3-e2 

(l-a)(e,-e,+Z)=3e,-1 

so that 1 - c hits the generators of Ker(N). So, H’(G, Pit X,) = 0. 
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Remark. The discussion of surfaces of degree 5 could be more quickly 
reduced to the case of 5-torsion by noting that Manin shows that the 
existence of a point on X defined over an extension of degree prime to five 
forces X to be k-birationally trivial. Swinnerton-Dyer 1131 shows that 
every degree 5 de1 Pezzo surface actually has a rational point. 

3. MODULI OF DEL PJZZZO SURFACES OF DEGREE 4 

In this section, we begin the construction of a class of rational surfaces 
for which A,(X) is nontrivial. We first construct a good family of de1 Pezzo 
surfaces of degree 4 (written V”) with all rational lines. The most useful 
property of this family is that an isomorphism of tibres extends uniquely to 
an action of the Weyl group W(D,) on the entire family. The construction 
of V4 surfaces with specified galois action then proceeds by standard 
descent techniques. 

We recall the geometry of nonsingular split V4 surfaces. Every V4 con- 
tains exactly 16 lines, subject to certain incidence relations derived from the 
fact that 

5 are the blowups of points of P2(ei) 

10 are the transforms of lines through 2 points (fi,) 

1 is the transform of the conic through all 5 points (g). 

Let S be an abstract set of lines with these incidence relations. We say 
that a V4 is marked by giving an isomorphism from S to the set of lines on 
the surface. A marking thus corresponds to choosing, in order, a quintuple 
of skew lines to be viewed as the inverse image of points of [Fp*. With the 
obvious meaning, let M be the set of isomorphism classes of marked, non- 
singular, split V4 surfaces. So, M is a set-theoretic line moduli space for 
such surfaces; we will give a geometric description. 

Write .F,,, for the surface associated to m E M. An isomorphism F, + F,,,, 
must arise by renaming the lines. Since the group of automorphisms of the 
configuration of lines is W(D,), it is clear that an isomorphism of libres 
extends uniquely to an action on all the surfaces by an element of W(D,). 

Start with the fact that marked, nonsingular, split V4 surfaces are each 
isomorphic to the blowup of IFp2 at 5 points in general position. We may 
eliminate the action of Aut(P2) = PGL(3) by fixing the first four points. So, 
every F,,, is isomorphic to one of the surfaces obtained by blowing up 

PI (1:O:O) 

p2 (0: 0: 1) 

p, (1: 1: 0) 

p4 (0: 1: 1) 

p5 (a: b: c). 
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Being in general position means that the arbitrary point P, should not lie 
on any of the lines of 

c: 

PROPOSITION 3.1. A fine mod& space for marked, split, nonsingular V4 
surfaces is M = P2 - C. To a point (a: b: c) E M we associate the surface 

bsu = ar(u - t) + (c-b) su 

btu = cu(r - s) + (a -b) rt. 

Proof. It is clear from the above discussion that lP* - C is a fine moduli 
space. We show how to get the equations of the surface given by blowing 
up the points P,,..., P,. Consider the configuration 

LIZ p2 Lz4 x2 Pl p4 

Cl3 
P3 s 

L45 

L35 

A basis for the space of cubic curves through the Pi is given by the 
degenerate curves 

r=L,,L,,L,,=byz(a(y-z)+(c-b)x) 

~=L,,L,,L~,=bxz(a(y-z)+(c-b)x) 

t=L,,L,,L,,=bxz(c(y-x)+(a-b)z) 

~=L24L3SL12=byx(c(y-x)+(a-b)~) 

o=L,,L,,L45=y(a(y-z)+(c-b)x)(c(y-x)+(a-b)z). 
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These satisfy the following relations 

s x -=- 
r Y 

t z -=- 
24 Y 

0 a(y-z)+(c-b)x=a(l -t/u)+(c-b)s/r 
-= 
u bx bsjr 

v c(y-x)+(a-b)z c(l--/~)+(a-b)t/u 
-= 
r bz = bt/u . 

Clearing denominators in the last two expressions gives the above 
equations. 

In the tables at the end of this section we give a complete enumeration of 

I: Equations of the lines on Fcuzh:<). 
II: Equations of the quadritangents; i.e., those hyperplane sections 

consisting of four lines. 

III: Coordinates of all the points of intersection of the lines. 

The most important geometric invariants of a V4 surface are its cross 
ratios. Cayley first realized their importance for cubic surfaces; they were 
used by Naruki [12] to construct a moduli space for cubic surfaces. We 
define the cross ratios as follows: Fix a pair L of intersecting lines on A’. 
This determines a pencil of hyperplanes in P4 containing L. Exactly four 
members of this pencil are quadritangents. Each ordering tl,..., t, of these 
quadritangents determines a cross ratio 

r(t, ,..., 4, 
t ~,)J~4W3) 

(t1 - td(t2 - LJ’ 

One would expect many cross ratios: 6 for each of the 40 pairs of inter- 
secting liens. Some reflection shows that the lines are more rigid than that. 
Using Manin’s system of graphing the lines (vertices for lines, simplices for 
intersections), we get the graph: 
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We have left out some simplices (the back face connects to the front and 
each face cross-connects to the face two steps back). However, each face is 
a quadritangent, and the cross ratios are calculated on one of the lines 
where four quadritangents hit. 

We have calculated the cross ratios and displayed the results in Table IV. 
It turns out that there are actually only live families of six cross ratios, each 
corresponding to a choice of the faces above. In Table IV we list only one 
representative of each family of six cross ratios. 

The distinct cross ratios define a rational map P’ -+ (PI)“. This map is 
undefined only at the points P,, P,, P,, P, and can be desingularized by 
blowing them up. Let N be the blow up of P2 at these four points. The 
cross-ratios then define a regular embedding of N + (P 1)5. In this sense, N 
may be viewed as the natural completion of the moduli space M. 

The use of cross ratios thus justifies the naive idea that N should 
parametrize V4 surfaces: after all, should not “P’ with live points blown 
up” be described by first blowing up four points (which can be done in 
only one way) to get N and then blowing up an arbitrary point of N? We 
can guess what surfaces should complete the family over N. Timms [ 141 
thought of obtaining V4 surfaces by projecting from points of N. Projecting 
from a general point gives a nonsingular surface; projecting from a general 
point on a line of N gives a surface with one conic node; and projecting 
from the intersection of two lines of N gives a surface with two conic nodes. 
We do not yet know if a family with these properties exists over N. 

We now discuss the action of the Weyl group W(D,). This is the group 
of automorphisms of the lines. It is associated to the Dynkin diagram 

with roots 

rl (e,e2) 

r2 (e2e3) 

r3 quadratic transformation at e, , e,, e3 

r4 (e3e4) 

rs (e4e5). 

It is clear that this acts on M by acting on the Pie P’, and extends to an 
equivariant action on F + M by renaming the lines. In Table V we exhibit 
the action of the simple roots on this family. 
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It is also clear how the action of W(D,) extends to N. The group of 
automorphisms of N is the Weyl group W(A,) associated to 

. ==. 
4 ‘2 ‘4 r3 

The point is that the roots rj (corresponding to the degeneration of three 
points becoming collinear) and t, (corresponding to two points becoming 
coincident) are essentially the same. More precisely, they act the same way 
on A4, hence give the obvious representation W(D,) + W(A,) (Tables 
I-V). 

4. MANIN’S TYPE IV ACTION 

We begin by describing how descent theory will be applied in our 
situation to construct examples of surfaces with specified galois action on 
the lines. We have a universal family F-r A4 of marked E-split de1 Pezzo 
surfaces of degree 4. Suppose now that we are given a k-surface X which is 
split by E/k. Let G = Gal(E/k). 

Choose a marking of the lines on A’,. This determines a unique point 
m E M(E) and a unique E-isomorphism c(: X, -+ F,,,. Now let y E G be 
arbitrary. Then the action of y on X, defines a new naming of the lines, 
hence uniquely determines an E-isomorphism /?: X, -+ FM. Since 
/?cc-‘: F,,, -+ Fe is an E-automorphism of fibres, it extends uniquely to an E- 

TABLE I 

Lines on the Degree 4 de1 Pezzo Surface 

e1 r=O bv=(c-b)u cs = (b-c) t 

e2 u=o bu=(a-b)r at=(b-a)s 

e3 t=O r = s hv=(a+r-h)u 

e4 s=o U=t hv=(a+c-b)r 

es u=o cu=ht ar = bs 

‘t? bv=(a-b)r+(c-b)u c(s-r)=(b-c) t n(t-u)=(b-a)s 

;: 

r=O u=o u=o 
r=O s=o t=O 

i: 

u=t bv=(a+c-b)r-cs bu=(c-b)f 
cu = bt bv = ar - bs u=si-t 

f23 r=s bv=(a+c-b)u-at bv=(a-b)s 

;: 

s=o t=O u=o 
ar = 6s hv = cu - bt r=s+t 

2: 

r=u u=s+t bv=(a+c-b)u 
t=O u=o v=o 

f45 r=O s=o v=o 
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TABLE II 

Quadritangents on the Degree 4 Surface 

ele2fs12 hv = (a-b) r + (c-b) u 
e,e3& C(S-r)=(b-C)f 

ele4di4 bu=(a+c-h)r-cs+(b-c)(l--u) 

eleSdis bco = (c - b)(cu - bt) + c(ur - bs) 
elfdi4fis b(u+c-b)v=(a+c-b)(ur+(c-b)u)-acs+a(b-c)t 
elfi4fi3.fls cs=(b-c)f 
elfisf,3fi,, cs=(u+c-b)r+(h-~)t 
elf34flzf,s bv=ur+(c-b)u 
elf3~fiZ.f,4 h= (c-b) u 
elf45fdi3 r=O 
es3 & bv=(u-b)(r-s)+(a+c-b)u-ul 
w4tzf14 u(t-u)=(b-u)s 
w5 dis abv = (a - b)(ur - bs) + u(cu - bt) 

ezJ&fis al = (b- a) s 
ezfi4fi3fzs b(a+c-b)v=(u+c-b)(cu-(b-a)r)-acf+c(b-u)s 
ezfisf2Ji4 at=(b-u)s+(a+c-b)u 
eJ334f,2f25 bv=(a-b)r+cu 
e2f35f,z.f24 u =O 
e2f45 fizfz3 bv = (a-b) r 
w2d3d bv=(a+c-h)(r-s-I+u) 
w5d3s bcv = (a + c - b)(cu - bt) 
e~fl~f34.f3s bv=(a+c-b)u 
e3fi4fi,f,s bv=(u+c-b)u-at 
e3fisf23f34 bv=(u+c-b)u+u(r-s-r) 
e3fi4fi,f35 l=O 
f3fZ5fi3f34 r=s+ 1 
e3f45fi3f23 r = s 
e4e5 z& abv = (a + c - b)(ur - bs) 

e4fizfJ4f45 ho= (a+~-bh)r 
e4fi3f24f45 s=O 
e4fi5f24f34 u=s+f 
e4f23fi4f45 bv=(a+c-b)r-cs 
e4f2sfi4f34 bv=(u+c-b)r+c(u-s-1) 
e4f35f14fi4 u= I 
e5fi&.65 c =O 
esfi3fz5f45 or= h 
esfi4fisf3s bv = cu-bt 
e&fisf4s h=m-bs 
esfiJisf35 cu=bt 
esfMf,sfis bv=ur-bs+cu-bt 
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TABLE III 

Intersections of Lines on the Degree 4 Surface 

(0: a(b - c): UC: b(a + c-b): (c - b)(a + c-b)) 
(0: b-c: c: 0: 0) 
(0: 0: 0: b: c-h) 
(0: b(b - c): bc: bc: c(c - b)) 
(0: b -c: c: b: c-b) 
(b(u+c-b):ac:c(b-u):O:(a-b)(a+c-b)) 
(0: u: b -a: 0: 0) 
(ah: ah: b(b - a): 0: a(u - b)) 
(b:O:O:O:a-b) 
(b:u:h-a:O:a-h) 
(ab:ub:O:b(a-b):(a-b)(u+c-h)) 
(0: 0: 0: h: a + c - 6) 
(b(u+c-h):h(u+c-h):O:h(u-b):(u-h)(u+c-b)) 
(h: b: 0: 6: a + c-h) 
(1: 1:O:O:O) 
(h(c--b):O:bc:hc:(c-b)(u+c-h)) 
(b(c-h):O:h(u+c-b):b(u+c-h):(c-h)(u+c-h)) 
(h: 0: 0: 0: u + r - b) 
(h:O:b:b:a+c-b) 
(0:O: 1: 1:O) 
(b(b -c): a(b - c): c(u - b): b(u - b): 0) 
(h(b - c): u(h - c): UC: ub: 0) 
(bc: UC: c(h -a): h(b -a): 0) 
(b: a: 0: 0: 0) 
(0: 0: c: h: 0) 
(0: -1: 1:O:O) 
(0:1:0:0:0) 
(0: 0: 1: 0: 0) 
(0: 0: 0: 0: 1) 
(0: 0: 0: b: c) 
(0: 0: 0: 1: 0) 
(b(c-h):b(c-b):b(u-b):b(u-b):(u-h)(c-b)) 
(b? ub: b(b - a): b(b - a): (c - b)(b - a)) 
(c:a+c-b:O:O:O) 
(b(b ~ c): b(b - c): bc: bZ: (b -a)(~ ~ b)) 
(b: 0: 0: 0: a) 
(b:b-c:c:h:u+c-b) 
(0: 0: a + c - b: a: 0) 
(1: 0: 0: 0: 0) 
(b:u:b-u:b:u+c-b) 
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TABLE IV 

Cross Ratios of Degree 4 Surfaces 

Pairs of Intersecting Lines Cross Ratio 

automorphism f: F-t F of the entire family, with f E W(D,). The first 
observation is that, on M, we have r(m) = ti. (The renaming of lines of the 
surface comes from conjugating the equations, which means conjugating 
the parameters.) This allows us to determine which E-points of M permit 
E-automorphisms for descent to k. To then find the k-equations of the 
descended surface, we make the linear action r agree with the galois action 

The particular action we are interested in is number IV in Manin’s list 
[IS]. The orbits of the lines consist of eight pairs of intersecting lines. We 
may assume that the galois group of the splitting extension is L/2& with 
nontrivial element acting through 

Manin has shown that H’(G, Pic(X,)), for a surface with this action, is 
isomorphic to Z/22@ Z/22. Since a detailed description of this group is 
essential to an explicit calculation of the group of zero cycles on these sur- 
faces, we give a proof of this result. 

PROPOSITION 4.1. Let X be a k-rational de1 Pezzo surface of degree 4 
with quadratic splitting field E and galois group (y ) = G. Then 

H’( G, Pic( X,)) z Z/22 @ Z/22. 
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TABLE V 

Action of the Weyl Group 

Root Action on moduli space 

Linear action on P4 

rl = (ele2) (a: b: c) -+ (b-c: 6: b-a) 

c(c-b) 0 0 0 b(c-b) 

(a+c-b)(c-b) (b-c)(a-b) 
0 0 (b-&h) (a-b)(:+c-b) $1:; 
0 0 0 a(a-b) b(a-b) 
0 0 0 0 (a-b)(c-b) i 

(a: b: c) + (a+c-b: c: b) 

0 0 0 0 
0 0 0 b 
0 0 b -b 
b b 0 0 
C 0 0 0 

r3 = quadratic (a: b: c) + (ac: (a-b)c: (a-b)b) 

i 

-b=c b=c abc -b2(a+c-b) (a-b) bc 
0 b2c abc - abc 0 
0 0 

(a -:) bc 
(a-b)bc 0 

0 0 0 
0 0 (a-b)(a+c-b)c -b(a-b)(a+c-b) (a -45)% i 

r4 = (w-d (a: b: c) --t (b-a: b: b-c) 

0 0 c(c - b) b(c-b) 
0 (b-a)(c-b) (c-b)(a+c-b) b(c-b) 

(b-a)(c-b) 0 0 b(a - b) 
0 0 0 b(a-b) 
0 0 0 (a-b)(c-b) i 

~5 = (v5) (a: b: c) + (nc: (a-b) c: (a-b) b) 

b2c 0 0 0 
abc -(aOh)bc 0 0 0 

(b-a)bc (a-b)bc (a-b)bc 0 0 
bZc 0 0 (u-b) b2 -bc(a-b) 

bc(a+c-b) 0 0 0 -?(a-b) 
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Proof. We begin by choosing a G-invariant set of divisors which 
generates the Picard group. Take 

Let L be the free abelian group on this set. Define the set R of relations by 
the exact sequence 

0 + R -+ L + Pic(X,) + 0. 

Then R is generated by the G-invariant elements 

d=e3+f3,-e4 -f45 

* = e2 +frs - e4 -f45. 

Since L is a free Z[G] module, it is clear that H’(G, L) = 0 for all i > 0. 
So, the cohomology of the above exact sequence gives an isomorphism 

H’(G, Pic(X,))zH2(G, R)= RG/N(R). 

But, as we saw above, R = R”. The norms are 

N(d) = 24 

NC+) = W 

So, H’(G, Pit X,) z Z/22 @ Z/2& with generators 4, $, 

Remark. We may think of 4, $ as rational functions with the specified 
divisors. Then the injection R --f E(X)*/E* allows us to interpret elements 
of H*(G, R) as Azumaya algebras on X. Suppose now that k is a local field. 
As we have seen, zero cycles x-y of degree zero are tested by pairing 
against elements of H*(G, R). In this case, pairing reduces to looking at 

0) and 44x) . - - 
4(Y) Ii/(Y) 

m k*/NE* = H2(G, E*) = Z/2H. 

We now return to the problem of constructing type IV surfaces. We first 
determine which E-points of P2 can give rise to such surfaces. 

LEMMA 4.2. Let m E P2(E) be such that F,,, is E-isomorphic to the exten- 
sion of a k-surface X of type IV. Then m is actually a k-rational point. 

Proof. From Table IV of Section 3, we see that the element I’e W(D,) 
representing the type IV action must fix all the cross ratios. If we let 
y~Gal(E/k) be the nontrivial element, then r(m) = r(m) =m. So, m is 
actually a k-point. 
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Now fix a k-point m = (a: 6: c) E M. The next step is to determine the E- 
automorphism r which has the right action on the lines. We use the fact 
that linear maps of P4 are determined by their action on the points 

f24nf35, fi2nf35, fi2nf&, fi3nfd5, fi3nh4, e3nf35r fiznf34, e4nfd5, 
fi3 nfis. A glance at Table III reveals that these points are chosen to make 
calculation of the matrices extremely easy. Since we know explicitly the 
action on the points, straightforward calculation shows that r is represen- 
ted by the action of the following matrix on P4 

0 1 1 -1 0 

0 1 0 0 0 

Z-= 0 0 1 0 0 

-1 1 1 0 0 

a+c-ba+c-b a+c-b a+c-b 
b b h b 

1 

PROPOSITION 4.3. Let E = k(Jd). Every E-split k-surface of type IV is 
k-isomorphic to one defined by 

a(dR* - T*) = b( Vs S)(S+ U) 

c(dR* - S2) = b( V+ T)( T- U). 

Proof: By descent theory, the k-forms of an E-split type IV surface E- 
isomorphic to F,,, are classified by H’( G, Aut E( F,,,)) = Z/22, where 
m = (a: b: c) is a k-point. The nontrivial form associated to F, is found by 
imposing the condition Z(p) =p, where r is the above matrix and p +p is 
the nontrivial element of G = Z/22. This leads to the system of equations 

r=s+t--u 

s = s 

t=t 

ii=s+t-r 

c= a+c-b 
b 

(s+t-r-u)+v. 

In addition to the rationality of s and t, these equations imply 

b f-r=ij-u= 
a+c-b 

(V-o) 
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and 
f+r+ii+u=2(s+t). 

This set of conditions is met by the change of variables 

r=T+JdR 

s=S+U 

t=T-U 

u=S+,lrdR 

bl:=cS+aT+bV+(afc-b)JdR 

which leads to the above set of equations. 
The subgroup (y ) is invariant under conjugation by the group S4 of 

permutations of {e e I, 2, e3, e4}. So, renaming the lines by any permutation 
in this S, yields a k-isomorphism of type IV surfaces listed in Proposition 
4.3. The moduli space of E-split type IV k-surfaces should therefore be 
thought of as the quotient of N by S,. Type IV surfaces can thus 
degenerate in three ways, by (a: b: c) moving 

(e) to one of the lines e,, 

(f) to one of the linesf,,, 

(p) to an intersection point einfij. 

For calculation purposes, we may choose to which of the lines ei or f, 
the point (a: b: c) degenerates. 

Recall that equivalence of points is tested by evaluation at the rational 
functions (with divisors): 

t T-U 
F=-=.-.-- 

s s-i-u (e3 +.f35 - e4 -f&l 

G=at+(a-b)s=a(S+T)-b(S+U) 
s St-U (e2 +f25 - e4 -f45 1. 

To see what values may be taken on by these functions, we first make 
the substitution 

T- U= &S+ U). 

The pair of equations becomes 

a(dR2-T2)=1+d “(V+S)(S+T) 

c(dR*-S2)= 1 +~ *(V+ T)(S+ T). 
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Eliminate R from the equations and cancel a common factor of S + T. 
Then, 

b(&-c) V=(C+C$-bqi)uT+(b-a-ab)cS. 

Substituting in the first equation, we find 

(1 + +)(a4 - c)(dR’ - T’) = (64 - c - cb)(S’ - T2) 

or 

(1+4)(4-c) 
b4-c-c4 1 [ dR*+ 1-(1+4wd-c) 

b4-c-c4 1 T2 = S2. 

This conic has a k-rational point, and hence the surface on which it lies has 
a k-point x with F(x) = 4, and only if 

We now do the same analysis for the rational function G. Set 

rI/(S+ V)=a(T+S)-b(S+ U). 

Then 

dR2- T2=w +V+S)(S+T) 

dR2-S2=b(b+*-a)(V+T)(S+T). 
4b + $1 

Again eliminating R2 and dividing by S+ T gives 

b(b+t,G-a-c) V=(cb+c+b2-b$+ab) T-$cS. 

After substituting in the first equation, we find 

(b+$)(b+II/-u-c) 
b(b-a-c)+$(b-c) 1 [ dR2+ 1- (b+cl/)(b+ti-a-c) 

b(b - a - c) + @(b-c) 1 T2 = S2. 

Hence, there is a k-point with G(x) = $ if and only if 

W-b-+) 
y=b(b-a-c)+t//(b-c)ENE*’ 
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Finally, we run through this calculation for the quotient 

G -= a(S+ T)-b(S+ U)=a(T- U)+(a-b)(S+ U) 
F T-U T-U 

We replace U using the relation 

(x - a)( T- U) = (b - a)(S + U). 

After eliminating R2 and dividing by S + T we are left with 

b[a(u + c-b) - q] I/= u[q - b(u + c-b)] TS q(b - a) S. 

Substituting for V, the first equation becomes 

(l-X)dR2+XT2=S2 

with 

So, there is a point x on X with (G/F)(x) = x if and only if XE NE*. 
Now specialize to the case of k a nonarchimedean (characteristic zero) 

local field with residue characteristic > 2. Assume that E/k is an unramified 
quadratic extension. A type IV surface has bad reduction if and only if the 
parametrizing point specializes onto one of the lines of N. We will refer to 
surfaces of type IVe, IVf IVp according to the type of bad reduction. 

THEOREM 4.4. Let E = k(s) b e an unrumified extension of local fields. 
Let X be an E-split k-surface of type IVf: Then A,(X) = BJ2Z. 

Proof Take a pair of lines Y on X which are interchanged by the 
Galois action. Firstly, their intersection point is a rational point on X. 
Next, there is a one-dimensional family of hyperplanes in P4 containing Y. 
This pencil gives a conic bundle structure on X with few bad libres. We can 
thus apply the result of Colliot-Thtlene and Coray [4] that A,(X) is 
generated by differences of rational points. So it is enough to use the 
criteria determined above regarding the possible values of F, G. Observe 
that A E k* is a norm only if u(A) is even, where u is the usual valuation 
on k. 

Since X has type IVf reduction, we may assume that u(b) >O and 
u(a) = v(c) = 0. That is, we let (a: b: c) specialize onto fi2. We claim first 
that the rational function F does not distinguish between points on X, 
so that A,(X) is at most H/2Z. Now F takes on the value 4 iff v(Q) is 
even. But u(d) # 0 forces u(G) = o(4). This is true since 
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@ = +(b - a - a#)/(&$ - c - c#) and both expressions in parentheses are 
units. This means that every rational point x E X satisfies 

v(F(x)) = v(t)) = v(Q) = 0 mod 2. 

We now know that equivalence of points on X is tested by the rational 
function G. Suppose $ E k* is such that 0 d v($) d u(b). If a($) = u(b), take 
tj so that 

v(b(b-a-c)+J/(b-c))=v(lj). 

Then 

u(y)=v 
$(a-b-ICI) * . unit 

b(b-a-c)+lj(b-c) b. unit + $. unit 
= 0. 

So, there are points on X taking on all values 0 < v($) d v(b). In particular, 
u(G(x)) = a($) takes on both odd and even values, so that A,,(X) = Z/22. 

The situation is more complicated for surfaces of type IVe and IVp as 
A,(X) depends on the parity of the valuations of the parameters. By per- 
muting eis, we may assume that IVe and IVp surfaces arise because the 
parameters satisfy 

0 = v(c) < v(b) = v(b - a) d v(u). 

Using this model, we have 

THEOREM 4.5. Let X be a type IV surface split by E/k, an unramified 
quadratic extension of local fields. Then 

A,,(X) = Z/2H v(b) even < v(a) 

=Z/2HOZ/2H v(b) odd < v(u) 

=o v(b) even = v(u) 

=n/2n0nf22 v(b) odd = v(a). 

Proof: Observe that 

ifd= -1 then v(Q)=0 

if+=1 then v( ul) = 0 

ifX= 1 then u(X) = 0. 

So, to find different classes of points on the surface, we must find values for 
~5, Ic/, x with odd valuations which make v(Q), v(Y), v(X) even. 
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We claim first that if u($) # u(b), then v(Y) = u($). This follows because 

o(a - b - $) = u(b + $) 

=v((b-c)(b+$)-ab) 

= u(b(b - a - c) + $(b - c)). 

So, given any rational point x E X with u(G(x)) = u($) # u(b), we find that 
u($) is even. If u(b) is actually even, then u($) takes on only even values 
and A,(X) is at most H/27. If u(b) is odd, however, take II/ so that 
u(b + J/)%0. Then 

u(Y) = u(at,h/ab) = u(t,h) -u(b) = 0. 

In this case, u(JI) takes on odd values and A,(X)xE/2Z. 
Now turn to the values of 44). If u(d)>09 then 

u(Q) = ~(4) + u(b - a - ar$) = u(4) + u(b). If u(b) is odd, then all positive 
odd values of u(4) correspond to rational points on X. This contributes 
another factor of Z/22 to the group of zero cycles. To complete the odd 
cases of the theorem, we must check that the rational functions F and G 
(and their values 4, $) do not encode the same information. That is, we 
must see that the ratio G/F is not always a norm. It suffices, therefore, to 
check that u(x) takes on odd values. If u(a) is odd, choose 1 so that 
o(x - a) = u(x) + 1. Then 

u(X)=u(~)-U(X-a)-o(q+b(b-a-c)) 

= u(x) - u(x) - 1 -u(b) 

= -1 -u(b) 

which is even. On the other hand, if u(a) is even, take u(x) > u(u) and odd, 
so that 

u(X) = u(x) - u(u) - u(b) 

is again even. 
We may now assume u(b) is even. We have seen that u($) is always even, 

so that A,(X) c Z/22 and equivalence of points is tested by u(4). We have 
also seen that u(b) > 0 forces u(B) = u(h) + u(b) and therefore positive u(d) 
are always even. So, suppose u(d) < 0. Then 

uGr+u,,+u(yL). 
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If u(a) = u(b)= o(b - a), then v(Q) < = ~(4) + u(a) = v(d) + u(b). Since 
o(b) is even, this forces ~(4) to be even and A,(X)=O. If, however, 
u(a)>v(b), choose q5 so that v(d)= -1 and o((b-a)/#- l)=u(b-a)+ 1. 
Then u(Q) = u(b - a) is even, and A,(X) = Z/2H. 
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