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Introduction

A commutative 2-cocycle on a Lie algebra L over a field K is a symmetric bilinear form ϕ : L× L → K
satisfying the cocycle equation

ϕ
([x, y], z

) + ϕ
([z, x], y

) + ϕ
([y, z], x

) = 0 (1)

for any x, y, z ∈ L. Commutative 2-cocycles appear at least in two different contexts. First, they appear
in the study of nonassociative algebras satisfying certain skew-symmetric identities. It turns out that
all skew-symmetric identities of degree 3 reduce to a number of identities, among which

[a,b]c + [b, c]a + [c,a]b = 0

and
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a[b, c] + b[c,a] + c[a,b] = 0

play a prominent role (here multiplication in an algebra is denoted by juxtaposition, and [a,b] =
ab − ba). Algebras satisfying both these identities are dubbed two-sided Alia algebras in [D3,DB]. Note
that the class of two-sided Alia algebras contains both Lie algebras and Novikov algebras (for the
latter, see the end of Section 2), so it appears to be a natural and interesting class of algebras to
study.

Moreover, it is easy to see that an algebra A is two-sided Alia if and only if the associated “minus”
algebra A(−) with multiplication defined by the bracket [·,·], is a Lie algebra (in other words, A is
Lie-admissible), and multiplication in A can be written as

ab = [a,b] + ϕ(a,b), (2)

where ϕ is an A(−)-valued commutative 2-cocycle on A(−) .
Note, however, that also any commutative (nonassociative) algebra is two-sided Alia, so the ques-

tion of description of simple algebras in this class does not make much sense without imposing
additional conditions. One such natural condition is, in a sense, opposite to the condition of commu-
tativity of A – namely, that the Lie algebra A(−) is simple. In this way we arrive to the problem of
description of commutative 2-cocycles on simple Lie algebras.

Second, commutative 2-cocycles appear naturally in the description of the second cohomology of
current Lie algebras [Zu3, Theorem 1]. All this, as well as a sheer curiosity in what happens with
the usual second Lie algebra cohomology when we replace the condition of the skew-symmetricity of
cochains by its opposite – symmetricity – makes them worth to study.

It is worth to note that this situation is similar (and somewhat dual) to a question which goes back
to A.A. Albert and was a subject of an intensive study later, namely, determination of Lie-admissible
third power-associative algebras A whose “minus” algebra A(−) belongs to some distinguished class
of Lie algebras, such as finite-dimensional simple Lie algebras, or Kac–Moody algebras. It is easy to
see that in terms of decomposition (2), for a given Lie algebra L = A(−) the third power-associativity
implies the condition

[
ϕ(x, y), z

] + [
ϕ(z, x), y

] + [
ϕ(y, z), x

] = 0

for any x, y, z ∈ L (see, for example, [Be, p. 39]). The latter condition, together with (1), could be
viewed as two parts of the usual 2-cocycle equation on a Lie algebra with coefficients in the adjoint
module.

Of course, the very definition of commutative 2-cocycles begs for a proper generalization – to
define higher cohomology groups such that commutative 2-cocycles constitute cohomology of low
degree. However, all “naive” attempts to construct such higher cohomology seemingly fail. Maybe it
could be developed in the framework of operadic cohomology of two-sided Alia algebras.

The contents of the paper are as follows. In Section 1 we exhibit an exact sequence relating com-
mutative 2-cocycles and so-called antiderivations, similar to the well-known relationship between the
second cohomology and derivations with values in the coadjoint module. In Section 2 we prove that
in the class of simple Lie algebras the property to possess nonzero commutative 2-cocycles is equiv-
alent to the property to satisfy the standard identity of degree 5. In the class of finite-dimensional
simple Lie algebras, this provides yet another characterization of sl(2) and the modular Zassenhaus
algebra. We also compute the space of commutative 2-cocycles on the Zassenhaus algebra, and note
how this may be utilized in classification of simple Novikov algebras. Section 3 is devoted to some
speculations about the characteristic 3 case. In Section 4 we establish formula expressing the space
of commutative 2-cocycles on current Lie algebras in terms of its tensor factors, similar to the known
formula for the second cohomology. In the next two sections that formula is applied to compute the
space of commutative 2-cocycles for various classes of Lie algebras: Kac–Moody algebras in Section 5,
and modular semisimple Lie algebras in Section 6.
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Not surprisingly, the study of commutative 2-cocycles turns out to be similar in some aspects to
the study of the second cohomology of Lie algebras, with some results having direct counterparts.
There are, however, also significant differences: for example, in the class of simple Lie algebras and
close to them, non-trivial commutative 2-cocycles turns out to be a very rare phenomenon.

Notation and conventions

Throughout the paper, all algebras and vector spaces are defined over a ground field K of charac-
teristic �= 2,3, except in Section 3.

For a given Lie algebra L, the space of all commutative 2-cocycles on it will be denoted as
Z 2

comm(L). Occasionally, we will consider the M-valued commutative 2-cocycles, that is, bilinear forms
L × L → M , where M is an L-module (or, rather, just a vector space), satisfying the cocycle equa-
tion (1). It is immediate that if either L or M is finite-dimensional, then the space of all such cocycles
is isomorphic to Z 2

comm(L) ⊗ M .
Recall that a Lie algebra L is called perfect if [L, L] = L. Obviously, a symmetric bilinear form on

L that vanishes whenever one of the arguments belongs to [L, L], is a commutative 2-cocycle. Such
cocycles will be called trivial and they exist on any non-perfect Lie algebra. The space of trivial com-
mutative 2-cocycles is isomorphic to S2(L/[L, L])∗ .

The rest of our notation and definitions is mostly standard.
Hn(L, M) and Zn(L, M) denote the usual Chevalley–Eilenberg nth order cohomology and the space

of nth order cocycles, respectively, of a Lie algebra L with coefficients in a module M .
When being considered as an L-module, the ground field K is always understood as the 1-

dimensional trivial module.
HC1(A) denotes the first order cyclic cohomology of an associative commutative algebra A. Recall

that it is nothing but the space of all skew symmetric bilinear forms α : A × A → K such that

α(ab, c) + α(ca,b) + α(bc,a) = 0

for any a,b, c ∈ A. Note an obvious but useful fact: if A contains a unit 1, then α(1, A) = 0 for any
α ∈ HC1(A).

Der(A) denotes the Lie algebra of derivations of A.
For an associative algebra A, we may consider associated Lie [·,·] and Jordan ◦ products on A:

[a,b] = ab − ba and a ◦ b = ab + ba for a,b ∈ A. The vector space A with the bracket [·,·] forms a Lie
algebra which is denoted as A(−) .

For a vector space V , S2(V ) and ∧2(V ) denote the symmetric and skew-symmetric product re-
spectively (so, the space of symmetric, respectively skew-symmetric bilinear forms on V is isomorphic
to S2(V )∗ , respectively to ∧2(V )∗).

Other nonstandard notions (antiderivations, cyclic forms) are introduced in Section 1.

1. An exact sequence connecting commutative 2-cocycles and antiderivations

A relationship between the second cohomology with coefficients in the trivial module H2(L, K ),
and the first cohomology with coefficients in the coadjoint module H1(L, L∗) was noted many times
in slightly different forms in the literature, and goes back to the classical works of Koszul and
Hochschild–Serre. Namely, there is an exact sequence

0 → H2(L, K )
u−→ H1(L, L∗) v−→ B(L)

w−→ H3(L, K ). (3)

Here B(L) denotes the space of symmetric bilinear invariant forms on L. The maps are defined as
follows: for the representative ϕ ∈ Z 2(L, K ) of a given cohomology class, we have to take the class of
u(ϕ), the latter being given by

(
u(ϕ)(x)

)
(y) = ϕ(x, y) (4)
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for any x, y ∈ L, v is sending the class of a given cocycle d ∈ Z 1(L, L∗) to the bilinear form
v(d) : L × L → K defined by the formula

v(d)(x, y) = d(x)(y) + d(y)(x),

and w is sending a given symmetric bilinear invariant form ϕ : L × L → K to the class of the cocycle
ω ∈ Z 3(L, K ) defined by

ω(x, y, z) = ϕ
([x, y], z

)
(5)

(see, for example, [D2], where a certain long exact sequence is obtained, of which this one is the
beginning, and references therein for many earlier particular variations; this exact sequence was also
established in [NW, Proposition 7.2] with two additional terms on the right).

The following is a “commutative” version of this exact sequence, connecting commutative 2-
cocycles and antiderivations.

Definition. An antiderivation of a Lie algebra L to an L-module M is a linear map d : L → M such that

d
([x, y]) = y • d(x) − x • d(y)

for any x, y ∈ L, where • denotes the L-action on M . The set of all such maps will be denoted as
ADer(L, M).

When M = L, the adjoint module, we get the notion of an antiderivation of a Lie algebra (to itself)
with the defining condition

d
([x, y]) = −[

d(x), y
] − [

x,d(y)
]
,

what was the subject of study in a number of papers, including [F].
The third ingredient in our exact sequence, a counterpart of symmetric bilinear invariant forms, is

defined as follows.

Definition. A bilinear form ϕ : L × L → K is said to be cyclic if

ϕ
([x, y], z

) = ϕ
([z, x], y

)
(6)

for any x, y, z ∈ L. The space of all cyclic skew-symmetric bilinear forms on a Lie algebra L will be
denoted as C(L).

Proposition 1.1. For any Lie algebra L, there is an exact sequence

0 → Z 2
comm(L)

u−→ ADer
(
L, L∗) v−→ C(L)

where the map u is defined by formula (4), and v is sending a given antiderivation d ∈ ADer(L, L∗) to the
bilinear form v(d) : L × L → K defined by the formula

v(d)(x, y) = d(x)(y) − d(y)(x).
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Proof. If ϕ ∈ Z 2
comm(L), then the cocycle equation yields

(
u(ϕ)

([x, y]))(z) = ϕ
([x, y], z

) = −ϕ
(
x, [y, z]) + ϕ

(
y, [x, z])

= (
y • u(ϕ)(x)

)
(z) − (

x • u(ϕ)(y)
)
(z)

for any x, y, z ∈ L, where • denotes the standard L-action on L∗ , i.e. u(ϕ) ∈ ADer(L, L∗).
If d ∈ ADer(L, L∗), then v(d) is obviously skew-symmetric, and

v(d)
([x, y], z

) = d
([x, y])(z) − d(z)

([x, y])
= −d(x)

([y, z]) + d(y)
([x, z]) − d(z)

([x, y]) = d
([z, x])(y) − d(y)

([z, x])
= v(d)

([z, x], y
)

for any x, y, z ∈ L, i.e. v(d) ∈ C(L).
Now let us check exactness. Obviously, u is injective, so the sequence is exact at Z 2

comm(L). Next,
Im u consists of all antiderivations d ∈ ADer(L, L∗) such that the bilinear form (x, y) 	→ d(x)(y) sat-
isfies the cocycle equation, what is equivalent to d being antiderivation, and is symmetric, what is
equivalent to d(x)(y) = d(y)(x) for any x, y ∈ L. But the latter condition is equivalent to d belonging
to Ker v , hence Im u = Ker v and the sequence is exact at ADer(L, L∗). �

Unfortunately, we do not know how to extend this exact sequence further. The map defined by
the formula (5) maps C(L) to the space of skew-symmetric trilinear forms L × L × L → K , but the
resulting images are neither Chevalley–Eilenberg (or Leibniz) cocycles, nor do they satisfy any other
natural condition. Obviously, this is related to the difficulty to define higher analogs of commutative
2-cocycles.

Another difficulty is related to the fact that C(L) turns out to be not a very fascinating invariant of
a Lie algebra: it vanishes in the most interesting cases.

Lemma 1.2 (Referee). If L is a perfect Lie algebra, then C(L) = 0.

Proof. For any ϕ ∈ C(L), and any x, y, z, t ∈ L, we have

ϕ
([[x, y], z

]
, t

)
(Jacobi identity) = −ϕ

([[z, x], y
]
, t

) − ϕ
([[y, z], x

]
, t

)
(cyclicity of ϕ) = −ϕ

([y, t], [z, x]) − ϕ
([x, t], [y, z])

(skew-symmetry of ϕ) = −ϕ
([x, z], [y, t]) + ϕ

([y, z], [x, t])
(cyclicity of ϕ) = −ϕ

([[y, t], x
]
, z

) + ϕ
([[x, t], y

]
, z

)
(Jacobi identity) = ϕ

([[x, y], t
]
, z

)
(cyclicity of ϕ) = ϕ

([
z, [x, y]], t

)
= −ϕ

([[x, y], z
]
, t

)
.

Therefore, ϕ([[L, L], L], L) = 0, and the asserted statement follows. �
The exact sequence (3) was utilized many times in the literature to evaluate H2(L, K ) basing on

H1(L, L∗) (see, for example, references in [D2]). We will utilize Proposition 1.1 in a similar way. For
this, we shall need to establish some facts about antiderivations of Lie algebras, what is done in the
next section.
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2. Simple Lie algebras

In [F], Filippov obtained many results about Lie algebras possessing a nonzero antiderivation.
A slight modification of his reasonings allows to extend some of these results to antiderivations with
values in a Lie algebra module.

Recall the standard identity of degree 5 in the class of Lie algebras:

∑
σ∈S4

(−1)σ
[[[[y, xσ (1)], xσ (2)

]
, xσ (3)

]
, xσ (4)

] = 0, (7)

where the summation is performed over all elements of the symmetric group S4. The word at the
left side of (7) will be denoted as s4(x1, x2, x3, x4, y). For a Lie algebra L, let s4(L) denote the linear
span of values of this word for any x1, x2, x3, x4, y ∈ L. By the general result about verbal ideals (see,
for example, [AS, Chapter 14], Theorem 2.8 and remark after it), s4(L) is an ideal of L.

Lemma 2.1. If a Lie algebra possesses nonzero commutative 2-cocycles, then it has a nonzero homomorphic
image satisfying the standard identity of degree 5.

Proof. If a Lie algebra L possesses nonzero commutative 2-cocycles, then by Proposition 1.1, L pos-
sesses a nonzero antiderivation to its coadjoint module. By [Zu4, Lemma 4.4] (which is just a slight
generalization of [F, Theorem 4]), s4(L) lies in the kernel of this antiderivation, and hence is a proper
ideal in L. The required homomorphic image is L/s4(L). �
Lemma 2.2. A Lie algebra with a subalgebra of codimension 1 which is not an ideal, possesses nonzero com-
mutative 2-cocycles.

Proof. Let S be a subalgebra of codimension 1 in a Lie algebra L. Pick x ∈ L\S and let f : S → K be a
linear map such that [x, y] ∈ f (y)x + S for any y ∈ S . The Jacobi identity implies f ([S, S]) = 0. Since
S is not an ideal in L, f is nonzero. It is easy to see that any bilinear map ϕ : L × L → K satisfying
the conditions

ϕ(S, S) = 0, ϕ(x, y) = ϕ(y, x) = f (y)

for y ∈ S , is a commutative 2-cocycle (in fact, the cocycle equation in that case is equivalent to the
Jacobi identity; ϕ(x, x) can take any value). �
Theorem 2.3. A simple Lie algebra possesses nonzero commutative 2-cocycles if and only if it satisfies the
standard identity of degree 5.

Proof. The “only if” part follows from Lemma 2.1.
The “if” part. Suppose a simple Lie algebra L satisfies the identity of degree 5. By Razmyslov’s

characterization of such algebras [R, Proposition 46.1], there exists a field extension F of the centroid
C of L such that the Lie F -algebra L ⊗C F contains a subalgebra of codimension 1, and, by Lemma 2.2,
possesses nonzero commutative 2-cocycles. As the space of commutative 2-cocycles is obviously pre-
served under the ground field extension, the Lie C-algebra L ⊗K C possesses nonzero commutative
2-cocycles. Each such cocycle, being restricted to L, gives rise to a nonzero bilinear K -map L × L → C ,
which is a commutative C-valued 2-cocycle on L. �

Using other characterizations of simple Lie algebras satisfying the standard identity of degree 5, it
is possible to give an alternative proof of the “if” part of Theorem 2.3 in the case where the ground
field has positive characteristic. Namely, according to [R, Theorem 46.2], each simple Lie algebra of
dimension > 3 over the field of positive characteristic, satisfying the standard identity of degree 5,
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can be represented as a derivation algebra A∂ = {a∂ | a ∈ A} of an associative commutative algebra A
with unit, generated as an A-module by a single derivation ∂ ∈ Der(A). In addition, A does not have
∂-invariant ideals. For such algebras, we have

Lemma 2.4. A∗ is embedded into Z 2
comm(A∂).

Proof. Consider the map F : A → A∂ defined by a 	→ a∂ for a ∈ A. The kernel of this map is a ∂-
invariant ideal of A, and hence this map is injective.

For any χ ∈ A∗ , define the map Φ(χ) : A∂ × A∂ → K as Φ(χ)(a∂,b∂) = χ(ab) for a,b ∈ A. This
map is well defined due to injectivity of F and is a commutative 2-cocycle:

Φ(χ)
([a∂,b∂], c∂

) + Φ(χ)
([c∂,a∂],b∂

) + Φ(χ)
([b∂, c∂],a∂

)
= Φ(χ)

((
a∂(b) − b∂(a)

)
∂, c∂

) + Φ(χ)
((

c∂(a) − a∂(c)
)
∂,b∂

)
+ Φ(χ)

((
b∂(c) − c∂(b)

)
∂,a∂

)
= χ

(
ac∂(b)

) − χ
(
bc∂(a)

) + χ
(
bc∂(a)

) − χ
(
ab∂(c)

) + χ
(
ab∂(c)

) − χ
(
ac∂(b)

) = 0

for any a,b, c ∈ A. It is obvious that Φ is injective. �
Corollary 2.5. A finite-dimensional central simple Lie algebra possesses nonzero commutative 2-cocycles if
and only if it is isomorphic either to a form of sl(2) or, in the case where the characteristic of the ground field is
positive, to the Zassenhaus algebra W1(n).

Proof. Obviously, we may pass to the algebraic closure of the ground field. Finite-dimensional simple
Lie algebras over an algebraically closed field satisfying the standard identity of degree 5, are precisely
sl(2) and the Zassenhaus algebra. This well-known fact can be derived in several ways, perhaps the
easiest one is to invoke once again [R, Proposition 46.1] to establish that such Lie algebras have a
subalgebra of codimension 1, and then refer to the known classification of such algebras (see, for
example, [E] and references therein). �

This generalizes [DB, Theorem 1.1], where the same result is proved for Lie algebras of classical
type by performing computations with the corresponding root system. Another proof for such Lie
algebras could be derived by combining results of [L,Zu3]. In a sense, root space computations in [DB]
are equivalent to the appropriate part of computations in [L].

Note that the same reasoning (Theorem 2.3 coupled with Razmyslov’s results) shows that among
infinite-dimensional Lie algebras of Cartan type, only the Witt algebra possesses nonzero commuta-
tive 2-cocycles. The latters are described in [D3, Theorem 6.7]. Another important class of infinite-
dimensional Lie algebras – Kac–Moody algebras – is treated in Section 5.

The 3-dimensional algebra sl(2) and the Zassenhaus algebra are characterized among simple finite-
dimensional Lie algebras in various interesting ways: these are algebras having a subalgebra of codi-
mension 1, algebras having a solvable maximal subalgebra (see [S, Corollary 9.1.0]), algebras with
certain properties of the lattice of subalgebras (see, for example, [BTW] and references therein), alge-
bras having non-trivial δ-derivations [Zu4, §2], etc. Corollary 2.5 adds another characterization to this
list.

Of course, it is interesting to compute exactly the space of commutative 2-cocycles on these
algebras. As noted in [D3, Theorem 6.5], Z 2

comm(sl(2)) forms a 5-dimensional hyperplane in the
6-dimensional space of symmetric bilinear maps ϕ : sl(2) × sl(2) → K , determined by the equation

ϕ(h,h) = 2ϕ(e−, e+)

in the sl(2)-basis {e−, e+,h} with multiplication table [h, e±] = ±e± , [e−, e+] = h.
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The famous Zassenhaus algebra W1(n) can be realized in two different ways. One realization is
the algebra of derivations of the divided powers algebra O 1(n) = {xi | 0 � i � pn−1}, where p is the
characteristic of the ground field, with multiplication given by

xi x j =
(

i + j

j

)
xi+ j,

of the form O 1(n)∂ , where the derivation ∂ ∈ Der(O 1(n)) acts as follows: ∂(xi) = xi−1. Another real-
ization is the algebra with the basis {eα | α ∈ G}, where G is an additive subgroup of order pn of the
ground field K , with multiplication

[eα, eβ ] = (β − α)eα+β (8)

for α,β ∈ G . We formulate the result in terms of the first realization, but perform actual computations
with the second one.

Proposition 2.6. Z 2
comm(W1(n)) 
 O 1(n)∗ , each cocycle being of the form

(a∂,b∂) 	→ f (ab)

where a,b ∈ O 1(n), for some f ∈ O 1(n)∗ .

Proof. The proof consists of straightforward computations reminiscent both the computation of the
second cohomology of W1(n) in [Bl, §5] and computation of the space of commutative 2-cocycle on
the infinite-dimensional Witt algebra in [D3, Theorem 6.7].

Let ϕ ∈ Z 2
comm(W1(n)). Writing the cocycle equation in terms of the basis with multiplication (8)

for e0, eα, eβ , where α,β ∈ G such that α �= β , we get

ϕ(eα, eβ) = ϕ(e0, eα+β). (9)

Now, taking this into account, and writing the cocycle equation for eα, eβ, eα+β , where α,β ∈ G such
that α,β �= 0, we get

ϕ(eα+β, eα+β) = ϕ(e0, e2α+2β).

Consequently, (9) holds for any α,β ∈ G . Conversely, each symmetric bilinear map satisfying the con-
dition (9) is easily seen to satisfy the cocycle equation. Each such map can be decomposed into the
sum of the maps of the form

(eα, eβ) 	→
{

1, α + β = γ ,

0, otherwise

for each γ ∈ G . Thus we get |G| = pn linearly independent cocycles, so the whole space Z 2
comm(W1(n))

is pn-dimensional. Now, switching to the first realization as derivation algebra of O 1(n), applying
Lemma 2.4 and comparing dimensions, we see that the embedding of Lemma 2.4 is an isomorphism
in this particular case. �

Note that the results of this section allow to provide a somewhat alternative way for classification
of finite-dimensional simple Novikov algebras. Recall that an algebra is called Novikov if it satisfies
the identities
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x(yz) − (xy)z = y(xz) − (yx)z

and

(xy)z = (xz)y.

Novikov algebras are ubiquitous in various branches of mathematics and physics (see [Bu,O,Ze] with
a transitive closure of references therein).1

A well-known important fact is that each Novikov algebra A is Lie-admissible, i.e., A(−) is a Lie
algebra. In [Ze], Zelmanov proved that finite-dimensional simple Novikov algebras over a field of char-
acteristic zero are 1-dimensional (i.e., coincide with the ground field), and in [O], Osborn proved that
if A is a finite-dimensional simple Novikov algebra over a field of positive characteristic, then A(−)

is either 1-dimensional, or isomorphic to the Zassenhaus algebra. The latter was the key result in
obtaining later a complete classification of simple Novikov algebras.

Another important observation – which is a matter of simple calculations (see, for example,
[Bu, Lemma 2.3]) – is that Novikov algebras are two-sided Alia. Further, it follows from the proof of
[O, Theorem 3.5], that if A is a finite-dimensional simple Novikov algebra, then the Lie algebra A(−)

is also simple. Thus, as noted in the Introduction, the multiplication in a finite-dimensional simple
Novikov algebra A could be written in the form (2), where [·,·] defines a simple Lie algebra structure
on A, and ϕ defines a commutative 2-cocycle on that Lie algebra. Note further that ϕ is a nonzero
cocycle, as otherwise A is a Lie algebra, what quickly leads to contradiction.

Then, instead of appealing to some structural results about graded and filtered Lie algebras, like
in [O], we may invoke Corollary 2.5 to see that A(−) is isomorphic either to 1-dimensional abelian
algebra, or to sl(2), or to the Zassenhaus algebra. Straightforward calculations based on [D3, Theo-
rem 6.5] exclude the case of sl(2), and in this way we get the main results of [Ze,O]. Proposition 2.6
may be utilized in the subsequent classification.

3. Characteristic 3

The case of characteristic 3 differs drastically: as noted in [D3, §6.2], in this case any symmetric
bilinear invariant form on a Lie algebra is a commutative 2-cocycle. Let us rephrase this observation
in another trivial, yet not without interest, form.

To start with, let us make a useful observation valid in any characteristic. For a Lie algebra L,
consider the standard Der(L)-action on the space of bilinear forms on L: for ϕ being such a form, and
D ∈ Der(L),

(D • ϕ)(x, y) = −ϕ
(

D(x), y
) − ϕ

(
x, D(y)

)
, (10)

x, y ∈ L. It is well known (and easy to verify) that the space of symmetric bilinear invariant forms
on L is closed under this action. It turns out that the same is true for the space of commutative
2-cocycles:

Lemma 3.1. For any Lie algebra L, Z 2
comm(L) is closed under the action (10).

1 Actually, what we define here are left Novikov algebras. Right Novikov algebras are defined by the opposite identities, inter-
changing left and right multiplications. Often in the literature, left Novikov and right Novikov are confused, even if authors make
an explicit attempt not to do so (for example, [Ze] treats right Novikov algebras, while [O,Bu] – left Novikov ones). However,
almost every result about left Novikov algebras is easily transformed into one about right Novikov algebras, and vice versa.
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Proof. This follows from the following equality, valid for any bilinear form ϕ : L × L → K , any
D ∈ Der(L), and any x, y, z ∈ L:

d(D • ϕ)(x, y, z) = −dϕ
(
x, y, D(z)

) − dϕ
(
z, x, D(y)

) − dϕ
(

y, z, D(x)
)
,

where dϕ(x, y, z) denotes the left-hand side of equality (1). �
In particular, Z 2

comm(L) is closed under the action of L (via inner derivations). This is, essentially,
the same observation which is used in deriving a very useful fact about triviality of the Lie algebra
action on its cohomology. Note, however, that, unlike for cohomology, in the case of commutative
2-cocycles we do not have coboundaries, so we cannot normalize the cocycle appropriately to derive
the triviality of this action. Moreover, for invariants of this action we have the following obvious
dichotomy:

Z 2
comm(L)L =

{
B(L), p = 3,

{ϕ : L × L → K | ϕ is symmetric, ϕ([L, L], L) = 0}, p �= 3.

Still, we can make use of Lemma 3.1 in the same way as in cohomological considerations: when
T is a torus in a Lie algebra L such that L decomposes into the direct sum of the root spaces with
respect to the action of T (what always takes places if L is finite-dimensional and the ground field
is algebraically closed), then Z 2

comm(L) decomposes into the direct sum of root spaces with respect to
the induced T -action.

Naturally, in order to compute the space of commutative 2-cocycles on any class of Lie algebras of
characteristic 3, it would be beneficial to elucidate first what the space of symmetric bilinear invariant
forms on these algebras looks like.

Conjecture 3.2. The space of symmetric bilinear invariant forms on any central Lie algebra of classical type
over a field of arbitrary characteristic is 1-dimensional.

Note that in small characteristics (including characteristic 3) not all Lie algebras obtained via the
usual Chevalley basis construction, are simple (see, for example, [S, §4.4]). In such cases, under Lie
algebras of classical type we mean both these non-simple Lie algebras, and their central simple quo-
tients.

Of course, for p = 0 and p > 5 this conjecture trivially follows from the well-known statement
about the Killing form. However, in small characteristics the Killing form, and, more general, any trace
form, may vanish (see [GP] and references therein), so this conjecture, perhaps, comes as a bit of
surprise. It is, however, supported by computer calculations.2

Conjecture 3.3. The space of commutative 2-cocycles on a finite-dimensional Lie algebra of classical type
different from sl(2), over the field of characteristic 3, coincides with the space of symmetric bilinear invariant
forms (and, hence, by Conjecture 3.2, is 1-dimensional).

Note that for Lie algebras not of classical type, it is no longer true that every commutative
2-cocycle is a symmetric bilinear invariant form: for example, for the Zassenhaus algebra W1(n),
Proposition 2.6 is valid also in characteristic 3 (with, essentially, the same proof). On the other hand,
since W1(n) is simple, the space of symmetric bilinear invariant forms on it is at most 1-dimensional
(it is, in fact, 1-dimensional in characteristic 3, as shown in [D1, §2, Corollary] or [SF, §4.6, Theo-
rem 6.3]).

2 A simple-minded GAP code for calculation of the spaces of commutative 2-cocycles and of symmetric bilinear invariant
forms on a Lie algebra, is available at http://justpasha.org/math/comm2.gap. The code works by writing the corre-
sponding conditions in terms of a certain basis of a Lie algebra, and solving the arising linear homogeneous system.
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A straightforward way to prove Conjectures 3.2 and 3.3 seems to employ the strategy of
[DB, Theorem 1.1]: first to prove the statements for algebras of rank 2, and then derive the general
case.

Lie algebras of classical type of rank 2 are A2, B2 and G2. For these algebras, one may verify on
a computer that both the spaces of commutative 2-cocycles (for p = 3) and of symmetric bilinear in-
variant forms (for any p), are 1-dimensional. The general case should follow then from considerations
of 2-sections in a Cartan decomposition, with the help of Lemma 3.1.

However, there are lot of subtleties when dealing with structure constants of classical Lie algebras
in small characteristics, as demonstrated by a noticeable amount of errors in works devoted to such
algebras. We postpone this laborious task to the future.

4. Current Lie algebras

In this section we consider the current Lie algebras, i.e. Lie algebras of the form L ⊗ A where L is
a Lie algebra and A is an associative commutative algebra, with multiplication defined by

[x ⊗ a, y ⊗ b] = [x, y] ⊗ ab

for x, y ∈ L, a,b ∈ A.

Theorem 4.1. Let L be a Lie algebra, A is an associative commutative algebra, and at least one of L, A is finite-
dimensional. Then each commutative 2-cocycle on L ⊗ A can be represented as a sum of decomposable cocycles
ϕ ⊗ α, ϕ : L × L → K , α : A × A → K of one of the 8 following types:

(i) ϕ([x, y], z) + ϕ([z, x], y) + ϕ([y, z], x) = 0 and α(ab, c) = α(ca,b),
(ii) ϕ([x, y], z) = ϕ([z, x], y) and α(ab, c) + α(ca,b) + α(bc,a) = 0,

(iii) ϕ([L, L], L) = 0,
(iv) α(A A, A) = 0,

and each of these four types splits into two subtypes: with both ϕ and α symmetric, and with both ϕ and α
skew-symmetric.

Proof. The proof goes almost verbatim to the proof of Theorem 1 in [Zu3]. �
Corollary 4.2. Suppose all assumptions of Theorem 4.1 hold, and, additionally, A contains a unit. Then

Z 2
comm(L ⊗ A) 
 Z 2

comm(L) ⊗ A∗ ⊕ C(L) ⊗ HC1(A)

⊕ (
S2(L/[L, L]))∗ ⊗ Ker

(
S2(A) → A

)∗

⊕ (∧2(L/[L, L]))∗ ⊗ {ab ∧ c + ca ∧ b + bc ∧ a | a,b, c ∈ A}∗,

where the map S2(A) → A is induced by multiplication in A.

Proof. Consider the cases of Theorem 4.1.
Case (i). Substituting c = 1 in the condition α(ab, c) = α(ca,b), we get α(a,b) = β(ab) for a certain

linear form β : A → K . Consequently, both ϕ and α are necessarily symmetric, hence ϕ ∈ Z 2
comm(L)

and the linear span of cocycles of this type is isomorphic to Z 2
comm(L) ⊗ A∗ .

Case (ii). Similarly, substituting b = c = 1 in the condition

α(ab, c) + α(ca,b) + α(bc,a) = 0,
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and assuming that α is symmetric, we get α(a,1) = 0. Now substituting just c = 1 in the same
condition, we get that α vanishes. Consequently, for cocycles of this type both ϕ and α are necessarily
skew-symmetric, hence ϕ ∈ C(L) and α ∈ HC1(A).

Case (iv). If A contains a unit, then A A = A, so cocycles of this type vanish.
Singling out from the linear span of the remaining cocycles of type (iii) the direct sum complement

to the linear span of cocycles of type (i) and (ii), and rearranging it in an obvious way, we get the
desired isomorphism. �

Evidently, the last two direct summands at the right-hand side of the isomorphism of Corollary 4.2
constitute trivial cocycles.

It is possible to extend Theorem 4.1 and Corollary 4.2 to various generalizations of current Lie
algebras, such as twisted algebras, extended affine Lie algebras, toroidal Lie algebras, Lie algebras
graded by root systems, etc. Some of computations could be quite cumbersome, but all of them seem
to be amenable to the technique used in [Zu3].

It is possible also to consider a sort of noncommutative version of Corollary 4.2, namely, com-
mutative 2-cocycles on the Lie algebra sl(n, A) for an associative (and not necessarily commutative)
algebra A with unit. It is possible to show that any homomorphic image of such an algebra is closely
related to the algebra of the form sl(n, B), where B is a homomorphic image of A. If sl(n, A) possesses
nonzero 2-commutative cocycles, then by Lemma 2.1, at least one of these homomorphic images sat-
isfies the standard identity of degree 5. As sl(n) is a subalgebra of sl(n, B), this implies that there
are no commutative 2-cocycles if n > 2. The algebra sl(2, A), on the contrary, possesses nonzero 2-
commutative cocycles, but in general there seems no nice expression for them in terms of A. As the
final answer turns out not to be very interesting in either case, we are not going into details.

5. Kac–Moody algebras

If we want to apply the results of the preceding section to Kac–Moody algebras, we should deal
not with the current Lie algebras and their twisted analogs, but their extensions by means of central
elements and derivations. To this end, we make the following elementary observations.

Lemma 5.1. Let L be a Lie algebra and I an ideal of L. Then Z 2
comm(L/I) is embedded into Z 2

comm(L).

Proof. There is an obvious bijection between Z 2
comm(L/I) and the set of cocycles ϕ ∈ Z 2

comm(L) such
that ϕ(L, I) = 0. �

Of course, the similar embedding exists for ordinary (skew-symmetric) cocycles, but this embed-
ding is usually not preserved on the level of cohomology. For example, free Lie algebras possess,
in a sense, “the most” of 2-cocycles, accumulating all cocycles from their homomorphic images, but
in the skew-symmetric case all cocycles are killed off by coboundaries. This has no parallel in the
commutative case due to absence of “commutative 2-coboundaries”.

The following is a very particular complement, in a sense, to Lemma 5.1.

Lemma 5.2. Let L be a Lie algebra and I a perfect ideal of codimension 1 of L. Then Z 2
comm(L) is embedded into

Z 2
comm(I) ⊕ K , the second direct summand being represented by a trivial cocycle.

Proof. Write L = I ⊕ K x for some x ∈ L\I . Let ϕ ∈ Z 2
comm(L). The cocycle equation on L is equivalent

to the cocycle equation on I , plus the cocycle equation for a,b ∈ I and x, the latter could be written
in the form

ϕ
([a,b], x

) = ϕ
([a, x],b

) − ϕ
([b, x],a

)
.

As [I, I] = I , this formula provides a well-defined extension of ϕ from I × I to I × K x.
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There are no further restrictions on the value of ϕ(x, x), so defining a bilinear form ϕ on L by
ϕ(x, x) = 1, ϕ(I, I) = ϕ(I, x) = 0, we get a trivial cocycle which corresponds to the second direct
summand. �

We use the realization of affine Kac–Moody Lie algebras as extensions of non-twisted and twisted
current Lie algebras (see [K, Chapters 7 and 8]). Let g = ⊕

j∈Zn
g j be a simple finite-dimensional Zn-

graded Lie algebra (it is possible that g = g0, i.e., n = 1 and the grading is trivial, what corresponds to
the non-twisted case). Consider the following subalgebra of the current Lie algebra g ⊗ K [t, t−1]:

L(g,n) =
⊕
i∈Z

gi(mod n) ⊗ ti .

This algebra has a non-split perfect central extension L̃(g,n). Each affine Kac–Moody algebra can be
represented in the form

L̂(g,n) = L̃(g,n) ⊕ Kt
d

dt

for a suitable g, where multiplication between elements of L̃(g,n) and t d
dt is defined by the action of

the latter as derivation on the algebra of Laurent polynomials K [t, t−1].
We will consider first the case of non-twisted affine Kac–Moody algebras in a bit more general

situation. Let L be a Lie algebra, 〈·,·〉 a nonzero symmetric bilinear invariant form on L, A a com-
mutative associative algebra with unit, D a Lie subalgebra of Der(A), and ξ a nonzero D-invariant
element of HC1(A). Consider a Lie algebra defined as the vector space (L ⊗ A) ⊕ K z ⊕ D with the
following multiplication:

[x ⊗ a, y ⊗ b] = [x, y] ⊗ ab + 〈x, y〉ξ(a,b)z,

[x ⊗ a,d] = x ⊗ d(a)

for x, y ∈ L, a,b ∈ A, d ∈ D , and z belongs to the center. Note that the semidirect sum (L ⊗ A) � D is
a quotient by the 1-dimensional central ideal K z, and (L ⊗ A) ⊕ K z is a subalgebra, the latter being
central extension of the current Lie algebra L ⊗ A (for generalities about central extensions of current
Lie algebras, see [Zu2,Zu3,NW]).

Specializing this construction to the case where K is an algebraically closed field of characteristic
zero, L = g, a simple finite-dimensional Lie algebra, 〈·,·〉 is the Killing form on g, A = K [t, t−1], D =
Kt d

dt , and ξ( f , g) = Res(g df
dt ) for f , g ∈ K [t, t,−1 ], we get non-twisted affine Kac–Moody algebras.

Lemma 5.3. Let L be perfect, and one of L, A is finite-dimensional. Then

Z 2
comm

(
(L ⊗ A) � D

)

 Z 2

comm(L) ⊗ {
χ ∈ A∗ ∣∣ χ(

d(a)b − ad(b)
) = 0 for any a,b ∈ A, d ∈ D

}
⊕ C(L) ⊗ {

β ∈ HC1(A)
∣∣ β

(
d(a),b

) − β
(
a,d(b)

) = 0 for any a,b ∈ A, d ∈ D
}

⊕ Z 2
comm(D).

Proof. Let Φ ∈ Z 2
comm((L ⊗ A) � D). A restriction of Φ to (L ⊗ A)× (L ⊗ A) is a commutative 2-cocycle

on L ⊗ A. By Corollary 4.2, there are ϕ ∈ Z 2
comm(L), χ ∈ A∗ , α ∈ C(L) and β ∈ HC1(A) such that

Φ(x ⊗ a, y ⊗ b) = ϕ(x, y)χ(ab) + α(x, y)β(a,b) (11)
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for any x, y ∈ L, a,b ∈ A. Writing the cocycle equation for x ⊗ a, y ⊗ b, d, we get

Φ
([x, y] ⊗ ab,d

) = ϕ(x, y)χ
(
d(a)b − ad(b)

) + α(x, y)
(
β
(
d(a),b

) − β
(
a,d(b)

))
(12)

for any x, y ∈ L, a,b ∈ A, and d ∈ D . Substituting here a = 1 and b = 1, we get respectively:

Φ
([x, y] ⊗ b,d

) = −ϕ(x, y)χ
(
d(b)

)
,

Φ
([x, y] ⊗ a,d

) = ϕ(x, y)χ
(
d(a)

)
,

what implies Φ(L ⊗ A, D) = 0. Hence the right-hand side of (12) vanishes, and symmetrizing it
further with respect to x, y, we get that both summands vanish separately. Thus we see that
χ ∈ A∗ and β ∈ HC1(A) in formula (11) satisfy additional conditions χ(d(a)b − ad(b)) = 0 and
β(d(a),b) − β(a,d(b)) = 0 for any a,b ∈ A.

The cocycle equation for one element from L ⊗ A and two elements from D is satisfied trivially,
and restriction of Φ to D × D gives rise to an element from Z 2

comm(D). �
Lemma 5.4. Let L be perfect, and one of L, A is finite-dimensional. Then

Z 2
comm

(
(L ⊗ A) ⊕ K z � D

) 
 Z 2
comm

(
(L ⊗ A) � D

)
.

Proof. By Lemma 5.1, we have an embedding of Z 2
comm((L ⊗ A) � D) into Z 2

comm((L ⊗ A) ⊕ K z � D),
and this embedding is an isomorphism if and only if

Φ
(
(L ⊗ A) ⊕ K z � D, z

) = 0 (13)

for any Φ ∈ Z 2
comm((L ⊗ A) ⊕ K z � D).

Writing the cocycle equation for x ⊗ a, y ⊗ b, z, we get

Φ
([x, y] ⊗ ab + 〈x, y〉ξ(a,b)z, z

) = 0 (14)

for any x, y ∈ L, a,b ∈ A. Substituting here b = 1, we get

Φ(L ⊗ A, z) = 0. (15)

Substituting the latter equality back to (14), we get Φ(z, z) = 0.
Being restricted to ((L ⊗ A) ⊕ K z) × ((L ⊗ A) ⊕ K z), Φ gives rise to a commutative 2-cocycle on

(L ⊗ A) ⊕ K z, and due to (15), to a commutative 2-cocycle on L ⊗ A. Now we proceed as in the
proof of Lemma 5.3: by Corollary 4.2, the equality (11) holds for any x, y ∈ L, a,b ∈ A and appropriate
ϕ ∈ Z 2

comm(L), χ ∈ A∗ , α ∈ C(L), and β ∈ HC1(A). Then the cocycle equation for x ⊗ a, y ⊗ b, d, gives

Φ
([x, y] ⊗ ab,d

) + 〈x, y〉ξ(a,b)Φ(z,d)

= ϕ(x, y)χ
(
d(a)b − ad(b)

) + α(x, y)
(
β
(
d(a),b

) − β
(
a,d(b)

))
(16)

for any x, y ∈ L, a,b ∈ A, d ∈ D , and substitution of units in this equality yields Φ(L ⊗ A, D) = 0.
Substituting this back to (16) and symmetrizing with respect to x, y, gives

〈x, y〉ξ(a,b)Φ(z,d) = ϕ(x, y)χ
(
d(a)b − ad(b)

)
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for any x, y ∈ L, a,b ∈ A, d ∈ D . Either both sides of this equality vanishes, in which case Φ(z,d) = 0
for any d ∈ D , or ϕ(x, y) = λ〈x, y〉 for some nonzero λ ∈ K . But the latter is obviously impossible
(note that the condition that the characteristic of the ground field is different from 3 is crucial here:
as noted in [D3, §6.2], in characteristic 3 every symmetric bilinear invariant form is a commutative
2-cocycle).

Therefore, (13) holds and the desired isomorphism follows. �
Affine Kac–Moody algebras, being non-perfect, possess trivial nonzero commutative 2-cocycles. As

the commutant is always of codimension 1, the space of such cocycles is 1-dimensional. There are no
other cocycles, as the following result shows.

Theorem 5.5. Affine Kac–Moody algebras do not possess non-trivial commutative 2-cocycles.

Proof. First consider the case of non-twisted algebras. By Lemmata 5.3 and 5.4, the space of commu-
tative 2-cocycles on a non-twisted affine Kac–Moody algebra

(
g ⊗ K

[
t, t−1]) ⊕ K z � Kt

d

dt

is isomorphic to

Z 2
comm(g) ⊗

{
χ ∈ K

[
t, t−1]∗ ∣∣∣ χ(

t
df

dt
g − f t

dg

dt

)
= 0 for any f , g ∈ K

[
t, t−1]}

⊕ C(g) ⊗
{
β ∈ HC1(K

[
t, t−1]) ∣∣∣ β

(
t

df

dt
, g

)
− β

(
f , t

dg

dt

)
= 0 for any f , g ∈ K

[
t, t−1]}

⊕ Z 2
comm

(
Kt

d

dt

)
.

Let us look at the second tensor factor in the first direct summand. Substituting f = ti , g = t j in
the defining condition

χ

(
t

df

dt
g − f t

dg

dt

)
= 0

for χ ∈ K [t, t−1]∗ , we get (i − j)χ(ti+ j) = 0 for any i, j ∈ Z such that i �= j. Hence χ = 0, and the first
direct summand vanishes.

By Lemma 1.2, C(g) = 0, hence the second direct summand vanishes too.
Finally, Z 2

comm(Kt d
dt ), being the space of commutative cocycles on the 1-dimensional Lie algebra, is

1-dimensional and constitute trivial cocycles.
Now consider the general (twisted) case. Suppose that L̂(g,n) possesses non-trivial commutative

2-cocycles. Then by Lemma 5.2, L̃(g,n) possesses nonzero commutative 2-cocycles, and by Lemma 2.1,
L̃(g,n) has a nonzero homomorphic image satisfying the standard identity of degree 5. Every homo-
morphic image of L̃(g,n) is either a homomorphic image of L(g,n), or is a central extension of such.
In the latter case, factoring by the central element, we will get again a homomorphic image of L(g,n)

satisfying the standard identity of degree 5. But g is a homomorphic image of L(g,n) under the eval-
uation homomorphism

∑
xi ⊗ ti 	→

∑
xi,
i∈Z i∈Z
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where xi ∈ g, and all but a finite number of summands vanish. Thus g satisfies the standard identity
of degree 5 too, hence g 
 sl(2), and the corresponding Kac–Moody algebra is of type A(1)

1 , i.e. is a
non-twisted algebra of the form

(
sl(2) ⊗ K

[
t, t−1]) ⊕ K z � Kt

d

dt
.

But the case of non-twisted algebras was already covered. �
Note that there is some ambiguity in definition of affine Kac–Moody algebras, and sometimes they

are defined without employing the derivation extension, i.e. merely as central extensions of non-
twisted or twisted current algebras (though some people argue that these are not “real” Kac–Moody
algebras, as they are not Lie algebras corresponding to Cartan matrices). Such algebras are perfect,
and possess nonzero commutative 2-cocycles only in the case of non-twisted type A(1)

1 . The proof is
absolutely similar to those presented above.

According to Lemma 5.4 (with D = 0) and Corollary 4.2, the space of commutative 2-cocycles on
the Kac–Moody algebra (sl(2) ⊗ K [t, t−1]) ⊕ K z of type A(1)

1 is infinite-dimensional and is isomorphic
to Z 2

comm(sl(2)) ⊗ K [t, t−1]∗ , each cocycle being of the form

(x ⊗ f , y ⊗ g) 	→ ϕ(x, y) ⊗ χ( f g),

(x ⊗ f , z) 	→ 0,

(z, z) 	→ 0

where x, y ∈ sl(2), f , g ∈ K [t, t−1], for some ϕ ∈ Z 2
comm(sl(2)), χ ∈ K [t, t−1]∗ .

6. Modular semisimple Lie algebras

Essentially the same approach as in the previous section, allows to compute the space of com-
mutative 2-cocycles on finite-dimensional semisimple Lie algebras over the field of positive charac-
teristic p. According to Block’s classical theorem (see, for example, [S, Corollary 3.3.6]), the typical
examples of such algebras are Lie algebras of the form (S ⊗ O n) ⊕ D where S is a simple Lie algebra,
O n = K [x1, . . . , xn]/(xp

1 , . . . , xp
n ) is the reduced polynomial algebra in n variables, and D is a Lie sub-

algebra of Wn = Der(O n), the simple Lie algebra of the general Cartan type. To ensure semisimplicity,
it is assumed that O n does not contain proper D-invariant ideals.

Theorem 6.1. Let n � 1. Then Z 2
comm((S ⊗ O n) � D) 
 Z 2

comm(D).

Proof. According to Lemma 5.3, Z 2
comm((S ⊗ O n) � D) is isomorphic to

Z 2
comm(S) ⊗ {

χ ∈ O ∗
n

∣∣ χ(
d( f )g − f d(g)

) = 0 for any f , g ∈ O n, d ∈ D
}

⊕ C(S) ⊗ {
β ∈ HC1(O n)

∣∣ β
(
d( f ), g

) − β
(

f ,d(g)
) = 0 for any f , g ∈ O n, d ∈ D

}
⊕ Z 2

comm(D).

Here again, the second tensor factor in the first direct summand vanishes. Indeed, substitution of
g = 1 in the defining condition for χ ∈ O ∗

n , gives χ(d( f )) = 0 for any f ∈ O n and d ∈ D . But then

χ
(
d( f )g

) = 1
χ

(
d( f )g − f d(g)

) + 1
χ

(
d( f )g + f

(
d(g)

)) = χ
(
d( f g)

) = 0

2 2



748 A. Dzhumadil’daev, P. Zusmanovich / Journal of Algebra 324 (2010) 732–748
for any f , g ∈ O n , d ∈ D . The space D(O n)O n is evidently a D-invariant ideal of O n , hence it coincides
with the whole O n , and χ = 0.

And again, C(S) = 0 by Lemma 1.2, so the second direct summand vanishes too, and the desired
isomorphism follows. �

This is similar in spirit to the computation of the second cohomology of some modular semisimple
Lie algebras in [Zu1, §3 and Erratum and addendum].
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