Note

On Monochromatic Paths in m-Coloured Tournaments

SHEN MINGGANG

Department of Mathematics,
Shanghai Teacher's University,
No. 10, Guilin Road, Shanghai, China

Communicated by the Editors
Received April 7, 1986

We call the tournament T an m-coloured tournament if the arcs of T are coloured with m colours. In this paper we have proved that if T is an m-coloured tournament which does not contain any tournament of order 3 whose arcs are coloured with three distinct colours then there is a vertex v of T such that for every other vertex x of T there is a monochromatic path from x to v.

We call the tournament T an m-coloured tournament if the arcs of T are coloured with m colours. Let T_3 and C_3, respectively, denote the transitive tournament of order 3 and the 3-cycle, both of whose arcs are coloured with three distinct colours. In [1], Sands, Sauer, and Woodrow have proved that every 2-coloured tournament T has a vertex v such that for every other vertex x of T there is a monochromatic path from x to v. They also raised the following problem:

Problem. Let T be a 3-coloured tournament which does not contain C_3. Must T contain a vertex v such that for every other vertex of T there is a monochromatic path from x to v?

If in the problem we allow T to contain neither T_3 nor C_3, the answer will be yes.

The following is our main result.

Theorem. Let T be an m-coloured tournament which does not contain T_3 or C_3. Then there is a vertex v of T such that for every other vertex x of T there is a monochromatic path from x to v.

Proof. We prove this by induction on n, the order of T. The cases $n = 1$ and $n = 2$ are clear. Suppose that the result holds for all m-coloured tour-
nments of order less than \(n \), where \(n > 2 \). So by the induction hypothesis, for each vertex \(v \) of \(T \) there is a vertex, call it \(f(v) \), of \(T \) such that for each vertex \(x \) of \(T - \{ v \} \) there is a monochromatic path from \(x \) to \(f(v) \). If there is \(f(u) = f(v) \), \(u \neq v \), or if for some \(v \) there is a monochromatic path from \(v \) to \(f(v) \), then for each vertex \(x \) of \(T \) there is a monochromatic path from \(x \) to \(f(v) \), and the result holds. So we assume \(f \) is a bijection and further that there is no monochromatic path from \(v \) to \(f(v) \). By the relabelling \(f(v_i) = v_{i+1} \), the vertices of \(T \) are partitioned into cycles

\[
(v_1, v_2, ..., v_n), (v_{n+1}, ..., v_m), ...
\]

where

\[
f(v_1) = v_2, ..., f(v_n) = v_1,
\]

\[
f(v_{n+1}) = v_{n+2}, ..., f(v_m) = v_{m+1}.
\]

If there is more than one cycle, then by the induction hypothesis there is a vertex \(v \) in the set \(\{v_1, v_2, ..., v_{n+1}\} \) such that for every other vertex \(x \) in the set \(\{v_1, v_2, ..., v_{n+1}\} \) there is a monochromatic path from \(x \) to \(v \). This contradicts our assumption, since \(v = f(w) \) for some \(w \in \{v_1, v_2, ..., v_{n+1}\} \).

Now we assume there is just one cycle \((v_1, v_2, ..., v_n) \). Since there is no monochromatic path from \(v_i \) to \(v_{i+1} \), this implies that there are arcs \((v_2, v_1), (v_3, v_2), ..., (v_n, v_{n-1}), (v_1, v_n)\). Let their colours be \(a_1, a_2, ..., a_n \), respectively. If \(a_1 = a_2 = \cdots = a_{n-1} \) then \(v_1 \) can reach \(v_i \) via a monochromatic path \(v_n \cdots v_2 v_1 \) with colour \(a_1 \). This contradicts our assumption. Thus \(a_1, a_2, ..., a_{n-1} \) cannot be all equal. There must exist \(a_{s-1} \) and \(a_s \) with \(a_{s-1} \neq a_s \). Without loss of generality, we may assume \(a_{s-1} = 1 \), \(a_s = 2 \). There is a monochromatic path from \(v_{s-1} \) to \(v_{s+1} \) with colour \(b \). It is easy to see \(b \neq 1 \) and \(b \neq 2 \), for otherwise \(v_t \) can reach \(v_{s+1} \) via a monochromatic path with colour 1 or \(v_{s-1} \) can reach \(v_{s} \) via a monochromatic path with colour 2. So we may assume \(b = 3 \). Let the path \(u_1, u_2, ..., u_t \) be a shortest monochromatic path from \(v_{s-1} \) to \(v_{s+1} \) with colour 3. Here \(u_1 = v_{s-1}, u_t = v_{s+1} \). Obviously, this path is a simple path. It is shown in Fig. 1.
Consider the colour of the arc between \(u_i \) and \(u_i \), for \(1 < i < t \). It cannot be 3, otherwise this would contradict our assumption. It is easy to see that there are edges \(\{v, u_i\} \) and \(\{v, u_{i+1}\} \) with distinct colours, because the edges \(\{v, u_i\} \) and \(\{v, u_t\} \) are coloured by distinct colours. Thus \(v_i u_i u_{i+1} \) is a triangle with three distinct colours. This contradicts the given condition. Hence the result holds.

We can easily obtain two corollaries as follows.

Corollary 1. Let \(T \) be a 2-coloured tournament. Then there is a vertex \(v \) of \(T \) such that for every other vertex of \(T \) there is a monochromatic path from \(x \) to \(v \).

This is the same as that in [1] and [2].

Corollary 2. Suppose \(T, H_1, H_2, \ldots, H_n \), where \(T = \{v_1, v_2, \ldots, v_n\} \), are \(m \)-coloured tournaments containing no 3-coloured triangle. Let \(T' \) be the tournament formed by replacing each vertex \(v_i \) of \(T \) with \(H_i \) and letting all edges between \(H_i \) and \(H_j \) be the same colour as the edge between \(v_i \) and \(v_j \), but with arbitrary directions. Then \(T' \) contains a vertex \(v \) such that for every other vertex \(x \) of \(T' \) there is a monochromatic path from \(x \) to \(v \).

Proof. It is clear that for any three vertices \(v_i, v_j, \) and \(v_k \) the triangle \(v_i v_j v_k \) cannot be a 3-coloured triangle. So the result holds by the theorem.

In the case of \(m = 3 \), this corollary implies Theorem 3 in [1].

If we insist only that \(T \) not contain \(C_3 \) in the theorem, the result will fail.

For example the tournament \(G_5 \) in Fig. 2 is a 5-coloured, of order 5, and contains no 3-coloured 3-cycle. But \(G_5 \) does not contain any vertex \(v \) such that for every other vertex \(x \) of \(G_5 \) there is a monochromatic path from \(x \) to \(v \). In fact, \(v_{i+1} \) cannot reach \(v_i \) via a monochromatic path, where the subscripts \(i + 1 \) are computed mod 5.

We construct larger counterexamples with \(m = 5 \) by adding vertices to \(G_5 \).
one at a time, connecting each new vertex to all previous vertices by an arc coloured 1.

Similarly if we insist only that T not contain T_3 in the theorem, the result will also fail. For example, let D_n be a 4-coloured tournament with vertices $v_1, v_2, ..., v_n$ such that the arcs $(v_1, v_2), (v_2, v_3),$ and (v_3, v_1) are coloured with colour 1, 2, and 3, respectively, and all the other edges are coloured with colour 4 and directed as (v_i, v_j), if $i > j$. Obviously, D_n is a 4-coloured tournament containing no T_3, but D_n does not contain any vertex v such that for every other vertex x of D_n there is a monochromatic path from x to v.

So if $m \geq 5$, the condition in the theorem, "which does not contain T_3 or C_3," cannot be improved. In a general sense the main result is the best result. But for the cases $m = 3, 4$, we have not found any counterexample. Certainly, the problem mentioned at the beginning is still an open question.

APPENDIX: NOMENCLATURE

T_3 the transitive tournament of order 3 whose arcs are coloured with three distinct colours.

C_3 the 3-cycle whose arcs are coloured with three distinct colours.

G_5 shown in Fig. 2.

REFERENCES
