
Computers and Mathematics with Applications 62 (2011) 4708–4716

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Synchronization between a fractional-order system and an integer order
system
Li-xin Yang ∗, Wan-sheng He, Xiao-jun Liu
School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001, Gansu, China

a r t i c l e i n f o

Article history:
Received 14 March 2011
Received in revised form 4 August 2011
Accepted 24 October 2011

Keywords:
Fractional-order chaotic system
Chaotic system of integer order
Stability theory
Tracking control

a b s t r a c t

This paper investigates chaotic synchronization between fractional-order chaotic systems
and integer-order chaotic systems. Based on the idea of tracking control and the stability
theory of the linear fractional-order system, we design the effective controller to realize
the synchronization between fractional-order and integer-order chaotic systems. Theory
analysis and numerical simulation results show that the method is effective and feasible.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of fractional calculus is a 300-year-old topic which can trace back to Leibniz, Riemann, Liouville, Grünwald,
and Letnikov [1,2]. However, the fractional calculus did not attract much attention for a long time. Nowadays, the past
three decades have witnessed significant progress on fractional calculus, because the applications of fractional calculus
were found in more and more scientific fields, covering mechanics, physics, engineering, informatics, and materials. The
list of such applications is long, for instance, it includes viscoelasticity [3,4], colored noise, dielectric polarization [5],
electrode–electrolyte polarization [6], electromagnetic waves [7] and so on.

On the other hand, since Pecora and Carroll synchronizing two identical chaotic systems with different initial
conditions [8], chaotic synchronization has been intensively and extensively investigated because of its potential
applications in a variety of areas, such as in secure communications [9,10], chemical and biological systems [11], human
heart beat regulation [12] and so on [13–16]. So far, a number of approaches have been proposed to achieve chaos
synchronization such as PC method, OGY method, adaptive method, impulsive control, coupling control, etc. Furthermore,
recently, fractional-order chaotic systems have become a hot topic. With respect to some recent representative works on
this topic, we refer the reader to [14–19] and references therein. In Ref. [14], the chaos in the Chen system with fractional-
order has been addressed. Besides, some synchronization-based strategies have been devised to synchronize fractional
chaotic systems [15–17]. In Ref. [19], the synchronization of fractional-order chaotic systems has been presented. Moreover,
somemethods such as PC method and nonlinear control are employed to synchronize two fractional-order chaotic systems
[20,21].

It is widely believed that the synchronization between a fractional-order hyper-chaotic system and a hyper-chaotic
system of integer order can be applied in encryption efficiently which can enlarge the key space. In Ref. [22], the
synchronization of fractional-order chaotic systems has been presented. In Ref. [23], the nonlinear control is employed
to synchronize two fractional-order chaotic systems. However, to the best of authors’ knowledge, the results on
synchronization between the fractional-order chaotic system and the chaotic system of integer order are limited.
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As compared with other synchronizations, the synchronization between the fractional-order system and the integer-
order system can be summarized in the following aspects.

(1) This kind of synchronization can be used in secure communications since the fractional-order chaotic system has more
adjustable variables than the integer order chaotic system. So it can additionally enhance the security of communication.

(2) From a practical perspective, it is very important to synchronize two systems of different orders. The cause of
the synchronization between the fractional-order system and the integer-order system can generate hybrid chaotic
transient signals before the final states and hard to decryption.

Motivated by the abovediscussions, in this paper,we consider the problemof the synchronization between the fractional-
order chaotic system and the chaotic system of integer order. Based on the tracking control, the synchronization between
the fractional-order chaotic system and the chaotic system of integer order is achieved.

This paper is organized as follows. In Section 2, some necessary definitions and notations are given. In Section 3, the
problem of the synchronization between the fractional order chaotic system and the chaotic system of integer order
is investigated. The corresponding simulation results are provided in Section 3 to demonstrate the effectiveness of the
proposed method. Finally, the concluding remarks are given.

2. Fractional derivative and its approximation

Fractional calculus is a generalization of integration and differentiation to a noninteger-order integro-differential
operator aDα

t defined by

aDα
t =



dα

dtα
R(α) > 0

1 R(α) = 0 t

α

(dτ)−α R(α) < 0.

(1)

There are many definitions of fractional derivatives. Perhaps the best-known one is the Riemann–Liouville definition,
which is given by

dα f (t)
dtα

=
1

Γ (n − α)

dn

dtn

 t

a

f (τ )

(t − τ)α−n+1
dτ , (2)

for n−1 ≤ α < n, where Γ (·) is the gamma function. The geometric and physical interpretation of the fractional derivative
is 

∞

0
e−st

0Dα
t f (t)dt = sαL{f (t)} −

n−1
k=0

sk0Dα−k−1
t f (t)|t=0, (3)

for n − 1 ≤ α < n, where s ≡ jw denotes the Laplace variable. Upon considering the initial conditions to be zero, this
formula reduces to

L

dα f (t)
dtα


= sαL{f (t)}. (4)

Thus, the fractional integral operator order ‘‘α’’ can be represented by the transfer function F(s) =
1
sα in the frequency

domain.
The standard definitions of fractional differintegral do not allow direct implementation of the fractional operators in

time-domain simulations. An efficient method to circumvent this problem is to approximate fractional operators by using
standard integer-order operators.

Unlike the numerical algorithm for solving an ordinary differential equation, the numerical simulation of a fractional
differential equation is not so easy. In this letter, we use the Caputo version and employ a predictor–corrector algorithm for
fractional-order differential equations, which is the generalization of the Adams–Bashforth–Moulton one.

3. Synchronization between a fractional-order system and a system of integer-order

3.1. Synchronization between a fractional-order Lü system and a system of integer order

In this section, a fractional-order Lü system and a new system of integer order are used to demonstrate the effectiveness
of the proposed method.
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Fig. 1. The attractor of the fractional-order Lü system with q = (0.985, 0.99, 0.98).

Fig. 2. The attractor of system (6).

The fractional-order Lü dynamical differential equation can be described by

dq1x
dtq1

= −a(y − x)

dq2y
dtq2

= −xz + cy

dq3z
dtq3

= xy − bz,

(5)

where 0 < q1, q2, q3 ≤ 1, q = (q1, q2, q3), with the parameters (a, b, c) = (36, 3, 20), and fractional-order of the system
q = (0.985, 0.99, 0.98). Fig. 1 depicts the chaotic attractor of system (5).

In 2007, Chu find a new chaotic system, the dynamical differential equation can be described byẋ1 = a(x2 − x1)
ẋ2 = x1x3 − x2
ẋ3 = b − x1x2 − cx3,

(6)

where x1, x2, x3 ∈ R3 represent the state vectors of this system, when a = 15, c = 1, b = 16, system (6) display chaotic
attractors. Fig. 2 shows the attractor of this system.

Let us consider system (6) of integer order is the drive system, then the response system is the fractional-order Lü system
in the form of

dq1y1
dtq1

= −a(y2 − y1) + u1(x(t)) + U1(y(t), x(t))

dq2y2
dtq2

= −y1y3 + cy2 + u2(x(t)) + U2(y(t), x(t))

dq3y3
dtq3

= y1y2 − by3 + u3(x(t)) + U3(y(t), x(t)),

(7)

where u(x(t)) + U(y(t), x(t)) is the tracking controller, in the following we design the tracking controller

u(x(t)) =
dqx(t)
dtq

− f (x(t)), (8)
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where f (x(t)) =


−a(x2 − x1)
−x1x3 + cx2
x1x2 − bx3


. (9)

So the controlled fractional-order Lü system (7) can be rewritten as

dqy1
dtq

dqy2
dtq

dqy3
dtq

 =


−a(y2 − y1)
−y1y3 + cy2
y1y2 − by3


dqx(t)
dtq

−


−a(x2 − x1)
−x1x3 + cx2
x1x2 − bx3


+ U(y(t), x(t)). (10)

Denote error

ei = yi − xi (i = 1, 2, 3).
Then error system can be obtained from (10) described by

dqe1
dtq

dqe2
dtq

dqe3
dtq

 =

 a(e1 − e2)
−x1e3 + x3e1 − e1e3 + ce2
x1e2 + x2e1 + e1e2 − be3


+ U(y(t), x(t)). (11)

The main goal is to find a controller for system (11) such that systems (6) and (7) achieve the chaotic synchronization, it
is to say that we should find a suitable controller so that limt→∞ ∥e(t)∥ = limt→∞ ∥y(t) − x(t)∥ = 0 is satisfied.

Let e(t) =


e1(t)
e2(t)


, where e1(t) = e1, e2(t) = (e2, e3)T, so we rewrite Eq. (11) in the following form

dqe1
dtq

dqe2
dtq

dqe3
dtq

 =


B1e1(t) + F1(x(t), e1(t), e2(t))

B2e2(t) + F21(x(t), e1(t), e2(t)) + F22(x(t), e2(t))


+ U(y(t), x(t)), (12)

where B1 = a, B2 =


c 0
0 −b


, F1(x(t), e1(t), e2(t)) = −ae2, F21(x(t), e1(t), e2(t)) =


x3e1 − e1e3
x2e1 + e1e2


,

F22(x(t), e2(t)) =


−x1e3
x1e2


. (13)

It is to see that

lim
e1(t)→0

F1(x(t), e1(t), e2(t)) = lim
e1(t)→0


x3e1 − e1e3
x2e1 + e1e2


= 0. (14)

For simplicity, we can rewrite Eq. (12) in the following form
dqe1(t)
dtq

dqe2(t)
dtq

 =


B1e1(t) + F1(x(t), e1(t), e2(t))

B2e2(t) + F21(x(t), e1(t), e2(t)) + F2(x(t), e2(t))


+ U(y(t), x(t)). (15)

Let us choose the control function as follows

U(y(t), x(t)) =


A1e1(t) − F1(x(t), e1(t), e2(t))

A2e2 − F22(x(t), e2(t))


, (16)

where A1, A2 are matrices to be determined, from Eqs. (14)–(16), it is easy to get that
dqe1(t)
dtq

= (a + A1)e1(t)

dqe2(t)
dtq

=


c 0
0 −b


+ A2


e2(t) + F21(x(t), e1(t), e2(t)).

(17)
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Fig. 3. The synchronization errors between the Lü system and the Chu system.

Before we give our main results, the following lemma should be given first.

Lemma 1 (See [24]). The following autonomous system

DqX = AX, X(0) = X0,

with 0 < q < 1, X ∈ RnA ∈ Rn×n, is asymptotically stable if and only if |arg(λ)| >
qπ
2 is satisfied for all eigenvalues (λ) of matrix

A. Also, this system is stable if and only if |arg(λ)| ≥
qπ
2 is satisfied for all eigenvalues of matrix A and those critical eigenvalues

which satisfy |arg(λ)| >
qπ
2 have geometric multiplicity one.

Theorem 1. If we choose appropriate matrices A1, A2 ∈ R2×2, so that A1 + a < 0 and all eigenvalues of matrix


c 0
0 −b


+ A2


satisfy Lemma 1, then limt→∞ ei = limt→∞ yi −xi = 0 (i = 1, 2, 3) is satisfied, which means that drive system (6) and response
system (7) have achieved the synchronization via controller.

In the following steps, we would like to give the numerical simulations to verify the effectiveness of the above-designed
controller. The initial conditions are x(0) = (0, 1, 1)T, y(0) = (2, 3, 5)T. A1 = −16, A2 =


−19 11
−10 −7


, the error curve is

shown in Fig. 3.

3.2. Synchronization between the fractional-order Lorenz hyper-chaotic system and the Chen hyper-chaotic system of integer
order

The fractional-order hyper-chaotic Lorenz dynamical differential equation can be described by

dqx
dta

= a(y − x) + w

dqy
dta

= cx − y − xz

dqz
dta

= xy − bz

dqw
dta

= −yz − rw,

(18)

where x, y, z, w represent the state vectors of the fractional-order Lorenz hyper-chaotic system. When q = 0.98 is the
fractional-order of the system, with the parameters a = 10, b = 8/3, c = 28, r = 1, the fractional-order Lorenz hyper-
chaotic system has a hyper-chaotic attractor as shown in Fig. 4.

The integer-order hyper-chaotic Chen dynamical differential equation can be described by
ẋ1 = a(x2 − x1) + x4
ẋ2 = dx1 − x1x3 + cx2
ẋ3 = x1x2 − bx3
ẋ4 = x2x3 + rx4,

(19)

where X = (x1, x2, x3, x4)T ∈ R4×1 represent the state vectors of the Chen hyper-chaotic system, a, b, c, d, r ∈ R are the
parameters, when a = 35, b = 3, c = 12, d = 7, r = 0.5, system (19) display hyper-chaotic attractors in Fig. 5.

In order to observe the synchronization between the integer-order hyper-chaotic Chen system and the fractional-order
Lorenz system, we define the response system is the fractional-order Lorenz system in the form of
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Fig. 4. The attractor of the Lorenz fractional-order system with q = 0.98.

Fig. 5. The attractors of the Chen hyper-chaotic system.

dqy1
dta

= a(y2 − y1) + y4 + u1(x(t)) + U1(y(t), x(t))

dqy2
dta

= cy1 − y2 − y1y3 + u2(x(t)) + U2(y(t), x(t))

dqy3
dta

= y1y2 − by3 + u3(x(t)) + U3(y(t), x(t))

dqy4
dta

= −y2y3 − ry4 + u4(x(t)) + U4(y(t), x(t)),

(20)

where u(x(t)) + U(y(t), x(t)) is the tracking controller, the tracking controller can be proposed as follows

u(x(t)) =
dqx(t)
dtq

− f (x(t)), (21)

where f (x(t)) =

 a(x2 − x1) + x4
cx1 − xy2 − x1x3

x1x2 − bx3
−x2x3 − rx4

 . (22)

So the controlled fractional-order Lorenz system (20) can be rewritten as

dqy1
dtq

dqy2
dtq

dqy3
dtq

dqy4
dtq


=

a(y2 − y1) + y4
cy1 − y2 − y1y3

y1y2 − by3
−y2y3 − ry4

 dqx(t)
dtq

−

a(x2 − x1) + x4
cx1 − x2 − x1x3

x1x2 − bx3
−x2x3 − rx4

+ U(y(t), x(t)). (23)
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Let the synchronization error
ei = yi − xi (i = 1, 2, 3, 4).

The error system can be obtained from (23) described by

dqe1
dtq

dqe2
dtq

dqe3
dtq

dqe4
dtq


=

 a(e2 − e1)
ce1 − e2 − x3e1 − x1e3 − e1e3

x2e1 + x1e2 + e1e2 − be3
−re4 − x3e2 − x2e3 − e2e3

+ U(y(t), x(t)). (24)

Our aim is to achieve the chaotic synchronization between the Lorenz system and the Chen system via the controller, so
we should find a suitable controller so that limt→∞ ∥e(t)∥ = limt→∞ ∥y(t) − x(t)∥ = 0 is satisfied.

Let e(t) =


e1(t)
e2(t),


where e1(t) = e1, e2(t) = (e2, e3, e4)T , so Eq. (24) can be rewritten as

dqe1
dtq

dqe2
dtq

dqe3
dtq

dqe4
dtq


=


B1e1(t) + F1(x(t), e1(t), e2(t))

B2e2(t) + F21(x(t), e1(t), e2(t)) + F22(x(t), e2(t))


+ U(y(t), x(t)), (25)

whereB1 = −a, B2 =


−1 0 0
0 −b 0
0 0 −r


, F1(x(t), e1(t), e2(t)) = ae2, F21(x(t), e1(t), e2(t)) =


−x3e1 − e1e3
e1e2 + x2e1

0,


F22(x(t), e2(t)) =

−x1e3
x1e2

−x3e2 − x2e3 − e2e3


, it is to see that

lim
e1(t)→0

F1(x(t), e1(t), e2(t)) = lim
e1(t)→0


−x3e1 − e1e3
e1e2 + x2e1

0


= 0.

For the sake of simplicity, Eq. (25) can be rewritten in the following form
dqe1(t)
dtq

dqe2(t)
dtq

 =


B1e1(t) + F1(x(t), e1(t), e2(t))

B2e2(t) + F21(x(t), e1(t), e2(t)) + F2(x(t), e2(t))


+ U(y(t), x(t)), (26)

we design the controller as following

U(y(t), x(t)) =


A1e1(t) − F1(x(t), e1(t), e2(t))

A2e2 − F22(x(t), e2(t))


, (27)

where A1, A2 are matrices to be determined, it is easy to get that
dqe1(t)
dtq

= (−a + A1)e1(t)

dqe2(t)
dtq

=


−1 0 0
0 −b 0
0 0 −r


+ A2


e2(t) + F21(x(t), e1(t), e2(t)).

(28)

Theorem 2. If we select appropriate matrix A1, so that (−a + A1) < 0, appropriate matrix A2 ∈ R2×2, so that all eigenvalues

of matrix


−1 0 0
0 −b 0
0 0 −r


+ A2


satisfy Lemma 1, then limt→∞ ei = limt→∞ yi − xi = 0 (i = 1, 2, 3, 4) is satisfied, which

means that drive system (19) and response system (20) have achieved the synchronization via controller (27).
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Fig. 6. The synchronization errors between the fractional-order Lorenz and Chen systems.

Analogously, we also would like to give the numerical simulations to verify the effectiveness of the above-designed
controller. We select initial values as x(0) = (0, 1, 2, 3)T, y(0) = (0, 1, 3, 5)T, respectively. Without loss of generality, we

select the matrices A1 = 8, A2 =


2 0 0
0 3 0
0 0 2


, the errors between the Lorenz and Chen systems are shown in Fig. 6.

4. Conclusions

In this paper,we study the synchronization between the fractional-order chaotic systemand the chaotic systemof integer
order in detail. By using stability criteria of the fractional-order system, based on the tracking control, we design the suitable
controller, which is simple and applicable. Finally, the simulation results demonstrate the effectiveness of the proposed
schemes.

In further works, on one hand, wewould like to investigate delayed fractional-order systems, on the other hand, wewant
to study the identification of parameters of the fractional-order system. In addition, we intend to study the synchronization
of complex networks whose nodes are composed by fractional-order chaotic systems.

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments and suggestions.
This research is supported by Gansu Province Government of China (0808-04) and Scientific Research Foundations of

Tianshui Normal University of China (TSA0938).

References

[1] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[2] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, New Jersey, 2001.
[3] R.L. Bagley, R.A. Calico, Fractional order state equations for the control of viscoelastically damped structures, J. Guid. Control Dyn. 14 (1991) 304–311.
[4] R.C. Koeller, Application of fractional calculus to the theory of viscoelasticity, J. Appl. Mech. 51 (1984) 199.
[5] H.H. Sun, A.A. Abdelwahed, B. Onaral, Linear approximation for transfer functionwith a pole of fractional order, IEEE Trans. Automat. Control 29 (1984)

441–444.
[6] M. Ichise, Y. Nagayanagi, T. Kojima, An analog simulation of noninteger order transfer functions for analysis of electrode process, J. Electroanal Chem.

33 (1971) 253–265.
[7] O. Heaviside, Electromagnetic Theory, Chelsea, New York, 1971.
[8] L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990) 821–825.
[9] B. Nana, P. Woafo, S. Domngang, Chaotic synchronization with experimental application to secure communications, Commun. Nonlinear Sci. Numer.

Simulat. 14 (2009) 2266–2276.
[10] U.E. Vincent, R. Guo, A simple adaptive control for full and reduced-order synchronization of uncertain time-varying chaotic systems, Commun.

Nonlinear Sci. Numer. Simulat. 14 (11) (2009) 3925–3932.
[11] C.J. Luo Albert, A theory for synchronization of dynamical systems, Commun. Nonlinear Sci. Numer. Simulat. 14 (5) (2009) 1901–1951.
[12] J.M.V. Grzybowski, M. Rafikov, J.M. Balthazar, Synchronization of the unified chaotic system and application in secure communication, Commun.

Nonlinear Sci. Numer. Simulat. 14 (2009) 2793–2806.
[13] Y. Tang, J. Fang, Q. Miao, Synchronization of stochastic delayed neural networks with Markovian switching and its application, Int. J. Neural. Syst. 19

(2009) 43–56.
[14] C. Li, G. Peng, Chaos in Chen’s system with a fractional order, Chaos Solitons Fractals 22 (2004) 443–450.
[15] Z.M. Ge, A.R. Zhang, Chaos in a modified van der Pol system and in its fractional order systems, Chaos Solitons Fractals 32 (2007) 1791–1822.
[16] Z.M. Ge, C.Y. Ou, Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal, Chaos Solitons

Fractals 35 (2008) 705–717.
[17] L.J. Sheu, H.K. Chen, J.H. Chen, et al., Chaos in the Newton–Leipnik system with fractional order, Chaos Solitons Fractals 36 (2008) 98–103.
[18] J.W.Wang, Y.B. Zhang, Designing synchronization schemes for chaotic fractional-order unified systems, Chaos Solitons Fractals 30 (2006) 1265–1272.



4716 L.-x. Yang et al. / Computers and Mathematics with Applications 62 (2011) 4708–4716

[19] C.G. Li, X.X. Liao, J.B. Yu, Synchronization of fractional order chaotic systems, Phys. Rev. E 68 (2003) 067203.
[20] J.G. Lu, Chaotic dynamics of the fractional-order Lü system and its synchronization, Phys. Lett. A 354 (2006) 305–311.
[21] C.P. Li, J.P. Yan, The synchronization of three fractional differential systems, Chaos Solitons Fractals 32 (2007) 751–757.
[22] C.G. Li, X.X. Liao, J.B. Yu, Synchronizaiton of fractional order chaotic systems, Phys. Rev. E 68 (2003) 067–078.
[23] J.G. Lu, Chaotic dynamical of the fractional order Lu system and its synchronization, Phys. Lett. A 354 (2006) 305–311.
[24] D. Matignon, Stability results of fractional differential equationa with applications to control processing. in: IMACS, IEEE-SMC, Lille, France,

pp. 963–968.


	Synchronization between a fractional-order system and an integer order system
	Introduction
	Fractional derivative and its approximation
	Synchronization between a fractional-order system and a system of integer-order
	Synchronization between a fractional-order Lü system and a system of integer order
	Synchronization between the fractional-order Lorenz hyper-chaotic system and the Chen hyper-chaotic system of integer order

	Conclusions
	Acknowledgments
	References


