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Determination of the specific type of thyroid cancer is crucial for the prognosis and selection of treatment of this
malignancy. However, in some cases appropriate classification is not possible based on histopathological features
only, and it might be supported by molecular biomarkers. Here we aimed to characterize molecular profiles of
different thyroid malignancies using mass spectrometry imaging (MSI) which enables the direct annotation of
molecular features with morphological pictures of an analyzed tissue. Fifteen formalin-fixed paraffin-
embedded tissue specimens corresponding to five major types of thyroid cancer were analyzed by MALDI-MSI
after in-situ trypsin digestion, and the possibility of classification based on the results of unsupervised segmen-
tation of MALDI images was tested. Novel method of semi-supervised detection of the cancer region of interest
(ROI) was implemented. We found strong separation of medullary cancer from malignancies derived from thy-
roid epithelium, and separation of anaplastic cancer from differentiated cancers. Reliable classification of medul-
lary and anaplastic cancers using an approach based on automated detection of cancer ROI was validated with
independent samples.Moreover, extraction of spectra from tumor areas allowed the detection ofmolecular com-
ponents that differentiated follicular cancer and twovariants of papillary cancer (classical and follicular).We con-
cluded thatMALDI-MSI approach is a promising strategy in the search for biomarkers supporting classification of
thyroid malignant tumors. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna
Henkel and Prof. Peter Hoffmann.

© 2016 Published by Elsevier B.V.
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1. Introduction

Thyroid nodules are very common in the general population and can
be detected by palpation or ultrasonographic survey in about 5% of the
adult population. Malignant tumors occur in 5–10% of such nodules,
hence thyroid cancer is the most common endocrine malignancy and
comprises 1–3% of all cancers worldwide [1]. The majority of thyroid
carcinomas originate from follicular epithelial cells and include well-
differentiated papillary thyroid carcinomas (PTC; N70% of all thyroid
malignancies) and follicular thyroid carcinomas (FTC; 10–20% of
teom-Center, Ruhr-University
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thyroid malignancies), as well as anaplastic (undifferentiated) carcino-
mas (ATC) which are the most aggressive thyroid malignancy (1–2%
of thyroid cancers);moreover, two variants of PTC can be distinguished:
classical (PTC-CV) and follicular (PTC-FV). Furthermore, medullary thy-
roid carcinoma (MTC) that is derived from the parafollicular C-cells and
has neuroendocrine features, comprises 3–5% of thyroid cancers. The
types of thyroid cancer are distinguished based on histopathological
features, and this classification is the primary step in the assessment
of prognosis and selection of a treatment [2–5]. Themajority of patients
with thyroid cancer are initially diagnosed based on the fine needle as-
piration cytology (FNAC) of thyroid nodules [6,7]. Further diagnosis is
performed based on a histopathological intraoperative examination of
the resected thyroid tissue. However, in some cases cytological and his-
tological patterns are ambiguous and proper classification is problemat-
ic [8]. For example, among important challenges in the diagnostics of
thyroid cancer there is differentiation between benign follicular
cancer subtypes: Classification based on features of tissue revealed by
org/10.1016/j.bbapap.2016.10.006
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Table 1
Description of clinical material.

Code Pathology Stage Sex Age Surgery Content

MTC-1 MTC pT1bN1bMx M 47 2003 C, T
MTC-2 MTC pT2N0Mx M 51 2004 C, T, F
MTC-3 MTC pT2(m)N1bMx M 60 2006 C, T, F
ATC-1 ATC pT4bN1bMx F 75 2002 C, N
ATC-2 ATC pT4bN1aMx M 62 2004 C, N
ATC-3 ATC pT4aN1bMx M 14 2000 C, N, T
FTC-1 FTC pT1bNxMx F 65 1999 C, F
FTC-2 FTC pT3N0Mx M 57 1996 C, F
FTC-3 FTC pT2NxMx F 44 2011 C, F
PTC_CV-1 PTC CV pT2N1aMx F 58 2004 C, M, A, F
PTC_CV-2 PTC CV pT1bNxMx M 67 2002 C, M, A, F
PTC_CV-3 PTC CV pT3(m)NxMx F 64 2002 C, T, M, F
PTC_FV-1 PTC FV pT2N1bMx M 20 2003 C, M, A, F
PTC_FV-2 PTC FV pT2N1aMx F 31 2004 C, T, F
PTC_FV-3 PTC FV pT1bN1bMx M 9 2000 C, A, F

Pathology: MTC — medullary thyroid carcinoma; ATC — anaplastic thyroid carcinoma;
FTC— follicular thyroid carcinoma; PTC_CV— papillary thyroid carcinoma, classic variant;
PTC_FV — papillary thyroid carcinoma, follicular variant; patient's sex: F — female, M —
male; tissue sample content: C— carcinoma, N— necrosis, T— normal thyroid, M—mus-
cle, A — adipose tissue, F — fibrous tissue.
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adenoma, follicular carcinoma and the follicular variant of papillary car-
cinoma, which share several histological features [9,10].

Currently, classification of thyroid cancer based on histopathological
patterns could be supported by molecular biomarkers, including
markers identifiedwith the use of high-throughput “omics” approaches
[11–16]. The most numerous and advanced studies are based on muta-
tion and gene expression profiling. This type of studies revealed several
gene expression signatures, some of them associated with mutations in
cancer driver genes, which enable us to distinguish different types of
thyroid cancers or malignant tumors from benign lesions [17–21]. A
fewproteomics studies also identified proteinswhose differential abun-
dances could allow the discrimination of cancerous and normal thyroid
tissue [22,23], malignant and benign follicular lesions [24,25], or papil-
lary and follicular cancers [26]. Similarly, metabolomics analysis of thy-
roid tissue could also reveal molecular signatures characteristic for
different types of thyroid lesions [27]. It is noteworthy, however, that
the presence of non-tumor tissue in analyzedmaterial canmarkedly af-
fect composition and performance of molecular signatures built for the
classification of thyroid lesions. Therefore, performing molecular analy-
sis using micro-dissected material should always be considered [28].
Moreover, molecular intra-tumor heterogeneity is still a rather under-
researched aspect in the thyroid cancer field [29]. Hence, the direct
combination of knowledge of molecular profiles with morphological
features of an analyzed tissue would be a valuable approach in the
search for molecular classifiers of thyroid tumors.

Mass spectrometry imaging (MSI) is an emerging approach in bio-
medical research and it is recently evolving into a powerful tool in the
study of various types of diseases. Themajor benefit ofMSI is the possibil-
ity to combine molecular and morphological information, since molecu-
lar images are spatially resolved and well-correlated with the respective
histological images. Moreover, different molecular species, e.g. proteins,
peptides, lipids, drugs and their metabolites can be imaged, significantly
broadening the amount of information derived from a tissue [30–33].
Among many applications of MSI there was molecular characterization
and classification of different types of solid tumors [34–38]. The particular
advantage ofMSI in cancer research is the allocation ofmolecular profiles
to specific cell types, such as cancerous, preneoplastic or inflammatory.
Moreover, MSI could be used in the studies of the interface of tumor
and normal tissue (tumor niche) and intra-tumor heterogeneity
[39–44]. In recent years there were also a few attempts to implement
MSI in the studies of thyroid cancer. MSI analysis of cytological material
from FNA biopsies revealed proteomic profiles characteristic for different
types of thyroid cancer [45–46]. Recently Pagni et al. showed thatMALDI-
MSI was capable of distinguishing between papillary thyroid cancer and
benign thyroid tumors using proteomic signatures of cytological samples
[47]. Furthermore, MSI analysis of thyroid tissue allowed detection of
proteins discriminating papillary cancer from normal thyroid [48].
Hence, these preliminary studies indicated the promising potential of
the MSI approach in the search for molecular signatures that could be
used in the classification of thyroid malignancies. Here, we aim to use
MALDI-MSI to identify cancer type-specific features of formalin-fixed
paraffin-embedded (FFPE) tissue samples representative for five types
of thyroid cancers, and to apply molecular signatures revealed by MSI
for classification of malignant tissue specimens. Furthermore, we
established and implemented an original semi-supervised approach to
the detection of the cancer region of interest (ROI).

2. Methods

2.1. Clinical material

Postoperative tissue collected during thyroidectomy and stored as
formalin-fixed paraffin-embedded material was used in the study. Tis-
sue samples represented five types of thyroid malignancies: anaplastic
thyroid carcinoma (ATC), follicular thyroid carcinoma (FTC), classic var-
iant of papillary thyroid carcinoma (PTC-CV), follicular variant of
Please cite this article as:M. Pietrowska, et al., Molecular profiles of thyroid
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papillary thyroid carcinoma (PTC-FV), andmedullary thyroid carcinoma
(MTC); the material was collected from three patients in each group
(Table 1 presents detailed description of the clinical material). Thyroid-
ectomy was performed between 1996 and 2011 at Maria Skłodowska-
Curie Memorial Cancer Center and Institute of Oncology in Gliwice.
The studywas approved by the Institutional Ethics Committee (Approv-
al No. KB/430-49/12). Tissue material was re-inspected by an experi-
enced pathologist before the study; the selected samples contained
50–90% of cancer tissue (small amounts of normal thyroid, muscles
and connective tissue were also present).

2.2. Sample preparation

FFPE tissue samples were sectioned (10 μm) using a rotary micro-
tome (HM 340E, Thermo Fisher Scientific, Waltham, MA, USA) at
room temperature and placed on ITO coated glass slides (Bruker
Daltonik, Bremen, Germany). Tissue sections were subjected to
dewaxing and rehydration in histology glass containers via consecutive
washes (5 min each) in: xylene (twice), isopropanol, ethanol 99.8%,
90%, 70% and 50% EtOH, and finally in TBS buffer. The rehydration step
was followed by heat-induced antigen retrieval: sections were heated
at 97 °C for 30 min in a retrieval solution (20 mM Tris/EDTA buffer,
pH 9). In the next step tissue sections were coated with a solution of
trypsin (20 μg in 200 μL of 50 mM NH4HCO3; Promega, Madison, USA)
with the use of an automatic spraying device (ImagePrep, Bruker),
then incubated for 18 h at 37 °C in a humid chamber. Optical images
were registered (1200 dpi), and then samples were coated with meth-
anolic solution of 2,5-dihydroxybenzoic acid (50% methanol, 30
mg/mLDHB, 1% TFA). Thematrixwas deposited using ImagePrep device
with Bruker's standard matrix coating program with doubled phase 5
(DHB_for_Digest_nsh01).

2.3. MALDI imaging

Matrix-coated sections were subjected to imaging with the use of a
MALDI-TOF/TOF ultrafleXtreme (Bruker) spectrometer equipped with
a smartbeam II™ laser operating at 1 kHz repetition rate. Ions were ac-
celerated at 25 kVwith PIE timeof 100 ns. Spectrawere recorded in pos-
itive reflectron mode within m/z range of 600–4000 and externally
calibrated with Peptide Calibration Standard II (Bruker). A raster
width of 100 μm was applied with a large laser focus and 500 shots
were collected from each ablation point (random walk was activated
in the scanning procedure with 50 shots at a raster spot). Compass 1.4
for FLEX series (Bruker) was employed for spectra acquisition,
cancer subtypes: Classification based on features of tissue revealed by
org/10.1016/j.bbapap.2016.10.006
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processing and creation of molecular images. After imaging the matrix
was washed off the glass slides with 70% ethanol (two washes, 1 min
each) and the sections were stained with hematoxylin and eosin, then
scanned and used for image co-registration using flexImaging version
4.1 software (Bruker).
2.4. Spectra processing and identification of spectral components

Spectrum preprocessing included resampling to commonm/z chan-
nels followed by detection and removal of a baseline (baseline detection
employed the envelope spanned over 10% intensity quantiles calculated
for every 200 m/z windows approximated with the use of spline tech-
nique). The spectra were then aligned, TIC normalized and averaged
over all preparations. The mean spectrumwas decomposed into Gauss-
ian Mixture Model (GMM) as described in detail elsewhere [49]; the
model componentswere used to define spectral features. For every spe-
cific (x,y) point in every preparation and for every component in GMM
model a convolution of a normalizedMALDI spectrumand a component
of Gaussian function was performed giving an integral of the pointwise
multiplication of these two functions as the GMM component-related
feature value.
2.5. Deglomerative ik-means based grouping of tissue preparations

GMM-based features were used during the iterative divisive ik-
means segmentations (DivIK) of all 15 samples together according to
the approach described in detail elsewhere [50]. The feature abundance
filtering [51] was applied to remove peptides with intensities at the
noise level. During each iteration of the developed algorithm, the most
informative features within a tissue region (cluster) were identified
with the use of the same filtration technique, yet signal decomposition
was performed in the domain of variance of peak abundance across
the cluster. K-means algorithm with intelligent setting of initial condi-
tions (named ik-means) was applied in the stepwise splitting. Dunn's
index was used to decide on the number of clusters in a particular split-
ting. During the succeeding steps, each cluster found in the previous
step was split independently of the others. The splitting was performed
till the cluster's size (measured by the number of spectra included)
reached a priori assumed limit of 0.1% of the original number of (x,y)
points in the dataset or the third level of splittingwas achieved. The ob-
tained clusters were then characterized by their centroids calculated
over all GMM-based features. The final set of centroids, representing
molecularly homogenous regions within tissue sample, was then used
in further analyses. After each step of the deglomerative segmentation,
cluster enrichment analysis was performed within each sample
allowing the identification of clusters over represented in particular
samples. Χ2 test of independence was applied to verify the hypothesis.
If any outlying group of such samples was found, it was excluded from
the next step of splitting.
2.6. Step-down segmentation and expanded ROI

TheDivIK-based step-down segmentation of datawas performed for
each sample separately to obtain basic (core) homogenous segments
further represented by their centroids. The algorithm's stop criterion
was related to cluster size only, i.e. 0.1% of original number of spectra
in the sample. The correlation-based dissimilarity index was estimated
between each basic segment and a sample-specific expert-defined can-
cer reference area. The distribution of such dissimilarity indices was
subjected to the GaussianMixtureModeling [51], which allowed the es-
timation of the dissimilarity thresholds separating groups of segments
that were the most similar and the most dissimilar to the reference
area. Segments allocated to the “cancer-similar” group constructed the
cancer “extended Region of Interest” (exROI).
Please cite this article as:M. Pietrowska, et al., Molecular profiles of thyroid
mass spectrometry imaging, Biochim. Biophys. Acta (2016), http://dx.doi.
2.7. Cancer classification

The initial set of 15 samples was randomly split into two balanced
subsets: training and testing ones — the random drawing was done in-
dependently for each cancer type keeping 2:1 ratio between training
and testing sets. Two classification approaches were compared.

2.7.1. Classical approach
The training dataset included 58,890 spectra from the tumor regions

manually segmented by an expert (supervised approach); each spec-
trum was labeled with a cancer type. Five “One (cancer type) versus
Other (cancer types)” (OvO)binary classifierswere built using the logis-
tic regression framework with Bayes factor as a criterion for model se-
lection. The value of Bayes factor showing at least strong evidence
(BF N 103/2) was set as the inclusion criterion in the forward stepwise
procedure of model construction. The regression models were then ap-
plied to calculate the probability that a particular “cancerous” spectrum
belonged to a particular cancer type; the spectrum was classified as
“belonged to cancer type” if the calculated probability was N0.5. The
maximum probability criterion was applied, where the type of tested
sample is enforced by the leading cancer type assigned to the spectra
within the tumor region. Only samples with N50% of spectra being of
the same typewere classified (others were labeled as “undetermined”).
The performance of the obtained classifierswas checkedusing the train-
ing and testing sample sets.

2.7.2. Novel approach
Cancer exROIs and corresponding “Not Cancer” exROIs from 10

training samples (semi-supervised approach)defined the starting train-
ing data set, and were used to build the “Cancer versus Not Cancer”
(CvNC) binary classifier. The classifier trainingwas performed in the do-
main of 2478 homogenous similar-to-cancer basic segments, each rep-
resented by its centroid calculated in the domain of 3216 GMM
components. The logistic regression framework with all the settings
similar to those from classical approach was applied. The obtained re-
gression model was then applied to calculate the probability of spec-
trum to be cancer-similar: the spectrum was classified as “actual
cancer” if the estimated probability was N0.5. Together with the CvNC
classifier, five additional “One versus Others” (OvO) binary classifiers
were also built using the same framework. The performance of the ob-
tained classifiers was checked using the training and testing sample
sets. Additional set of 4 new samples was included for the independent
validation of the OvO classifiers. In contrary to samples from the testing
set, these sampleswere not consideredwhile theGMMmodelwas built.
The rawspectra from the independent validation setwere aligned to the
average spectrumof the initial 15 samples andnormalized to their aver-
age TIC value, then the components' abundanceswere found by the con-
volution of 3216 GMM masks. Two steps of classification were
performed: during the first one “actual cancer” spectra were found
with the use of general CvNC classifier. The second step employed all
five OvO classifiers to predict the cancer type of all cancer spectra.

2.8. Supervised detection of GMM-based components differentiating
between types of cancer

Both expert-defined cancer regions and cancer exROIs were used in
the search for GMM-based components discriminating between the
types of cancer. Components that putatively corresponded to four
major tryptic fragments of trypsin, namely 842.51, 1045.56, 2211.10
and 2283.18 Da, were removed from the analysis. Parametric Tukey-
Kramer tests were applied to verify hypotheses on equality of abun-
dance level of spectral components between cancer types. The conser-
vative Bonferroni correction for multiple testing together with
additional condition on large effect size measured by the Cohen's d sta-
tistics to be higher than 0.8 were applied to avoid large false discovery
rates.
cancer subtypes: Classification based on features of tissue revealed by
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2.9. Hierarchical agglomerative clustering of ik-means centroids and mean
spectra

The centroids of the 3rd level clusters obtained in global divisive ik-
means-based segmentation were subjected to agglomerative merging
by hierarchical clustering technique with average linkage function and
Pearson's correlation coefficient serving as a similarity measure. Similar
hierarchical agglomeration was done in the domain of average GMM-
based features (the mean spectra).

3. Results

There were fifteen FFPE tissue specimens representative for five
types of thyroid cancer, namely medullary (MTC), anaplastic (ATC)
and three types of differentiated cancers (FTC, PTC-CV and PTC-FV)
(Table 1), analyzed byMALDI-MSI. The selected specimensmostly com-
prised of cancerous tissue and aminor proportion of other tissues (nor-
mal thyroid, muscles and connective tissue), which was verified by an
experienced pathologist based on histological features. Tissue samples
were analyzed after in-situ trypsin digestion within 600–4000 Da
mass range, hence the majority of detected components (with masses
above 800 Da) corresponded to tryptic fragments of proteins present
in cancer tissue (including their isotopic envelope). There were 3216
components identified, which comprehensively described molecular
profiles of all analyzed tissue samples. Complete information about
the abundance of these components was used in both supervised and
unsupervised analyses aimed at the estimation of differences between
tissue specimens of different types of thyroid carcinomas; Fig. 1 sche-
matically represents the implemented approaches.

In the first approach tissue specimens were compared using an un-
supervised approach without any information on the histopathological
structure of the samples. Above 200,000 spectra registered for all 15
samples were subjected to a clustering using our own recursive algo-
rithm. Distribution of clusters detected during the deglomerative seg-
mentation was used to estimate general similarities among different
tissue samples (Fig. 2A; complete results of the performed segmenta-
tion are presented in Supplementary Fig. S1). In the initial analysis all
Fig. 1. Different approaches implemented
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15 tissue samples were examined together (i.e. global segmentation);
clustering (i) in Fig. 2A. Two separate groups of samples were revealed
(χ2 test p-value b 1e−08), one of them consisting of medullary cancer
(MTC) samples and the other one including all other samples. In thefirst
level of this segmentation the cluster of spectra characteristic for MTC
contributed to the majority of all spectra registered for the three MTC
samples (89%, 52%, and 58%, respectively) and was negligible in the
case of other samples (b1%). The “outlying” MTC samples were re-
moved from subsequent cluster analysis; clustering (ii) in Fig. 2A. This
step of deglomerative splitting also revealed two groups of samples
(with p-value for overrepresentation p b 1e−04): the first group of
samples consisted of three samples corresponding to anaplastic carcino-
ma (ATC), whereas the other group contained all other samples corre-
sponding to differentiated cancer (FTC, PTC-CV and PTC-FV). In the
first level of this segmentation the cluster of spectra characteristic for
ATC contributed to 61%–97% of all spectra registered for ATC samples,
and to 1%–37% of all spectra registered for the remaining samples. For
the subsequent analysis the three ATC samples were removed and the
next step of deglomerative sample grouping was performed; clustering
(iii) in Fig. 2A. However, distributions of clusters in the remaining sam-
ples were similar and meaningful discrimination between the types of
differentiated cancer was not possible. Furthermore, the contribution
of each cluster to the composition of a particular sample was used to
classify all 15 tissue specimens. A dendrogram reflecting the similarity
of samples based on the distribution of clusters detected at the 3rd
level of global segmentation is shown in Fig. 3A. We observed separa-
tion of MTC samples and ATC samples in distinct branches of the den-
drogram, yet samples corresponding to differentiated cancers were
mixed all together. We concluded that the overall features of the sam-
ples, which were mirrored in the distribution of clusters detected in a
whole specimen, allowed discrimination of the most distinctive types
of thyroid cancer — MTC and ATC. However, samples of well-
differentiated cancers (FTC, PTC-CV and PTC-FV) cannot be discriminat-
ed based on this type of analysis.

In further analyses we implemented additional expert-based infor-
mation about the location of tissue regions corresponding to tumor.
Cancerous regions were identified and marked by a pathologist in
in classification of thyroid cancers.

cancer subtypes: Classification based on features of tissue revealed by
org/10.1016/j.bbapap.2016.10.006
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Fig. 2. MALDI-MSI analysis of different types of thyroid cancer. Panel A – Results of the deglomerative grouping of samples. Subsequent clustering experiments (i), (ii) and (iii) were
performed for all tissue samples (global segmentation), after removal of MTC samples, and after removal of ATC samples, respectively; marked are clusters detected at the 1st level of
segmentation: (i) - yellow and navy blue, (ii) – green and yellow, (iii) – violet and blue. Panel B - Areas corresponding to actual tumor were marked in red on H&E stained tissue
preparations; yellow dots correspond to the reference cancer areas. Panel C – Expanded ROIs were established in each sample individually for cancer, not cancer and undefined
(indeterminate) areas; only spectra from cancer and not cancer exROIs of samples from the training set were used to train the “cancer versus not cancer” classifier. Panel D –
Heatmaps of local cancer probability estimated basing on the general “cancer vs. not cancer” classifier. Abbreviations: MTC – medullary thyroid carcinoma; ATC – anaplastic thyroid
carcinoma; FTC – follicular thyroid carcinoma; PTC-CV – papillary thyroid carcinoma, classic variant; PTC-FV – papillary thyroid carcinoma, follicular variant.
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each sample (Fig. 2B). Spectra exported from these expert-defined
tumor areas (ca. 35–85% of registered spectra)were used for supervised
analysis aimed at the identification of components discriminating dif-
ferent types of thyroid cancer; the average tumor-specific spectra com-
puted for each cancer type are presented in Supplementary Fig. S2. First,
we testedwhether the overall profiles of tumor-related spectra could be
used to assess differences between particular types of thyroidmalignan-
cies. Vectors of average abundances of GMM-based features were com-
puted for each sample, and then a dendrogram reflecting the detected
similarities was calculated by hierarchical agglomeration (Fig. 3B). We
observed the separation ofMTC samples and ATC samples from samples
Fig. 3. Similarity between samples corresponding to five different types of thyroid cancer. Pan
segmentation). Panel B – Dendrogram based on average tumor-specific spectra. Abbreviat
follicular thyroid carcinoma; PTC-CV -papillary thyroid carcinoma, classic variant; PTC-FV – pa

Please cite this article as:M. Pietrowska, et al., Molecular profiles of thyroid
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corresponding towell-differentiated cancers thatwere present in a sep-
arate branch of the dendrogram, yet further separation of the latter
samples into specific types was not possible. We hypothesized that po-
tential components having different abundances between the samples
of FTC, PTC-CV and PTC-FV were apparently over-dominated by more
frequent “non-differentiating” components, hence discrimination of
well-differentiated thyroid cancer could not be performed based on a
general molecular profile reflected in averaged spectra. However, abun-
dance of components characteristic for MTC and ATC was sufficiently
high, which allowed their discrimination also based on general profiles
of the registered spectra.
el A – Dendrogram based on general distribution of clusters (at the third level of global
ions: MTC – medullary thyroid carcinoma; ATC – anaplastic thyroid carcinoma; FTC –
pillary thyroid carcinoma, follicular variant.
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To refine the possibility of discrimination of thyroid malignancies
based on spectra extracted from expert-defined tumor regions, a classi-
fication approach was implemented as the next step. All individual
spectra were analyzed using five different “One (cancer type) versus
(all) Other (cancer types)” binary classifiers. All 15 tissue samples
were split randomly into two sets — a training set (10 specimens; 2
samples from each cancer type) and a testing set (5 specimens; 1 sam-
ple from each cancer type). The result of sample classification was con-
sidered meaningful if N50% of spectra extracted from tumor area could
be assigned to a given type of cancer (an individual spectrum could be
classified positively asmore than one type, hence the resulting percent-
ages may not add to 100%). We observed reliable classification of all
samples in the training set. However, in the testing set only samples of
MTC and PTC-FV were classified properly, while the other samples
were undetermined (ATC and FTC) or misclassified (PTC-FV); the re-
sults are summarized in Table 2.

Moreover, we tested whether molecular features of tissue regions
detected by unsupervised segmentation of MSI images could be used
for classification of thyroid cancers. For this purpose we implemented
a novel method for semi-supervised detection of ROI representing the
actual cancer region. For each sample a step-down segmentation was
performed that resulted in a large number of small homogeneous clus-
ters (600–1800 clusters per sample), which established “basic seg-
ments” and reflected the intrinsic heterogeneity of specimens. Spectra
registered in each basic segment were represented by its centroid,
which allowed for more than 10-fold reduction in dimensionality
(16,617 segments overall) and facilitated further computation. Then,
in each specimen a small “reference” region was marked by a patholo-
gist (about 2–4% of the specimen's area) which corresponded to clearly
defined foci of cancer cells (excluding necrosis and other tumor-related
areas). Similarity of each basic segment to such cancer reference region
was assessed afterwards, and subsequently sets of basic segments were
identified in each sample individually using a statistical approach: “can-
cer similar”, “not cancer similar” and “indeterminate”. Segments in each
set were combined to form an expanded ROI (exROI) for cancer, not
cancer and unclassified tissue (Fig. 2C). Subsequent classification of can-
cer types was performed in two steps allowing (i) semi-supervised de-
tection of cancer regions based on general features of thyroid
malignancies, and then (ii) identification of cancer types based on fea-
tures of detected cancer regions only. In the first step, spectra extracted
from all cancer exROIs and not cancer exROIs (irrespective of cancer
Table 2
Results of cancer type classification performedwith classifiers based on expert-defined tumor ar
a given type of cancer by the “One versus Others” approach. True and false results of classificat

Sample set Sample Classification by expert-defined tumor area

MTC ATC FTC PTC_CV PTC_FV Result

Training MTC-1 99.7% 1.1% b0.1% 0.3% b0.1% MTC
MTC-2 99.6% 0.2% 0.2% 0.1% b0.1% MTC
ATC-1 0% 94.1% 0.3% 0% b0.1% ATC
ATC-3 0% 85.1% 0.4% 9.3% 0.1% ATC
FTC-2 0% 4.8% 93.9% 6.5% 0.6% FTC
FTC-3 0% 0.4% 98.4% 4.6% 12.9% FTC
PTC_CV-1 0.1% 15.4% 7.5% 82.4% 5.5% PTC_C
PTC_CV-2 0% 1.3% 0.2% 91.6% 1.2% PTC_C
PTC_FV-2 0% 1.4% 0.4% 23.6% 91.6% PTC_F
PTC_FV-3 0% 4.4% 0.5% 8.5% 76.1% PTC_F

Testing MTC-3 98.3% 0.9% 13.7% 9.4% 0.2% MTC
ATC-2 b0.1% 16.4% 6.4% 8.9% 0.1% Undet
FTC-1 0% 15.1% 0.5% 31.1% 35.2% Undet
PTC_CV-3 0% b0.1% 23.2% 36.1% 60.9% PTC_F
PTC_FV-1 0% 0% 41.2% 1.4% 60.3% PTC_F

Independent validation V-1
V-2
V-3
V-4

Please cite this article as:M. Pietrowska, et al., Molecular profiles of thyroid
mass spectrometry imaging, Biochim. Biophys. Acta (2016), http://dx.doi.
type) were used to test the universal “Cancer vs. Not Cancer” binary
classifier, which allowed automated detection of cancer areas in all tis-
sue specimens. The probability of classification of an individual spec-
trum as cancer-similar is depicted in Fig. 2D in a form of heatmaps;
areas containing spectra that showed probability of such classification
higher than 50% were considered as actual cancer regions. Afterwards,
all individual spectra from cancer regions were analyzed by five “One
versus Others” binary classifiers using the same split of samples in the
training and the testing set (10 and 5 samples, respectively) as de-
scribed in the previous section. Positive classification of all samples in
the training set was observed (similar to classification based on
expert-defined tumor region). In the testing set three samples were
classified properly — MTC, ATC and PTC-FV, while two samples were
misclassified (FTC and PTC-CV); detailed results are presented in
Table 2. This classification approach was further validated using four
new independent tissue specimens. In this independent validation set
there were two samples classified properly — MTC and ATC, while two
samples representing differentiated epithelium-derived cancer (FTC
and PTC-CV) were misclassified (Table 2 and Fig. 4). We concluded
that the classification approach based on automated detection of ex-
panded cancer ROIs allowed a reliable classification of medullary and
anaplastic cancer, which was validated using independent samples.
Hence, the results of this innovative approach seemed superior to the
results of a more classical approach based on spectra extracted from
expert-defined tumor regions. However, this method also failed to dis-
criminate samples of differentiated epithelium-based cancers.

Finally, we searched for spectral components with significantly dif-
ferent abundances between the compared types of thyroid malignan-
cies. The pairwise comparisons were performed between the five
types of thyroid cancers (using all 15 samples from the initial sample
set) based on spectra from either expert-defined tumor regions or
from expanded cancer ROIs described above (detailed results in Supple-
mentary Table S1); examples of such components are presented in Sup-
plementary Fig. S3. As one could expect, the highest number of
differentiating components was observed between C-cell-derived and
epithelium-derived cancers; about 25% of detected components dis-
criminated MTC from all other types of thyroid cancer. Differences
among the types of epithelium-derived cancers were less frequent.
There were about 8%, 5% and 2% of detected components that differen-
tiated ATC fromboth subtypes of PTC, FTC, and all types of differentiated
cancers, respectively (in the analysis of spectra from expert-defined
eas and expanded cancer ROI. Shown is percentage of spectra in cancer regions assigned to
ion are marked in bold and italics, respectively.

Classification by expanded cancer ROI Actual type

MTC ATC FTC PTC-CV PTC-FV Result

93.1% 4.2% 0.2% 0.2% 0.5% MTC MTC
89.3% 4.5% 1.6% 2.1% 3.2% MTC MTC
b0.1% 98.1% 5.8% 1.4% 1.6% ATC ATC
b0.1% 62.1% 5.6% 11.1% 6.9% ATC ATC
0.4% 4.2% 81.3% 10.9% 2.5% FTC FTC
0% 1.9% 94.2% 4.4% 3.5% FTC FTC

V b0.1% 5.1% 14.4% 78.4% 15.7% PTC_CV PTC_CV
V b0.1% 5.6% 14.9% 66.2% 25.8% PTC_CV PTC_CV
V b0.1% 4.1% 6.1% 4.1% 86.8% PTC_FV PTC_FV
V 0% 15.4% 2.3% 11.4% 71.6% PTC_FV PTC_FV

56.2% 6.1% 11.6% 0.4% 3.8% MTC MTC
ermined b0.1% 57.1% 33.4% 14.8% 12.9% ATC ATC
ermined 0% 11.2% 16.3% 28.3% 38.4% Undetermined FTC
V b0.1% 11.3% 28.7% 33.3% 66.9% PTC_FV PTC_CV
V b0.1% 8.8% 74.4% 3.6% 81.1% PTC_FV PTC_FV

b0.1% 34.9% 4.1% 22.1% 17.5% Undetermined FTC
50.3% 7.2% 40.8% 0.6% 18.2% MTC MTC
0% 54.4% 3.5% 12.9% 35.4% ATC PTC_CV
0% 62.7% 8.4% 5.3% 22.3% ATC ATC

cancer subtypes: Classification based on features of tissue revealed by
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Fig. 4. Results of classification of cancer types by the five “OvO” classifiers using the semi-
supervised approach based on exROIs. Panel A – Location of cancer-derived spectra
assigned to a particular cancer type in exemplary samples from the training set;
samples' areas marked in gray corresponded to cancer exROIs. Panel B – Classification of
samples in the independent validation set. Presented are heatmaps of probability of
classification of spectra as cancer-derived (upper row, scale the same as in Fig. 2D), and
location of cancer-derived spectra assigned to a particular cancer type. Validation
samples V-1, V-2, V-3 and V-4 corresponded to FTC, MTC, PTC-CV and ATC, respectively.
Abbreviations: MTC – medullary thyroid carcinoma; ATC – anaplastic thyroid
carcinoma; FTC – follicular thyroid carcinoma; PTC-CV -papillary thyroid carcinoma,
classic variant; PTC-FV – papillary thyroid carcinoma, follicular variant.
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tumor areas). Moreover, about 2% of detected components differentiat-
ed FTC from both subtypes of PTC. Furthermore, components that dis-
criminated between PTC-CV and PTC-FV were also detected. It is
noteworthy that discriminatory components detected in analyses
based on spectra from expert-defined tumor areas and from cancer
exROIs overlapped substantially (Table 3). Moreover, the analysis
based on exROIs reduced unexpectedly large difference between sam-
ples of PTC-FV and all remaining samples, observed in spectra from
expert-defined areas, which made subsequent comparisons more
credible.
Please cite this article as:M. Pietrowska, et al., Molecular profiles of thyroid
mass spectrometry imaging, Biochim. Biophys. Acta (2016), http://dx.doi.
4. Discussion

One of the major advantages of MALDI-MSI lies in its capability to
measure abundances of molecular species in the histological context.
This approach allows unbiased analysis of intact tissue sections, avoiding
sample homogenization and preserving its anatomical features. As a re-
sult molecular information specific for particular tissue regions can be re-
vealed without the necessity of their physical separation. Moreover, the
ability to perform unsupervised analysis of imaging data allows the dis-
crimination of tissue regions which could not be revealed by classical
morphology-based approaches [30–36]. Complex composition of tissues
and organs results in the possible “contamination” of a target of interest
with products of adjacent or intruding tissues, which is a potential prob-
lem inmany types ofmolecular studies. Therefore, a study focused specif-
ically on cancer proteome could be challenged by the necessity of the
physical separation of cancer cells from other tissue components such
as necrotic areas, connective tissue ormuscles by using lasermicrodissec-
tion to provide the best quality of results [52]. In this study the MALDI-
MSI approach was used to search for molecular features characteristic
for different types of thyroidmalignancies.Molecular signatures of cancer
were established using spectra exported from specific tissue areas de-
fined by a pathologist as a tumor based on their morphological features,
which might be called a “virtual microdissection”. Precise combination
of a molecular profile with its histological context requires annotation
of MSI data with a morphological picture using the same section of
FFPEmaterial. However, histological inspection of H&E stained tissue fol-
lows MALDI-MSI, hence microscopically analyzed material is potentially
damaged and distorted by earlier procedures. Moreover, cancer cells
could form micro-foci embedded within other types of cells or may
have morphology resembling normal tissue. As a consequence, some de-
tails of cancerous tissue structure could be missed or improperly
interpretedduring apathologist re-inspection of tissue samples previous-
ly subjected to MALDI-MSI. To overcome this potential problem we pro-
pose an approach that combines expert knowledge and unsupervised
segmentation of MSI maps. A small “reference” cancer area is detected
by the pathologist that contains actual cancer cells and is devoid of ne-
crotic cells and components of tumor niche. The whole tissue specimen
is subjected to in-depth segmentationwhich allows us to detect small ho-
mogenous clusters, called “basic segments”, which reflect the intrinsic
heterogeneity of tissue. Then, basic segments showing a high degree of
molecular (spectral) similarity to the cancer reference area are detected
and merged as a “cancer extended ROI” to be used in further analyses.
This semi-supervised approach helped retrieve information from small
foci of the cancer cell and to use all spectra potentially reflectingmolecu-
lar features of cancer. Simultaneously, confounding information related
to small foci of normal or necrotic cells frequently intruding into the can-
cer area was removed. Moreover, our approach offers other important
benefits, which include substantial dimension reduction in large datasets
resulting in lower computation load required for their analyses, aswell as
less laborious andmore crediblework of an expert in detection of specific
areas present in a heterogeneous tissue specimen. Hence, universal
merits of the proposed approach make it useful for any other MSI-
based study oriented on detection and characterization of disease-
affected tissue regions.

In this work molecular profiles of tissue sub-regions revealed by su-
pervised, semi-supervised and unsupervised analyses of MALDI-MSI
data were used aiming to classify different types of thyroid cancers. All
implemented approaches allowed the reliable discrimination of sam-
ples containing medullary thyroid carcinoma. MTC is a thyroid malig-
nancy uniquely derived from neuroendocrine parafollicular C-cells. Its
molecular profile is apparently distinct from other thyroidmalignancies
derived from follicular epithelial cells, and includes expression of calci-
tonin and other hormone-related proteins [53]. The abundance of mo-
lecular factors characteristic for MTC appeared sufficient to allow
detection of this type of cancer based on the results of unsupervised seg-
mentation of MSI-generated data, as well as for proper classification of
cancer subtypes: Classification based on features of tissue revealed by
org/10.1016/j.bbapap.2016.10.006
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Table 3
Number of spectral components with significantly different abundances between areas
corresponding to different types of thyroid cancer. Each linewith bolded characters repre-
sents the number of differentiating components which overlapped in pairwise compari-
son listed in the lines above.

Difference between
cancer types

Number of discriminating components

Expert-defined
cancer areas

Expanded cancer
ROI

Both criteria

MTC vs. ATC 1581 (49%) 1868 (58%) 1548 (48%)
MTC vs. FTC 1995 (62%) 2040 (64%) 1892 (59%)
MTC vs. PTC-CV 1639 (51%) 1759 (55%) 1572 (49%)
MTC vs. PTC-FV 1792 (56%) 1770 (55%) 1595 (50%)
MTC vs. all no-MTC 804 (25%) 1108 (34%) 757 (24%)
ATC vs. PTC-CV 300 (9,3%) 275 (8.6%) 215 (6.7%)
ATC vs. PTC-FV 1927 (59%) 663 (21%) 643 (20%)
ATC vs. all PTC 258 (8.0%) 241 (7.5%) 179 (5.6%)
ATC vs. FTC 171 (5.3%) 80 (2.5%) 73 (2.3%)
ATC vs. all no-ATC 73 (2.3%) 53 (1.7%) 40 (1.2%)
FTC vs. PTC-CV 85 (2.6%) 103 (3.2%) 60 (1.9%)
FTC vs. PTC-FV 1342 (42%) 405 (13%) 389 (12%)
FTC vs. all PTC 55 (1.7%) 92 (2.9%) 50 (1.6%)
PTC-CV vs. PTC-FV 1182 (37%) 77 (2.4%) 72 (2.2%)

Abbreviations:MTC—medullary thyroid carcinoma; ATC— anaplastic thyroid carcinoma;
FTC— follicular thyroid carcinoma; PTC-CV— papillary thyroid carcinoma, classic variant;
and PTC-FV— papillary thyroid carcinoma, follicular variant.
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thismalignancy validatedwith independent samples. This is ameaning-
ful observation becauseMTC frequently represents a follicular pattern of
growth, hence its histopathological examination should be frequently
supplemented with molecular diagnostics for proper discrimination
from epithelium-derived follicular tumors [54]. Another type of thyroid
cancer that could be discriminated thanks to the analysis of MALDI-MSI
datawas undifferentiated anaplastic cancer (ATC), whichwas separated
from differentiated cancers based on distribution of the detected clus-
ters as well as general composition of its molecular profile (i.e. average
spectrum registered by MALDI-MSI). Moreover, proper classification of
this malignancy was also validated with independent samples. Signifi-
cant differences in proteomic profiles between undifferentiated and dif-
ferentiated thyroid carcinomas could be predicted based on robust
differences in gene expression profiles among these malignancies,
which apparently involves dysregulation of matrix metalloproteinase
pathways in ATC [55]. On the other hand, analyses based on molecular
profiles detected during MALDI-MSI could neither discriminate nor
classify three types of differentiated thyroid carcinomas. However, it
should be noted that histopathological diagnosis of PTC-CV, PTC-FV
and FTC is strictly based onmicroscopic examination of tissuemorphol-
ogy (e.g. structure of cell nuclei) [5,9]. Relatively low spatial resolution
of MALDI-MSI used in the present study (100 μm) did not allow the ad-
dressing ofmicroscopic features of tissues. This limitation, togetherwith
the relative similarity of general molecular profiles detected by MALDI-
MSI in differentiated thyroid cancers, could contribute to the low dis-
criminatory power of the classification methods used in the present
work. However, the feasibility of classification of thyroid malignancies
using MSI analysis of tissue specimens might be reassessed if methods
based on molecular profiles used data recorded with a higher spatial
resolution or were combined with approaches addressing the texture
of samples.

Molecular differences between differentiated thyroid carcinomas –
papillary and follicular – were observed at the level of gene expression
profiles [21] and cancer metabolome [15]. Moreover, differences be-
tween PTC and FTC were also reported at the level of cancer proteome.
A set of 9 proteins isolated from tissue extracts, including 14-3-3 iso-
forms, ANXA5, TUBA1B, PRX6, A1AT, SELENBP1, and PDIp, could dis-
criminate PTC and FTC with 100% positive predictive value [26].
However, proteomic signatures specific for classical and follicular vari-
ants of PTC, which could support differential diagnosis of these two var-
iants of papillary cancer, were not reported. The MALDI-MSI approach
was previously applied to analyze cytological smears of FNA thyroid
Please cite this article as:M. Pietrowska, et al., Molecular profiles of thyroid
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specimens. There were several spectral components revealed that dis-
criminated different types of thyroid tumors: benign nodules, Hurthle
cell follicular adenomas, PTC andMTC [45–47]. Moreover, a few spectral
components discriminating classical and follicular variants of PTC were
also detected using cytological material [46]. Here we found that analy-
sis of spectra exported from tumor regions allowed detection of several
components with significantly different abundances between FTC, PTC-
CV and PTC-FV. We concluded that MALDI-MSI that allows retrieval of
molecular profiles specific for tumor regions, which could be called “vir-
tual microdissection”, followed by the identification of differentiating
proteins by on-tissueMS/MS is a promising approach to detect potential
biomarkers to support diagnosis of differentiated thyroid tumors.

Supplementary data to this article can be found online at doi:10.
1016/j.bbapap.2016.10.006.
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