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By taking into account the surface diffuseness correction for unstable nuclei, the accuracy of the 
macroscopic–microscopic mass formula is further improved. The rms deviation with respect to essentially 
all the available mass data falls to 298 keV, crossing the 0.3 MeV accuracy threshold for the first time 
within the mean-field framework. Considering the surface effect of the symmetry potential which plays 
an important role in the evolution of the “neutron skin” toward the “neutron halo” of nuclei approaching 
the neutron drip line, we obtain an optimal value of the symmetry energy coefficient J = 30.16 MeV. 
With an accuracy of 258 keV for all the available neutron separation energies and of 237 keV for the 
α-decay Q-values of super-heavy nuclei, the proposed mass formula is particularly important not only 
for the reliable description of the r process of nucleosynthesis but also for the study of the synthesis of 
super-heavy nuclei.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
As one of the basic quantities in nuclear physics, the nuclear 
masses play a key role not only in the study of nuclear structure 
and reactions, but also in understanding the origin of elements in 
the universe. The nuclear mass formulas [1–16] are of significant 
importance for describing the global nuclear properties and explor-
ing the exotic structure of the extremely neutron-rich nuclei such 
as the halo phenomenon, the structure of super-heavy nuclei and 
their decay properties [17–20], as well as the nuclear symmetry 
energy [21–24] which probes the isospin part of nuclear forces and 
intimately relates to the behavior of neutron stars. For finite nuclei, 
the diffuseness of the nuclear surface, which provides a measure 
of the thickness of the surface region and is intimately related to 
the nuclear surface energy [25], is an important degree-of-freedom 
in the calculations of nuclear masses. The notions “neutron skin” 
and “neutron halo” are adopted from Ref. [26] to describe the two 
extreme cases of two-parameter Fermi distributions of the neu-
tron and proton peripheral density: the former refers to the case 
with equal diffuseness parameters for protons and neutrons and a 
larger half-density radius for the neutrons; the latter to the case 
with a much larger surface diffuseness for neutrons. For most sta-
ble nuclei, the corresponding density distribution is similar to the 
“neutron skin-type”, with a typical value around 0.5 fm for the 
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surface diffuseness. For nuclei near the neutron drip line, such as 
11Li [27], 22C [28] and the giant-halo nuclei [29,30], the neutron 
matter extends much further, which implies the enhancement of 
the neutron surface diffuseness for these extremely neutron-rich 
nuclei. In nuclear mass calculations, all available global mass for-
mulas, including the recent universal nuclear energy density func-
tional (UNEDF) [31], have not yet properly considered the surface 
diffuseness of exotic nuclei near the drip lines. It is well known 
that the symmetry energy plays an important role in the structure 
of neutron-rich nuclei. The thickness of neutron skin of nuclei has 
been explored to be linearly correlated with the slope of symme-
try energy and the isospin asymmetry I = (N − Z)/A of nuclei [26,
32]. On the other hand, the physics behind the skin and halo has 
been revealed as a spatial demonstration of shell effect from the 
relativistic continuum Hartree–Bogoliubov calculations [33]. It is 
therefore necessary to investigate the influence of the surface dif-
fuseness on the nuclear symmetry energy and shell correction for 
nuclei approaching the drip lines.

Inspired by the Skyrme energy-density functional, a macro-
scopic–microscopic mass formula, Weizsäcker–Skyrme (WS) for-
mula [13–15], was proposed with an rms deviation of 336 keV 
with respect to the 2149 measured masses [34] in 2003 Atomic 
Mass Evaluation (AME). The Duflo–Zuker formula [12] with an rms 
deviation of 360 keV is also successful for the mass predictions. 
However, both of these two successful global mass formulas can 
not yet cross the 0.3 MeV accuracy threshold. In the WS formula, 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Fig. 1. (Color online.) (a) Calculated surface diffuseness of nuclei with A = 90. The squares and circles denote the results of the Skyrme energy density functional with 
SLy7 [39] and SkM* [40], respectively. The stars denote the results of the relativistic density functional calculations with PC-PK1 [7], in which the staggering is due to the 
influence of the pairing in the PC-PK1 calculations. The inserted figure in (a) shows the density distributions of 90As and 90Pd with SLy7. (b) Correction factor ε = (I − I0)2 − I4

for the surface diffuseness in the single-particle potential with I0 = 0.4A/(A + 200). The solid and open circles denote the results for protons and neutrons, respectively.
the axially deformed Woods–Saxon potential, as a phenomenolog-
ical mean-field, is adopted to obtain the single-particle levels of 
nuclei. With the same value for the protons and neutrons, the sur-
face diffuseness a of the potential is set as a constant for all nuclei 
in the previous calculations. The obtained symmetry energy coeffi-
cient is about 29 MeV which is slightly smaller than the extracted 
one ( J ≈ 30–32 MeV) from some different approaches [3,5,21–24,
35–37]. The value of the symmetry coefficient can significantly af-
fect the symmetry energy and thus the masses of nuclei near the 
neutron drip line. For example, the variation of the symmetry co-
efficient by one MeV can result in the variation of the symmetry 
energy by 33 MeV for the neutron-rich nuclei 176Sn. For more ac-
curate description of the masses of drip line nuclei, it is required 
to further constrain the coefficient of the symmetry energy based 
on the new measured masses of nuclei far from stability. In this 
work, we attempt to further improve the WS formula by consider-
ing the nuclear surface diffuseness effect together with the latest 
nuclear mass datasets AME2012 [38].

To explore the correlation between the isospin asymmetry and 
the nuclear surface diffuseness, we first study the evolution of the 
nuclear density distribution for a series of isobaric nuclei by us-
ing the non-relativistic SLy7 [39] and SkM* [40] and the relativistic 
PC-PK1 [7] density functionals. From the mean-field point of view, 
the properties of all the nucleons in the nuclei are determined by 
the mean potential provided by their interaction with the other 
nucleons. Therefore the study of the isospin dependence on the 
potential, which becomes highly diffuse near the particle drip line, 
is crucial to understanding unstable nuclei [41]. Fig. 1(a) shows the 
calculated nuclear surface diffuseness for nuclei with A = 90 as a 
function of isospin asymmetry. Here, the value of nuclear surface 
diffuseness is extracted from fitting the calculated total density 
distribution ρ(r) in the range of r ≤ 15 fm with the Fermi function 
(under a logarithmic scale). Both the non-relativistic and relativis-
tic density functional calculations show the enhancement of the 
nuclear surface diffuseness for nuclei far from stability. To illus-
trate this point more clearly, the sub-figure in Fig. 1(a) shows the 
density distributions of 90As and 90Pd. For the neutron-rich nu-
cleus 90As, the tail of the density distribution for the neutrons is 
much longer than that for the protons. For the proton-rich 90Pd, 
in contrast, the tail for the protons is just a little longer than 
that for the neutrons due to the Coulomb barrier. Simultaneously, 
we note that the surface diffuseness for protons (neutrons) in the 
neutron (proton)-rich nuclei does not change appreciably with the 
isospin asymmetry, which was also observed in the Sn and Pb iso-
topic chains [42]. The enhancement of the surface diffuseness for 
the very neutron-rich nuclei implies that the “neutron-skin” struc-
ture tends to evolve toward the “neutron-halo” structure for nuclei 
approaching the neutron drip line since the repulsion of the sym-
metry potential will “push” the extra-neutrons to the very low 
density region. At the neutron-deficient side, the extra-protons will 
be pushed to the surface region due to the Coulomb interaction 
and the symmetry potential.

Although the macroscopic–microscopic approaches are found to 
be the most accurate ones in the description of atomic masses [43], 
the surface diffuseness effect for nuclei near the drip lines could 
affect the accuracy of the predictions. In the WS mass formula, the 
total energy of a nucleus is written as a sum of the liquid-drop 
energy, the Strutinsky shell correction and the residual correc-
tion. The liquid-drop energy of a spherical nucleus ELD(A, Z) is 
described by a modified Bethe–Weizsäcker mass formula,

ELD(A, Z) = av A + as A2/3 + EC + asym I2 A fs

+ apair A−1/3δnp + �W , (1)

with the isospin asymmetry I = (N − Z)/A. EC = ac
Z 2

A1/3 (1 −
0.76Z−2/3) and �W denote the Coulomb energy term and the 
Wigner correction term for heavy nuclei [15], respectively. The 
symmetry energy coefficient of finite nuclei is expressed as asym =
csym[1 − κ

A1/3 + ξ
2−|I|

2+|I|A ] and the form of the correction factor f s

for the symmetry energy will be presented in Eq. (6) and Fig. 1(b). 
The apair term empirically describes the odd–even staggering ef-
fect [13]. Here, the I2 term in the isospin dependence of δnp

is further introduced for a better description of the masses of 
even-A nuclei, with δnp = |I| − I2 for the odd–odd nuclei and 
δnp = (2 − |I| − I2)17/16 for the even–even nuclei.

To obtain the microscopic shell correction with the traditional 
Strutinsky procedure, the single particle levels of a nucleus are cal-
culated by using the code WSBETA [44]. The central potential V is 
described by an axially deformed Woods–Saxon form

V (�r) = Vq

1 + exp[ r−R(θ) ] , (2)

a
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where, the depth Vq of the central potential (q = p for protons and 
q = n for neutrons) is written as

Vq = V 0 ± V s I (3)

with the plus sign for neutrons and the minus sign for protons. 
V s is the isospin-asymmetric part of the potential depth and has a 
value of V s = asym in the WS formula, with which a unification of 
the microscopic and the macroscopic parts is achieved. R defines 
the distance from the origin of the coordinate system to the point 
on the nuclear surface

R(θ) = c0 R
[
1 + β2Y20(θ) + β4Y40(θ) + β6Y60(θ)

]
, (4)

with the scale factor c0 which represents the effect of incompress-
ibility of nuclear matter in the nucleus and is determined by the 
so-called constant volume condition [44]. Ylm(θ, φ) are the spheri-
cal harmonics. R = r0 A1/3 denotes the radius of the single particle 
potential (with the same value for the protons and neutrons of a 
given nucleus). a denotes the surface diffuseness of the potential. 
In this work, the isospin dependence of a will be introduced and 
discussed later. For protons the Coulomb potential is additionally 
involved. The spin–orbit potential is written as

V s.o. = −λ

(
h̄

2Mc

)2

∇V · (�σ × �p), (5)

where λ = 3
2 λ0[1 ± 1

3 (I − I2)] denotes the strength of the spin–
orbit potential with the plus sign for neutrons and the minus sign 
for protons, in which the isospin dependence of the strength of the 
spin–orbit potential is considered according to the Skyrme energy-
density functional. M in Eq. (5) denotes the free nucleonic mass, 
�σ and �p are the Pauli spin matrix and the nucleon momentum, 
respectively.

The evolution of the “neutron-skin” toward the “neutron-
halo” from the microscopic calculations indicates that the nu-
clear surface diffuseness is an important degree-of-freedom for 
the accurate descriptions of the ground state properties of nuclei 
near the drip lines. It is therefore necessary to introduce a sur-
face diffuseness correction to the single-particle potential in the 
macroscopic–microscopic mass formula. In this work, the surface 
diffuseness a of the Woods–Saxon potential in Eq. (2) is given by 
a = a0(1 + 2εδq). Here, ε = (I − I0)

2 − I4 denotes the correction 
factor [see Fig. 1(b)] to the constant surface diffuseness a0 of the 
Woods–Saxon potential. I0 = 0.4A/(A + 200) denotes the isospin 
asymmetry of the nuclei along the β-stability line described by 
Green’s formula. For nuclear matter, we assume ε = 0 since the 
surface diffuseness disappears. δq = 1 for neutrons (protons) in the 
nuclei with I > I0 (I < I0), and δq = 0 for other cases. It means 
that the surface diffuseness of neutron distribution is larger than 
that of protons at the neutron-rich side and smaller than that of 
protons at the proton-rich side in the calculations. The shades in 
Fig. 1(b) show the difference between the surface diffuseness of 
proton distribution and that of neutrons which strongly influences 
not only the nuclear symmetry energy in the macroscopic part, but 
also the shell correction in the microscopic part.

The corresponding correction f s for the symmetry energy and 
fd for the microscopic shell correction due to the surface diffuse-
ness are expressed as

f s = 1 + κsεA1/3 (6)

and

fd = 1 + κdε, (7)

respectively. In the microscopic shell correction �E = c1 fd Esh +
|I|E ′ , c1 is a scale factor [13], Esh and E ′ denote the shell energy 
sh sh
Table 1
Model parameters of the mass formula WS4. In addition to the model parameters 
mentioned in the text, g1 and g2 are the parameters related to the deformation 
energies of nuclei. The dependence of the macroscopic energy on the nuclear de-
formations in the WS formula is given by an analytical expression ELD

∏
(1 + bkβ

2
k )

with bk = ( k
2 )g1 A1/3 + ( k

2 )2 g2 A−1/3 according to the Skyrme energy-density func-
tional. cw and c2 denote the coefficient of the Wigner term and of the term for the 
residual mirror effect, respectively [see Eqs. (6) and (10) in Ref. [15] for details].

Parameter Value Parameter Value

av (MeV) −15.5181 g1 0.01046
as (MeV) 17.4090 g2 −0.5069
ac (MeV) 0.7092 V 0 (MeV) −45.8564
csym (MeV) 30.1594 r0 (fm) 1.3804
κ 1.5189 a0 (fm) 0.7642
ξ 1.2230 λ0 26.4796
apair (MeV) −5.8166 c1 0.6309
cw (MeV) 0.8705 c2 (MeV−1) 1.3371
κs 0.1536 κd 5.0086

Table 2
Rms deviations between data and predictions from the WS4 formula (in keV). The 
line σ(M) refers to all the 2353 measured masses in AME2012, the line σ(Mnew)

to the measured masses of 219 “new” nuclei in AME2012, the line σ(M0.1) to 
the masses of 286 nuclei with |I − I0| > 0.1, the line σ(Sn) to all the 2199 mea-
sured neutron separation energies Sn , the line σ(Q α) to the α-decay energies of 
46 super-heavy nuclei (Z ≥ 106) [14]. The corresponding results of WS3 model are 
also presented for comparison. WS4RBF denotes that the radial basis function (RBF) 
corrections [46] are combined in the WS4 calculations.

WS3 WS4 WS4RBF

σ(M) 335 298 170
σ(Mnew) 424 346 155
σ(M0.1) 516 444 215
σ(Sn) 273 258 251
σ(Q α) 248 238 237

of a nucleus and of its mirror nucleus obtained with the tradi-
tional Strutinsky procedure by setting the smoothing parameter 
γ = 1.2h̄ω0 and the order p = 6 of the Gauss–Hermite polyno-
mials. The |I| term in �E is to take into account the mirror nuclei 
constrain [14] from the isospin symmetry, with which the accu-
racy of the mass model can be improved by 10%. For stable nuclei, 
f s 	 1 and fd 	 1 according to Eqs. (6) and (7). The increase of 
the shades in Fig. 1(b) represents the enhancement of nuclear 
symmetry energy for nuclei approaching the drip lines. We find 
that the surface diffuseness correction can significantly improve 
the accuracy of the predictions for the masses of the extremely 
neutron-rich and neutron-deficient nuclei.

Based on the 2353 (N and Z ≥ 8) measured nuclear masses 
Mexp in AME2012 [38] and searching for the minimal rms devia-

tion with respect to the masses σ 2 = 1
m

∑[M(i)
exp − M(i)

th ]2 by vary-
ing the values of the 18 independent model parameters, we obtain 
the optimal model parameters which are labeled as WS4 and listed 
in Table 1. In the parameter searching procedure, the downhill 
searching method and the simulated annealing algorithm [45] are 
incorporated. The former is used for the parameters of the single-
particle potential, while the latter is for the others. In Table 2 we 
list the rms deviations σ(M) between the experimental masses 
and predictions of the models (in keV). The rms deviation with 
respect to essentially all the available mass data falls to 298 keV 
with the WS4 formula, the best value ever found within the mean-
field framework. Comparing with the result of WS3, the value of 
σ(M) is reduced by 37 keV. There are 219 “new” data for nu-
clei first appearing in AME2012 [see the solid squares in Fig. 2(b)] 
and generally far from the β-stability line. Considering the surface 
diffuseness effect, the rms deviation with respect to the masses 
of these 219 nuclei falls to 346 keV. Comparing with the result 
of WS3, the improvement is 78 keV, which is significantly larger 
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Fig. 2. (Color online.) (a) Difference between measured and calculated masses with the WS4 formula. (b) Difference between calculated masses with WS3 and those with 
WS4. The squares and crosses denote the nuclei first appearing in AME2012 and the nuclei with |I − I0| > 0.1, respectively. The smooth and the zigzag curves denote the 
β-stability line from Green’s formula and the neutron drip line from the WS4 formula, respectively.
than the average improvement of 37 keV for the σ(M). Similarly, 
the masses for the 286 nuclei with |I − I0| > 0.1 [see the crosses 
in Fig. 2(b)] are much better reproduced with the WS4 formula. 
In addition, as one of the most prominent global interpolation and 
extrapolation schemes, the radial basis function (RBF) approach is 
powerful and efficient for further improving the accuracy of the 
global nuclear mass formulas [46,47]. Based on the WS4 calcula-
tions together with the RBF corrections proposed in [46], the rms 
deviation with respect to all the 2353 masses remarkably falls 
to 170 keV and the rms deviation to the 219 “new” data falls 
to 155 keV, approaching the chaos-related unpredictability limit 
(∼100 keV) for the calculation of nuclear masses [48].

In Fig. 2(a), we show the deviations of the calculated masses 
from the experimental data. For all the 2353 nuclei with Z and 
N ≥ 8, no deviation exceeds 1.23 MeV. Fig. 2(b) shows the dif-
ference between the calculated masses with WS3 and those with 
WS4. For most nuclei, the results of WS3 and WS4 are consistent 
in general (with deviations smaller than one MeV). For nuclei near 
the neutron drip line, the masses given by WS4 are larger than 
the results of WS3 by several MeV. This is due to the enhance-
ment of the nuclear symmetry energy coming from the surface 
diffuseness effect in the extremely neutron-rich nuclei. With the 
correction f s for the symmetry energy term, we also note that 
the bulk symmetry energy coefficient csym increases by one MeV, 
up to 30.16 MeV. The value of csym represents the symmetry coef-
ficient J of nuclear matter at saturation density. The optimal value 
of J = 30.16 MeV for the symmetry energy is consistent with the 
value of 30.0 MeV suggested in the latest Skyrme Hartree–Fock–
Bogoliubov (HFB) mass formulas [5,6] in which the model param-
eters are determined from the same nuclear mass datasets.

In summary, the surface diffuseness effect of nuclei near 
the drip lines is taken into account for the first time in the 
macroscopic–microscopic mass calculations. The rms deviation 
with respect to the 2353 known masses falls to 298 keV, the 
best value ever found within the mean-field approximation. The 
surface diffuseness of drip line nuclei influences both the sym-
metry energy and the shell corrections. With the surface diffuse-
ness correction for unstable nuclei, we obtain an optimal value of 
30.16 MeV for the symmetry energy coefficient which is consistent 
with the value in the latest Skyrme HFB formulas. The systematic 
improvement for the masses of neutron-rich nuclei demonstrates 
the recoupling of the proton and neutron matter and implies the 
possible existence of the “neutron halo” structure for nuclei ap-
proaching the neutron-drip line, especially for the light nuclei in 
which the value of the diffuseness correction ε is quite large due 
to the extremely large value of N/Z .
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