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Abstract 

This paper puts forth a simplified dynamic modeling strategy for the eddy viscosity coefficient parameterized in space and time. The 
eddy viscosity coefficient is dynamically adjusted to the local structure of the flow using two different nonlinear eddy viscosity functional 
forms to capture anisotropic dissipation mechanism, namely, (i) the Smagorinsky model using the local strain rate field, and (ii) the Leith 
model using the gradient of the vorticity field. The proposed models are applied to the one-layer and two-layer wind-driven quasigeostrophic 
ocean circulation problems, which are standard prototypes of more realistic ocean dynamics. Results show that both models capture the 
quasi-stationary ocean dynamics and provide the physical level of eddy viscosity distribution without using any a priori estimation. However, 
it is found that slightly less dissipative results can be obtained by using the dynamic Leith model. Two-layer numerical experiments also 
reveal that the proposed dynamic models automatically parameterize the subgrid-scale stress terms in each active layer. Furthermore, the 
proposed scale-aware models dynamically provide higher values of the eddy viscosity for smaller resolutions taking into account the local 
resolved flow information, and addressing the intimate relationship between the eddy viscosity coefficients and the numerical resolution 
employed by the quasigeostrophic models. 
© 2016 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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1. Introduction 

There is a growing interest in developing subgrid-
scale parameterizations for turbulent geophysical
flows arising in planetary atmospheres and oceans
[1,4,13,20,24,26,27,36,38,39,44–46,48,50,51,56,75,95] . The
specifications of dissipation processes in general circulation
models play a crucial role in the dynamics of the large-scale
nonlinear motions of geophysical flows demonstrating a great
variety of complex multiscale flow patterns. For example,
wind-driven quasigeostrophic (QG) ocean circulation prob-
lems were studied systematically by varying the horizontal
eddy viscosity coefficient as a control parameter [6–8] . These
studies clearly showed that different eddy viscosity values
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ay result in different flow regimes identifying a sequence
f attractors, including fixed points (steady states), limit
ycles (periodic), tori (quasiperiodic), and strange attractors
chaotic). A sequence of transitions to these states has also
een recently investigated by Mishra et al. [63] for solving
olmogorov flows (i.e., flows driven by a spatially periodic

orce) in a two-dimensional setting. They identified all
ossible flow regimes together with their bifurcations using
oth large and small scale dissipation parameters. 

As discussed by Frederiksen et al. [26] , the need to
arametrize the effects of subgrid-scale eddies is perhaps even
ore important in general ocean circulation models. The main

rivers of ocean circulation are the Earth’s rotation and at-
ospheric winds. The ocean circulation is characterized by

arge circulation zones, or gyres, which can be identified
ith the strong, persistent, sub-tropical and sub-polar western
oundary currents such as the Gulf Stream [49,90] . Generally,
he circulation is clockwise in the Northern Hemisphere and
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Table 1 
The eddy viscosity coefficients used in quasigeostrophic (QG) ocean models. 

Study Model Range of ν ( m 

2 s −1 ) Resolution 

[12] One-layer 500–10000 40 ×80 
[29] One-layer 6000–10000 74 ×50 
[41] One-layer 330 50 ×50 
[47] One-layer 300 50 ×100 
[85] One-layer 1000–6000 49 ×65 
[91] One-layer 200 120 ×120 
[8] One-layer 54–1000 129 ×65 
[71] Two-layer 50 151 ×151 
[6] Two-layer 100–580 129 ×65 
[7] Two-layer 400–600 256 ×256 
[7] Two-layer 800–1600 128 ×128 
[5] Two-layer 100 512 ×256 
[92] Two-layer 100 500 ×500 
[70] Three-layer 300–1600 100 ×100 
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ounterclockwise in the Southern Hemisphere. These circula-
ion patterns emerge when we average over several years. It
as been widely recognized that the ocean circulation models
se some sort of ad-hoc eddy viscosity coefficients because
he horizontal scale of an ocean basin is much larger than the
ffective scale for molecular dissipation. As discussed in [83] ,
he development of a rigorous, mathematical understanding
nd subsequent modeling strategy for dissipation mechanisms
s one of the major unsolved problems in physical oceanog-
aphy. An impractically fine resolution would be necessary if
he ocean circulation models were to resolve the full spec-
ra of turbulence down to the Kolmogorov scale. Therefore
he first and ultimately simplest approach to the subgrid-scale
arametrization in ocean dynamics is the use of a Munk scale
esolving constant eddy-viscosity coefficient. The eddy vis-
osities generally used in the quasigeostrophic ocean models
re summarized in Table 1 . It can be seen that the amount of
ddy viscosity used in the models generally decreases with
ncreasing computational resolution. 

On the other hand, the functional Smagorinsky model for
pproximating the eddy viscosity coefficient from the local
ow structures has been one of the most celebrated subgrid-
cale models parameterizing eddy viscosity [87] , focusing
nly on dissipating energy at a rate that is physically cor-
ect. Increasing the effective viscosity of the system, the ap-
roach treats dissipation of kinetic energy at subgrid-scales as
nalogous to molecular diffusion, where the effects of small
cale fluctuations are lumped into a functional eddy viscosity.
ince then, large eddy simulation (LES) has been proven to
e a promising approach for calculations of complex turbu-
ent flows [9,18,23,28,43,54,61,65,74,78,88] , and appears as
 natural choice in turbulent geophysical flows [15,21,22,64] .
ES models specifically developed for two-dimensional tur-
ulent flows, such as those in the atmosphere and oceans,
re relatively scarce [3,14,42,84] , at least when compared to
he plethora of LES models developed for three-dimensional
urbulent flows. 

The Smagorinsky model assumes that the eddy viscosity is
omputed from the resolved strain rate magnitude and char-
cteristic length scales which are assumed to be proportional
o the filter width via a Smagorinsky constant. Application
f the Smagorinsky model to various engineering and geo-
hysical flow problems has revealed that the constant is not
ingle-valued in literature and varies depending on resolution
nd flow characteristics. A major advance took place with
he development of a dynamic model proposed by Germano
t al. [30] in which the Smagorinsky constant is self adap-
ively determined along with the simulation. Therefore, the
onstant parameter of the Smagorinsky model, c S , becomes a
ynamic field parameter which adapts to the local field con-
itions in order to adjust subgrid modeling. Lilly [55] pro-
osed modifications to Germano’s dynamic model by deriving
 well-posed algebraic expression for the coefficient by using
 least-squares method. This has made the dynamic model
ore stable, making the method more widely applicable in
any fields (e.g., see [73] and [61] ), including combustion

74] , multiphase flows [23] , acoustics [96] , and simulations of
he atmospheric boundary layer [89] . A dynamic global co-
fficient mixed subgrid-scale eddy viscosity model for large
ddy simulation of turbulent flows in complex geometries has
een also developed [86,97] . 

An alternative to the Smagorinsky hypothesis was put for-
ard by Leith [52,53] , which was based on the adjustment of

rtificial dissipation varying with the local gradient of vortic-
ty. The formulation of the eddy viscosity obtained through
his hypothesis was seen to be more scale selective due to
igher order derivatives in the formulation. Furthermore, it
as built on the concept of Kraichnan’s forward enstrophy

ascade instead of the concept of Kolmogorov’s forward en-
rgy cascade, which is more applicable to three-dimensional
urbulent flows [25] . The Leith formulation has been used in
oth atmospheric models [10] and ocean models [77] . It must
e noted here that there have been some attempts to blend the
haracteristics of both Smagorinsky (strain rate dependence) 
nd Leith (vorticity gradient dependence) characteristics into
ybrid models [60] . The Leith formulation for the nonlinear
ddy viscosity can also be applied in the dynamic test filtered
ramework. This requires the adaptive calculation of a mix-
ng length scale constant that controls the value of the eddy
iscosity. 

The main objective of this work is to put forth a simplified
ynamic eddy viscosity subgrid-scale modeling framework for
he scale-aware horizontal eddy viscosity parametrization in
arge scale geophysical flows. A unified dynamic modeling
rocedure is developed using both Smagorinsky’s and Leith’s
onlinear eddy viscosity forms. For modeling mesoscale tur-
ulence in the barotropic and baroclinic circulations, the pro-
osed model is applied to both one-layer and two-layer wind-
riven quasigeostrophic ocean circulation problems in the
eta-plane, which are standard prototypes of more realistic
cean dynamics. The one-layer experiments in rectangular
omain yield four gyres in time mean and have been used
o test various classes of turbulence closure models including
he alpha [42] and approximate deconvolution [83,84] mod-
ls. The two-layer experiments, including the first baroclinic
ode, have also been used to test subgrid-scale models in
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a simple stratified flow setting [83] , resulting in a double-
gyre structure (cyclonic subpolar and anticyclonic subtropical
gyres) in time mean. 

The remainder of this paper is organized as follows.
Section 2 presents the governing equations for the one-layer
and two-layer quasigeostrophic ocean circulation models. The
proposed models for the eddy viscosity parametrization are
explained in Section 3 . Section 4 contains a brief description
of numerical methods employed in the present study, includ-
ing the second-order energy conserving Arakawa scheme for
spatial discretization, and the third-order Runge Kutta scheme
for the time integration, as well as a fast Poisson solver for
kinematic relationship between vorticity and streamfunction.
The results of numerical experiments are provided in Sec-
tion 5 using a set of physical and numerical parameters. Sec-
tion 6 is devoted to concluding remarks. 

2. Quasigeostrophic ocean models 

2.1. One-layer model 

Studies of wind-driven circulation using an idealized
double-gyre wind forcing have played an important role in
understanding various aspects of ocean dynamics, including
the role of mesoscale eddies and their effect on mean cir-
culation. In this section, following [35,82,84] , we present
the barotropic vorticity equation (BVE) as a representative
one-layer quasigeostrophic ocean model for forced-dissipative
large scale ocean circulation problems. More details on the
physical mechanism of quasigeostrophic models and vari-
ous formulations can be found in geophysical fluid dynamics
monographs [17,32,58,72,93] . 

The BVE for one-layer quasigeostrophic (QG1) ocean
model can be written as 

∂ω 

∂t 
+ J (ω, ψ) − β

∂ψ 

∂x 
= νe ∇ 

2 ω + F, (1)

where the terms in Eq. (1) account for the local accelerative,
convective, rotational, dissipative, and surface forcing effects
respectively. In Eq. (1) , ω is the kinematic vorticity, the curl
of the velocity field, defined as 

ω = 

∂v 

∂x 
− ∂u 

∂y 
, (2)

and ψ is refers the velocity streamfunction. The kinematic
relationship between the vorticity and stream function yields
the following Poisson equation: 

∇ 

2 ψ = −ω, (3)

where ∇ 

2 is the two-dimensional Laplacian operator. The flow
velocity components are defined by 

u = 

∂ψ 

∂y 
, v = −∂ψ 

∂x 
. (4)

The BVE given by Eq. (1) uses the beta-plane approxi-
mation, which is valid for most of the mid-latitude simplified
ocean basins. To account for the Earth’s rotational effects,
sing Taylor series expansion, in the beta-plane approxima-
ion the Coriolis parameter is approximated by f = f 0 + βy,
here f 0 is the constant mean Coriolis parameter at the basin

enter and β is the gradient of the Coriolis parameter (i.e.,
= ∂ f /∂ y) at the same location. The convection term in

q. (1) , called the nonlinear Jacobian, is defined as 

 (ω, ψ) = 

∂ψ 

∂y 

∂ω 

∂x 
− ∂ψ 

∂x 

∂ω 

∂y 
. (5)

The viscous dissipation mechanism has the conventional
aplacian form, νe ∇ 

2 ω, where νe is the horizontal eddy vis-
osity coefficient for the ocean basin. In the oceans, there
xists a whole range of physical processes between the meso-
copic quasiqeostrophic scales and the characteristic scale
ypical of molecular diffusion. These intermediate scales in-
lude vertical mixing effects, e.g. associated with wave break-
ng process which require a separate parameterization. As
iscussed in [83] and references therein, quasigeostrophic
cean models use eddy viscosity coefficients on the order of
00 m 

2 /s which are many orders of magnitude greater than
he molecular viscosity of the sea water (i.e., ν = 10 

−6 m 

2 /s).
his parametrization is used because the horizontal scale of

he ocean basin is much larger than the effective scale for
olecular diffusion. Therefore an impractically fine resolution
ould be necessary if the ocean models were to resolve the

ull spectra of turbulence down to the molecular dissipation
cale. On the other hand, the eddy viscosity parameterization
sed in the quasigeostrophic models plays an important role
n the dynamics of the problem. For example, the study of
erloff and McWilliams [7] clearly shows that the use of dif-

erent values of eddy viscosity results in different dynamics
f the quasigeostrophic ocean models ranging from an asym-
etric steady state to a chaotic variability. One of the main

oals in the present study is to develop a dynamic procedure
o compute the eddy viscosity coefficient during the simula-
ion. The following section is devoted to the development of
his procedure. 

The double-gyre wind forcing function in the model is
iven by 

 = 

1 

ρH 

ˆ k · ∇ × � τ , (6)

here ρ is the mean fluid density, and H is the mean depth
f the ocean basin, and � τ refers the stress vector for the
urface wind forcing, and 

ˆ k is unit vector in vertical direc-
ion. In the equation above, ∇ is the gradient operator. In
he present model, we use a double-gyre wind forcing only
or zonal direction: � τ = (τ0 cos (πy/L) , 0) , where L is the
eridional length of the ocean basin centered at y = 0, and

0 is the maximum amplitude of the wind stress. This form
f wind stress represents the meridional profile of easterly
rade winds, mid-latitude westerlies, and polar easterlies from
outh to North over the ocean basin [83] . Taking the curl of

he stress field, the forcing term can be written as 

 = 

τ0 

ρH 

π

L 

sin 

(
π

y 

L 

)
. (7)
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Fig. 1. Schematic for the one-layer quasigeostrophic model with a rectangu- 
lar ocean basin. 
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In order to obtain a dimensionless form of the BVE, we
se the following definitions: 

˜  = 

x 

L 

, ˜ y = 

y 

L 

, ˜ t = 

t 

L/V 

, ˜ ω = 

ω 

V/L 

, ˜ ψ = 

ψ 

V L 

, (8)

here the tilde denotes the corresponding nondimensional
ariables. In the nondimensionalization, L represents the char-
cteristic horizontal length scale (in our study L is the basin
imension in the x direction), and V is the characteristic Sver-
rup velocity scale given by the following definition: 

 = 

τ0 

ρH 

π

βL 

. (9) 

he dimensionless governing equations for the two-
imensional single-layer quasigeostrophic ocean model can 

e written as 

∂ω 

∂t 
+ J (ω, ψ) − 1 

Ro 

∂ψ 

∂x 
= A ∇ 

2 ω + 

1 

Ro 

sin (πy) , (10)

here we omit the tilde over the variables for the purpose of
larity. Due to the nondimensionalization given by Eq. (8) ,
he kinematic relationship given in Eq. (3) and definition of
onlinear Jacobian given in Eq. (5) remain the same. In the
imensionless form given in Eq. (10) , Ro and A control quasi-
eostrophic ocean dynamics. Referred to respectively as the
ossby and inverse Reynolds numbers they are related to the
hysical parameters in the following way 

 = 

νe 

V L 

, Ro = 

V 

βL 

2 
, (11)

here A is the dimensionless eddy viscosity coefficient. The
o number can be related to the Rhines scale, δI /L = 

√ 

Ro ,

hich measures the strength of the nonlinearity. 
In order to completely specify the mathematical model,

oundary and initial conditions need to be prescribed. In many
heoretical studies of large scale ocean circulation models, slip
r no-slip boundary conditions are used in simplified Carte-
ian oceanic basins. Following [16,35,42,71,82–84] , we use
lip boundary conditions for the velocity, which translate into
omogeneous Dirichlet boundary conditions for the vortic-
ty: ω| � = 0, where � symbolizes all the Cartesian bound-
ries. The corresponding impermeability boundary condition 

s imposed as ψ | � = 0. For the initial condition, we start our
omputations from a quiescent state and solve Eq. (10) nu-
erically until we obtain a statistically steady state in which

he wind forcing, dissipation, and nonlinear interactions bal-
nce each other. The schematic for the one-layer QG model
s provided in Fig. (1) . 

.2. Two-layer model 

In reality, the ocean is a stratified fluid on a rotating Earth
riven from its upper surface by patterns of momentum and
uoyancy fluxes [57] . While the one-layer quasigeostrophic
odel (also known as the barotropic model) is not stratified,

t exhibits many of the features observed in the stratified case.
he two-layer model adds the effect of stratification through

he use of a second dynamically active layer [5,7,19,40,71] .
e remark that the complexity of QG models may be en-
anced by adding more active layers to get N-layer models
58] . 

The two-layer quasigeostrophic (QG2) model used in this
tudy is a simplified forced-dissipative model that considers
aroclinic effects. The stratified ocean is partitioned into two
sopycnal layers with each having the identical depth, density
nd temperature. The governing equations of the QG2 model
re given by 

∂ω 1 

∂t 
+ J (ω 1 , ψ 1 ) − β

∂ψ 1 

∂x 
= νe ∇ 

2 ω 1 + F 1 

∂ω 2 

∂t 
+ J (ω 2 , ψ 2 ) − β

∂ψ 2 

∂x 
= νe ∇ 

2 ω 2 + F 2 , 

(12) 

ith the isopycnal flow velocity components obtainable
hrough the use of the velocity streamfunction relationship: 

 i = 

∂ψ i 

∂y 
; v i = −∂ψ i 

∂x 
. (13) 

here the forcing terms are given by F 1 (for the upper layer)
nd F 2 (for the bottom layer) where 

 1 = 

1 

ρ1 H 1 

ˆ k . ∇ × � τ (14) 

s the forcing generated due to the stress vector for sur-
ace wind as explained in the one-layer formulation. More
pecifically, in the present two-layer experiments, we use
 double-gyre wind forcing only for zonal direction: � τ =

(τ0 cos (2πy/L) , 0) , where L is the meridional length of the 
cean basin centered at y = 0. Therefore, the characteristic
verdrup velocity scale is given by the following definition:

 = 

τ0 

ρ1 H 1 

2π

βL 

. (15) 

he forcing of the bottom layer is given by 

 2 = γ∇ 

2 ψ 2 , (16) 
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Fig. 2. Schematic for the two-layer quasigeostrophic model with a square 
ocean basin. 
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where γ is a coefficient of the linear bottom friction which
parameterizes the bottom Ekman layer. The vorticity fields for
each layer are related to the velocity stream functions through
the following elliptic coupled system of equations: 

ω 1 = −∇ 

2 ψ 1 − f 2 0 

g 

′ H 1 
(ψ 2 − ψ 1 ) 

ω 2 = −∇ 

2 ψ 2 − f 2 0 

g 

′ H 2 
(ψ 1 − ψ 2 ) 

(17)

where H 1 and H 2 are the depths of the individual layers,
g 

′ = gρ/ρ1 is the reduced gravity associated with the den-
sity jump between the two layers in which ρ is the den-
sity difference between the two layers and ρ1 is the upper
layer density. Other relevant symbols have been defined previ-
ously. Following a similar process of non-dimensionalization
as shown in the previous subsection, we can obtain the dimen-
sionless governing equations of the QG2 model given by 

∂ω 1 

∂t 
+ J (ω 1 , ψ 1 ) − 1 

Ro 

∂ψ 1 

∂x 
= A ∇ 

2 ω 1 + 

1 

Ro 

sin 2πy 

∂ω 2 

∂t 
+ J (ω 2 , ψ 2 ) − 1 

Ro 

∂ψ 2 

∂x 
= A ∇ 

2 ω 2 − σ∇ 

2 ψ 2 

(18)

where we define two additional nondimensional quantities,
the Froude number (Fr) and σ which is the Ekman bottom
layer friction coefficient 

Fr = 

f 2 0 V 

g 

′ βH 

; σ = 

γ

V/L 

. (19)

The coupled elliptic equations can also be represented in a
nondimensional fashion: 

ω 1 = −∇ 

2 ψ 1 − Fr 

δRo 

(ψ 2 − ψ 1 ) 

ω 2 = −∇ 

2 ψ 2 − Fr 

(1 − δ) Ro 

(ψ 1 − ψ 2 ) 

(20)

where δ = H 1 /H and H = H 1 + H 2 . 
To complete the QG2 formulation to be used in this in-

vestigation, we prescribe the following initial and boundary
conditions. It is a common practice to either use free-slip
or no-slip boundary conditions. We follow the studies in
[16,71,83] and prescribe free-slip boundary conditions for the
velocity for both isopycnal layers which manifest in the form
of homogeneous Dirichlet boundary conditions for the vor-
ticity (Laplacian of streamfunction): ∇ 

2 ψ | � = 0. An imper-
meability boundary condition is imposed by forcing ψ | � = 0.
We start from a quiescent state and integrate till a statistically
steady state is obtained and continue for several decades to
compute time-averaged results. The schematic for the two-
layer QG model is provided in Fig. (2) . 

3. Dynamic eddy viscosity parametrization 

The first and ultimately simplest approach to the eddy
viscosity parametrization is the use of a Munk scale resolv-
ing constant eddy-viscosity coefficient in the model (e.g., see
Table 1 ). An improved approach is called as functional eddy
viscosity modeling which parametrizes eddy viscosity through
sing a functional relationship between the eddy viscosity dis-
ribution and the resolved flow dynamics. 

.1. Smagorinsky hypothesis 

One of the most popular functional eddy viscosity
arametrizations is called the Smagorinsky model which as-
umes that the eddy viscosity coefficient is proportional to the
bsolute strain rate [87] . The tensorially invariant Smagorin-
ky model is written as 

e = � 2 0 | S| , (21)

here � 0 is the mixing length scale, and | S| = 

√ 

2S i j S i j is the
bsolute value of the strain rate tensor given by 

 i j = 

1 

2 

(
∂u i 

∂x j 
+ 

∂u j 

∂x i 

)
, (22)

here u i is the i th velocity component along x i direction. This
odel has been primarily used as a subgrid-scale model for

arge eddy simulation (LES) of turbulent flows and needs for
n ad hoc specification of � 0 , a task that is all but impos-
ible in any functional subgrid-scale parametrization. In two
imensional settings (i.e., u 1 = u and u 2 = v), the absolute
train rate field is given as 

 S| = 

√ (∂u 

∂y 
+ 

∂v 

∂x 

)2 
+ 2 

(∂u 

∂x 

)2 
+ 2 

(∂v 

∂y 

)2 
, (23)

r in terms of the streamfunction it can be written as 

 S| = 

√ 

4 

( ∂ 2 ψ 

∂ x∂ y 

)2 
+ 

(∂ 2 ψ 

∂x 2 
− ∂ 2 ψ 

∂y 2 

)2 
. (24)

sing Eqs. (21) and (24) , the horizontal eddy viscosity coef-
cient can be parameterized as 

e = c 2 S δ
2 

√ 

4 

( ∂ 2 ψ 

∂ x∂ y 

)2 
+ 

(∂ 2 ψ 

∂x 2 
− ∂ 2 ψ 

∂y 2 

)2 
(25)
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n which the mixing length scale � 0 is parameterized by us-
ng the well-known Smagorinsky constant (i.e., � 0 = c S δ). In
q. (25) , c S is the Smagorinsky constant and depends on

he physics of the flows (i.e., usually reported between 0.1
nd 0.2 in the LES literature), and δ is the characteristic
ength scale representing the computational resolution (i.e.,
2 = xy where x and y are the mesh size for the nu-
erical discretization in x - and y -directions). 

.2. Leith hypothesis 

The other alternative in terms of a nonlinear viscosity ker-
el is the use of Leith viscosity based on the local gradient of
orticity to account for a forward enstrophy cascade [52] . An
xpression for the Leith model can be derived in a manner
imilar to the Smagorinsky viscosity to give 

e = c 3 L δ
3 |∇ω| (26) 

here 

∇ω| = 

√ (∂ω 

∂x 

)2 
+ 

(∂ω 

∂y 

)2 
. (27) 

s mentioned previously, the gradient of vorticity imparts
n increased scale-aware characteristic to the viscosity ker-
el leading to improved dissipation characteristics in turbu-
ent regions of the flow. The prefactor c L behaves in a similar
anner to the Smagorinsky coefficient c S and can be specified

rior to the simulation or calculated dynamically as elucidated
elow. 

.3. Dynamic approximation of model constants 

The specified value of c S or c L plays an important role of
he dissipation dynamics of the problems and turns out dif-
erent optimal values for different flow regimes and compu-
ational resolutions. A dynamic procedure to compute c S has
een proposed by Germano et al. [30] and Lilly [55] pro-
osed modifications to Germano’s dynamic model by deriv-
ng a well-posed algebraic expression for the coefficient by
sing a least-squares method, which has successfully been ap-
lied to a number of turbulent flows (e.g., see [61,73] ). Since
hen various forms of the dynamic model have also been re-
orted for LES computations [31,89,97] . In the following,
roceeding according to San [80] a simplified dynamic mod-
ling framework for computing c S and c L in Eqs. (25) and
26) , respectively, is derived for the quasigeostrophic ocean
odel governed by the barotropic vorticity equation given by
q. (1) . Without losing generality, the extension to the QG2

ormulation and other variants of quasigeostrophic ocean
odels is straightforward. 
Using the eddy viscosity hypothesis, the nondimensional

overning equations for the QG model reads 

∂ω 

∂t 
+ J (ω, ψ) − β

∂ψ 

∂x 
= c 2 S δ

2 | S|∇ 

2 ω + 

1 

Ro 

sin πy (28)
here δ refers the grid scale. Without loss of generality,
q. (28) can be rewritten for the test filtered scale as fol-

ows 

∂ ω 

∂t 
+ J ( ω , ψ ) − β

∂ ψ 

∂x 
= c 2 S δ

2 | S |∇ 

2 ω + 

1 

Ro 

sin π ȳ (29)

here the superscript over bar refers the test filtered scale
i.e., δ > δ). We note that the filtering process commutes with
he differentiation operators. Applying the same test filter to
q. (28) yields 

∂ ω 

∂t 
+ J (ω, ψ) − β

∂ ψ 

∂x 
= c 2 S δ

2 | S|∇ 

2 ω + 

1 

Ro 

sin π ȳ , (30) 

nd the result is subtracted from Eq. (29) , leading to 

 ( ω , ψ ) − J (ω, ψ) = c 2 S δ
2 | S |∇ 

2 ω − c 2 S δ
2 | S|∇ 

2 ω , (31)

hich may be simplified to 

 = (c S δ) 2 M (32) 

here 

 = J ( ω , ψ ) − J (ω, ψ) (33) 

nd 

 = κ2 | S| ∇ 

2 ω − | S|∇ 

2 ω (34) 

n which κ = δ/δ is the filter width ratio. To avoid division by
ero (an inherent possibility in this formulation) [55] proposed
he following least-squares adaptation to minimize the error
 E 

2 〉 given by E = L − (c S δ) 2 M. We define our averaging
perator by 

 f 〉 = 

1 

�

∫ ∫ 

f d xd y (35)

here � is the area of the basin. The least-squares mini-
ization problem can be solved by differentiating the mean

quared error with respect to our model decision variable
 c S δ) 2 to get 

∂〈 E 

2 〉 
∂(c S δ) 2 

= −2〈 LM〉 + 2(c S δ) 2 〈 M 

2 〉 . (36) 

he left hand side of the above equation becomes zero when
he error is minimized to give us the following expression for
he Smagorinsky constant 

(c S δ) 2 = 

| 〈 LM〉 | 
〈 M 

2 〉 . (37) 

e also note that the Smagorinsky constant defined by
q. (37) is always positive definite which is important for

he numerical stability in forced-dissipative mesoscale simu-
ations. 

A similar derivation may be undertaken for computing the
xpression for dynamic update using a nonlinear Leith vis-
osity kernel to obtain 

(c L δ) 3 = 

| 〈 LM〉 | 
〈 M 

2 〉 (38) 

here 

 = J ( ω , ψ ) − J (ω, ψ) (39) 
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Fig. 3. Time evolution of basin integrated total kinetic energy computed by using a resolution of 256 ×512. 

Fig. 4. Instantaneous streamfunction plots for Ro = 0.0004 ( δI /L = 0. 02) computed by using the dynamic Smagorinsky model with a resolution of 256 ×512. 
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and 

M = κ3 |∇ω| ∇ 

2 ω − |∇ ω|∇ 

2 ω . (40)

3.4. Low-pass spatial filters 

To completely specify the dynamic model given by Eqs.
(25) and (37) for the Smagorinsky kernel and by Eqs. (26) and
(38) for the Leith kernel, we need to choose a computation-
ally efficient filtering operator. The ability to control the high-
frequency content is an essential part of any subgrid-scale
odeling. Therefore various filtering procedures have been
uggested and tested for LES computations of turbulent flows
e.g., see [11,67,69,79,94] ). Several classes of discrete filters
ave been tested recently for solving the two-dimensional de-
aying turbulence problem (e.g., see [80] ). It is shown that the
ollowing trapezoidal filter yields more accurate results due
o its complete attenuation to prevent energy accumulation at
he grid cut-off scale. Unless stated otherwise, in this study
he filtering ratio κ to the default value of 2. For an arbitrary
unction f in two dimension, the trapezoidal filter, which is
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Fig. 5. Instantaneous streamfunction plots for Ro = 0.0016 ( δI /L = 0. 04) computed by using the dynamic Smagorinsky model with a resolution of 256 ×512. 

Fig. 6. A comparison of subgrid-scale models showing the instantaneous potential vorticity ( q = Ro ω + y) fields at t = 100 for Ro = 0.0004 ( δI /L = 0. 02) 
computed by using a resolution of 256 ×512. 
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lso known as full-weighting operator, is defined as 

f̄ i, j = 

1 

16 

( f i+1 , j+1 + f i−1 , j+1 + f i+1 , j−1 + f i−1 , j−1 (41) 

+2( f i+1 , j + f i−1 , j + f i, j+1 + f i, j−1 ) + 4 f i, j ) 

here subscripts i and j refer the discrete grid point indices
n the two-dimensional domain. Here, the f̄ is the filtered
uantity of f coinciding at the boundary nodes. Attenuation
haracteristics of the filter can be obtained by a modified
avenumber analysis which leads to the transfer function,
 ( k x , k y ), that correlates the Fourier coefficients of the filtered
ariable to those of the unfiltered variable as follows: 

ˆ f̄ = G (k x , k y ) ̂  f (42)

here ˆ f̄ and 

ˆ f are the corresponding Fourier coefficients of
he filtered and unfiltered variables, respectively. The transfer
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Fig. 7. A comparison of subgrid-scale models showing the instantaneous potential vorticity ( q = Ro ω + y) fields at t = 100 for Ro = 0.0016 ( δI /L = 0. 04) 
computed by using a resolution of 256 ×512. 
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function of the trapezoidal filter is 

G (k x , k y ) = 

1 

4 

(1 + cos (k x ) + cos (k y ) + cos (k x ) cos (k y )) (43)

where k x and k y are modified wavenumbers in Fourier space
defined between −π and + π . Further details about the fil-
tering procedure can be found in [80] . It should be noted
that the trapezoidal filter demonstrates the separability prop-
erty, an important property for a filter to exhibit due to its
performance implications. 

4. Numerical methods 

4.1. Time integration 

In many physically relevant ocean circulation models, such
as the QG models, the solutions do not converge to a steady
state as time goes to infinity [59] . Rather they remain time de-
pendent by producing a statistically steady state (also known
as a quasi-stationary state). Numerical schemes designed for
numerical integration of such phenomena should be suited for
such behavior of the solutions and for long-time integration.
In this section, a brief description of the numerical methods
employed in this study is provided using the finite difference
framework. 

Semi-discrete ordinary differential equations are obtained
after a spatial discretization of the partial differential equa-
tions [66] . To implement the Runge–Kutta scheme for the
time integration (i.e., to be able to use the method of lines),
we cast the governing equation given by Eq. (10) in the
ollowing form 

dω i, j 

dt 
= £i, j , (44)

here subscripts i and j represent the discrete spatial in-
ices in x - and y -directions, respectively. Here, £i , j denotes
he discrete spatial derivative operators, including the convec-
ive nonlinear Jacobian, β-plane approximation of the Coriolis
orce, the linear Laplacian diffusive term, and the double-gyre
ind forcing stress term (e.g., see Eq. (46) ). We assume that

he numerical approximation for time level n is known, and
e seek the numerical approximation for time level n + 1 ,

fter the time step t . The optimal third-order accurate to-
al variation diminishing Runge–Kutta (TVDRK3) scheme is
hen given as [33] 

ω 

(1) 
i, j = ω 

(n) 
i, j + t£(n) 

i, j , 

ω 

(2) 
i, j = 

3 

4 

ω 

(n) 
i, j + 

1 

4 

ω 

(1) 
i, j + 

1 

4 

t£(1) 
i, j , 

 

(n+1) 
i, j = 

1 

3 

ω 

(n) 
i, j + 

2 

3 

ω 

(2) 
i, j + 

2 

3 

t£(2) 
i, j (45)

here t is the adaptive time step, which can be computed
t the end of each time step by specifying the Courant–
riedrichs–Lewy (CFL) number satisfying the numerical sta-
ility criterion, which is given by CFL ≤ 1 for the TVDRK3
cheme. The CFL number is set to 0.9 in the present study to
nsure numerical stability. The TVDRK3 scheme has been
xtensively used to compute hyperbolic conservation laws
e.g., see [34] and references therein). It has been also shown
hat the TVDRK3 predicts slightly more accurate results than
ome other third-order Runge–Kutta schemes for solving two-
imensional incompressible flow problems [81] . 
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Fig. 8. One-layer numerical experiments for Ro = 0.0004 with the dynamic Smagorinsky model: normalized probability density function (PDF) distributions 
for the eddy viscosity coefficient and the Smagorinsky constant dynamically modeled by the proposed method using resolutions of 256 ×512 (top row), 
128 ×256 (middle row), and 64 ×128 (bottom row). 
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.2. Numerical discretizations 

The source term of a particular layer, £i , j , is written as 

i, j = −J (ω i, j , ψ i, j ) + 

1 

Ro 

∂ψ i, j 

∂x 
+ A ∇ 

2 ω i, j + 

1 

Ro 

sin (πy) 

(46) 

here we use the standard second-order central finite differ-
nce schemes in linear terms. Therefore, the derivative oper-
tors in Eq. (46) can be written in discrete form as: 

∂ψ i, j = 

ψ i+1 , j − ψ i−1 , j 
, (47) 
∂x 2x J  
 

2 ω i, j = 

ω i+1 , j − 2ω i, j + ω i−1 , j 

x 2 
+ 

ω i, j+1 − 2ω i, j + ω i, j−1 

y 2 

(48) 

here x and y are the mesh sizes in x - and y -directions,
espectively. 

For the modeling of the nonlinear term, Arakawa [2] sug-
ested that the conservation of energy, enstrophy, and skew-
ymmetry is sufficient to avoid computational instabilities
temming from nonlinear interactions. The following second-
rder Arakawa scheme for the Jacobian is written as 

 (ω i, j , ψ i, j ) = 

1 

3 

(
J 1 + J 2 + J 3 

)
(49)
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Fig. 9. One-layer numerical experiments for Ro = 0.0004 with the dynamic Leith model: normalized probability density function (PDF) distributions for the 
eddy viscosity coefficient and the Leith constant dynamically modeled by the proposed method using resolutions of 256 ×512 (top row), 128 ×256 (middle 
row), and 64 ×128 (bottom row). 

Table 2 
Dynamic Smagorinsky modeling of the one-layer experiment for Ro = 0.0004 
( δI /L = 0. 02): mean values of the eddy viscosity coefficient and the 
Smagorinsky constant (considering both space and time averaging). 

256 ×512 128 ×256 64 ×128 

Filter ratio νe (m 

2 /s) c S νe (m 

2 /s) c S νe (m 

2 /s) c S 

κ = 2 9.78 0.16 28.42 0.15 59.07 0.12 
κ = 

√ 

6 3.02 0.084 10.05 0.078 24.63 0.062 
κ = 3 1.14 0.048 3.66 0.043 10.06 0.035 

Table 3 
Dynamic Smagorinsky modeling of the one-layer experiment for Ro = 0.0016 
( δI /L = 0. 04): mean values of the eddy viscosity coefficient and the 
Smagorinsky constant (considering both space and time averaging). 

256 ×512 128 ×256 64 ×128 

Filter ratio νe (m 

2 /s) c S νe (m 

2 /s) c S νe (m 

2 /s) c S 

κ = 2 24.74 0.18 75.31 0.17 218.22 0.15 
κ = 

√ 

6 6.94 0.091 25.07 0.089 75.71 0.078 
κ = 3 2.42 0.051 6.80 0.049 27.64 0.043 
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Fig. 10. One-layer numerical experiments for Ro = 0.0016 with the dynamic Smagorinsky model: normalized probability density function (PDF) distributions 
for the eddy viscosity coefficient and the Smagorinsky constant dynamically modeled by the proposed method using resolutions of 256 ×512 (top row), 
128 ×256 (middle row), and 64 ×128 (bottom row). 
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here the discrete Jacobians have the following forms: 

 1 = 

1 

4xy 

[ 
(ω i+1 , j − ω i−1 , j )(ψ i, j+1 − ψ i, j−1 ) 

− (ω i, j+1 − ω i, j−1 )(ψ i+1 , j − ψ i−1 , j ) 
] 
, (50) 

 2 = 

1 

4xy 
[ ω i+1 , j (ψ i+1 , j+1 − ψ i+1 , j−1 ) − ω i−1 , j (ψ i−1 , j+1 

−ψ i−1 , j−1 ) − ω i, j+1 (ψ i+1 , j+1 − ψ i−1 , j+1 ) 

+ ω i, j−1 (ψ i+1 , j−1 − ψ i−1 , j−1 )] , (51) 
 3 = 

1 

4xy 
[ ω i+1 , j+1 (ψ i, j+1 − ψ i+1 , j ) 

−ω i−1 , j−1 (ψ i−1 , j − ψ i, j−1 ) 

−ω i−1 , j+1 (ψ i, j+1 − ψ i−1 , j ) + ω i+1 , j−1 (ψ i+1 , j − ψ i, j−1 )] . 

(52) 

ote that J 1 , which corresponds to the central second-order
ifference scheme, is not sufficient for the conservation of
nergy, enstrophy, and skew-symmetry by the numerical dis-
retization. Arakawa [2] showed that the judicious combina-
ion of J 1 , J 2 , and J 3 in Eq. (49) achieves the above discrete
onservation properties. 
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Fig. 11. One-layer numerical experiments for Ro = 0.0016 with the dynamic Leith model: normalized probability density function (PDF) distributions for the 
eddy viscosity coefficient and the Leith constant dynamically modeled by the proposed method using resolutions of 256 ×512 (top row), 128 ×256 (middle 
row), and 64 ×128 (bottom row). 

Table 4 
Dynamic Leith modeling of the one-layer experiment for Ro = 0.0004 ( δI /L = 

0. 02): mean values of the eddy viscosity coefficient and the Leith constant 
(considering both space and time averaging). 

256 ×512 128 ×256 64 ×128 

Filter ratio νe (m 

2 /s) c L νe (m 

2 /s) c L νe (m 

2 /s) c L 

κ = 2 3.20 0.24 7.43 0.18 13 .58 0.12 
κ = 

√ 

6 1.01 0.14 2.19 0.1 4 .50 0.069 
κ = 3 0.36 0.087 0.82 0.064 1 .71 0.045 

Table 5 
Dynamic Leith modeling of the one-layer experiment for Ro = 0.0016 ( δI /L = 

0. 04): mean values of the eddy viscosity coefficient and the Leith constant 
(considering both space and time averaging). 

256 ×512 128 ×256 64 ×128 

Filter ratio νe (m 

2 /s) c L νe (m 

2 /s) c L νe (m 

2 /s) c L 

κ = 2 7.34 0.26 21 .50 0.23 52 .07 0.17 
κ = 

√ 

6 2.14 0.15 5 .48 0.12 12 .67 0.088 
κ = 3 0.71 0.094 1 .66 0.07 3 .98 0.053 
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Fig. 12. Mean streamfunction contour plots computed by using the dynamic Smagorinsky model on various resolutions for the case of Ro = 0.0004 
( δI /L = 0. 02). An equidistant contour interval of ψ = 0. 2 is used. 

4

 

m  

[  

u  

i  

s  

t  

r  

F
A

.3. Inversion subproblem for one-layer model 

Most of the demand on computing resources posed by QG
odels comes in the solution of the elliptic Poisson equation

62] . This is also true for our study to find streamfunction val-
ig. 13. Mean streamfunction contour plots computed by using the dynamic Leit
n equidistant contour interval of ψ = 0. 2 is used. 
es from updated vorticity values at each substep in the time
ntegration. However, taking advantage of the simple Carte-
ian domain and uniform grid spacing, an efficient fast Fourier
ransform (FFT) method is utilized for solving the kinematic
elationship given in Eq. (3) . Specifically, the discrete form
h model on various resolutions for the case of Ro = 0.0004 ( δI /L = 0. 02). 
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Fig. 14. Mean streamfunction contour plots computed by using the dynamic Smagorinsky model on various resolutions for the case of Ro = 0.0016 
( δI /L = 0. 04). An equidistant contour interval of ψ = 0. 2 is used. 

 

a  

t  

s  
of Eq. (3) is given by 

ψ i+1 , j − 2ψ i, j + ψ i−1 , j 

x 2 
+ 

ψ i, j+1 − 2ψ i, j + ψ i, j−1 

y 2 
= −ω i, j , 

(53)
Fig. 15. Mean streamfunction contour plots computed by using the dynamic Leit
An equidistant contour interval of ψ = 0. 2 is used. 
nd our boundary conditions suggest the use of a fast sine
ransform. The procedure to solve Eq. (53) involves three
teps. First, an inverse sine transform for the source term
h model on various resolutions for the case of Ro = 0.0016 ( δI /L = 0. 04). 
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Fig. 16. Time evolution of basin integrated total kinetic energy computed by using a resolution of 512 ×512. 
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m  

q  
s given by: 

ˆ  k,l = 

2 

N 

2 

M 

N−1 ∑ 

i=1 

M−1 ∑ 

j=1 

ω i, j sin 

(
πki 

N 

)
sin 

(
π l j 

M 

)
, (54) 

here N and M are the total number of grid points in x and y
irections. Here the symbol hat is used to represent the cor-
esponding Fourier coefficient of the physical grid data with
 subscript pair i , j , where i = 0, 1 , . . . N and j = 0, 1 , . . . M.
s a second step, we directly solve Eq. (53) in Fourier space:

ˆ 
 k,l = − ˆ ω k,l 

2 
x 2 

(
cos ( πk 

N ) − 1 

) + 

2 
y 2 

(
cos ( π l 

M 

) − 1 

) . (55) 

inally, the streamfunction values are found by performing a
orward sine transform: 

 i, j = 

N−1 ∑ 

k=1 

M−1 ∑ 

l=1 

ˆ ψ k,l sin 

(
πki 

N 

)
sin 

(
π l j 

M 

)
. (56) 

he computational cost of this elliptic solver is
 ( N M log (N ) log (M) ) . The FFT algorithm given by Press

t al. [76] is used for forward and inverse sine transforms. 

.4. Inversion subproblem for two-layer model 

The QG2 inversion subproblem given by Eq. (20) may also
e solved by a FFT based direct inversion. As mentioned in
he previous sections, fast Sine transforms are used for each
ayer due to the impermeability boundary conditions given
y 

ˆ  1 k,l = 

2 

N 

2 

M 

N−1 ∑ 

i=1 

M−1 ∑ 

j=1 

ω 1 i, j sin 

(
πki 

N 

)
sin 

(
π l j 

M 

)
(57) 

ˆ  2 k,l = 

2 

N 

2 

M 

N−1 ∑ 

i=1 

M−1 ∑ 

j=1 

ω 2 i, j sin 

(
πki 

N 

)
sin 

(
π l j 

M 

)
(58) 
here N and M have been defined previously. We can now
olve the subproblem directly in Fourier space through 

ˆ 
 1 = 

(−α + c) ̂  ω 1 + b ̂  ω 2 

α(α − b − c) 
(59) 

ˆ 
 2 = 

c ̂  ω 1 + (−α + b) ̂  ω 2 

α(α − b − c) 
(60) 

here 

= 

2 

x 2 

[
cos 

(
πk 

N 

)
− 1 

]
+ 

2 

y 2 

[
cos 

(
π l 

M 

)
− 1 

]
(61) 

nd 

 = 

Fr 

δ Ro 

c = 

Fr 

(1 − δ) Ro 

. (62) 

e are left with the task to perform the forward sine trans-
orm using 

 1 i, j = 

N−1 ∑ 

k=1 

M−1 ∑ 

l=1 

ˆ ψ 1 k,l sin 

(
πki 

N 

)
sin 

(
π l j 

M 

)
(63) 

 2 i, j = 

N−1 ∑ 

k=1 

M−1 ∑ 

l=1 

ˆ ψ 2 k,l sin 

(
πki 

N 

)
sin 

(
π l j 

M 

)
. (64) 

he FFT algorithm used and its computational cost of this
ubproblem is identical to the one-layer QG problem. 

. Results and discussion 

.1. One-layer QG1 experiments 

In this section, the dynamic subgrid-scale eddy viscosity
odel proposed in Section 3 will be tested using the one-layer

uasigeostrophic (QG) ocean model given by Section 2 . The
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Fig. 17. Normalized probability density function (PDF) distributions of the eddy viscosity coefficient for the two-layer numerical experiments using the 
dynamic Smagorinsky model with resolutions of 512 ×512 (top row), 256 ×256 (middle row), and 128 ×128 (bottom row). 

 

 

 

 

 

 

 

 

 

 

 

 

r  

a  

t  

l  

b  

c  

a  

i  

o  

p  

r  

r

approach is applied to the four-gyre mid-latitude ocean circu-
lation problem. The model is applied to a beta-plane simpli-
fied ocean basin defined in x ∈ [0, 1] and y ∈ [ −1 , +1] using
dimensionless Cartesian coordinates, which is a standard pro-
totype of more realistic ocean dynamics. This test problem
has been used in numerous studies (e.g., [16,35,42,68,84] )
and represents an ideal setting for the numerical assessment
of the subgrid-scale parametrization. The QG model driven by
a symmetric double-gyre wind forcing should yield a four-
gyre circulation pattern in the time mean. We will investi-
gate numerically whether the proposed dynamic model can
reproduce the four-gyre pattern for varying the computational
esolution. In most of the ocean circulation simulations, the
mount of eddy viscosity is determined by using the defini-
ion of Munk scale, δM 

= (νe /β) 1 / 3 , for the viscous boundary
ayer in such a way that the computational grid scale should
e smaller than the Munk scale (e.g., see [82] for further dis-
ussion). In the first approximation, this approach provides
n excessive dissipation in most parts of the ocean basin. Us-
ng an inverse approach, however, in this study we will focus
n assessing the eddy viscosity coefficient dynamically com-
uted in each numerical experiment and address the intimate
elationship between the eddy viscosities and the numerical
esolution employed by the QG models. 
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Fig. 18. Normalized probability density function (PDF) distributions of the dynamic coefficient for the two-layer numerical experiments using the dynamic 
Smagorinsky model with resolutions of 512 ×512 (top row), 256 ×256 (middle row), and 128 ×128 (bottom row). 

 

c  

s  

t  

H  

e  

p  

δ  

i  

m  

n  

s  

v  

p  

(  

q
 

t

E  

f  

b  

L  

s  
Starting from a quiescent state, all numerical experiments
onducted in this section are solved for a maximum dimen-
ionless time of t max = 100, which is long enough to cap-
ure statistically steady states after an initial transient period.
ere, we use three consecutive resolutions for two differ-

nt physical settings varying with the Rhines scale, namely
erforming experiments for δI /L = 0. 02 (Ro = 0.0004), and
I /L = 0. 04 (Ro = 0.0016). The dimensionless eddy viscos-
ty coefficient A is computed dynamically using the proposed
odels (i.e., using Smagorinsky’s and Leith’s viscosity ker-

els) presented in Section 3 . Although we solve the dimen-
ionless form of the governing equations, we use standard
alues of β = 1 . 75 × 10 

−11 m 

−1 s −1 and L = 2000 km when
 i  
resenting the dimensional form of the eddy viscosity data
i.e., the relationship between dimensional and dimensionless
uantities is given by Eq. (11) ). 

In Fig. 3 , we plot the time evolution of the basin integrated
otal kinetic energy given by, 

 (t ) = 

1 

2 

1 

�

∫ ∫ 

�

((∂ψ 

∂x 

)2 
+ 

(∂ψ 

∂y 

)2 )
d xd y (65)

or each numerical experiment using a resolution of 256 ×512
etween t = 0 and t = 100 comparing the Smagorinsky and
eith viscosity kernels. The dimensionless time unit corre-
ponds to approximately 2.25 and 0.55 years for the numer-
cal experiments performed at Ro = 0.0004 and 0.0016, re-
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Fig. 19. Mean streamfunction contour plots for the two-layer numerical experiments using the dynamic Smagorinsky model with resolutions of 512 ×512 (top 
row), 256 ×256 (middle row), and 128 ×128 (bottom row). An equidistant contour interval of ψ = 0. 1 is used. 
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spectively (i.e., the reference scale reads as L /V = (RoβL ) −1 

for the time nondimensionalization). As shown in this figure,
after an initial transition period, a quasi-stationary regime is
achieved in each experiment showing both inter-annual and
inter-decadal variability of the ocean dynamics. Represen-
tative instantaneous flow fields are shown in Fig. 4 for Ro
= 0.0004 illustrating the dimensionless streamfunction con-
tours at t = 80, t = 90, and t = 100. Similar instantaneous
streamfunction contours are also plotted in Fig. 5 for Ro =
0.0016. Although instantaneous flow dynamics in the basin
shows chaotic behaviur, the mean four-gyre circulation pat-
terns emerge when we average over years. These patterns
re simply the nature of beta and wind stress curl effects
ather than the effect of the subgrid-scale physics. As shown
n Figs. 6 and 7 , the details of these patterns, however, are
elated to horizontal eddy viscosity models. Therefore, our
ocus will be given to the quantitative statistics of the dissi-
ation level provided by each model. 

To assess the performance of the proposed dynamic model,
he probability density function (PDF) distributions of the
stimated horizontal eddy viscosity coefficient νe and the
magorinsky constant c S are computed in each physical set-

ing. The statistically steady state data sets are collected be-
ween t = 20 and t = 100. For the dynamic Smagorinsky and
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Fig. 20. Normalized probability density function (PDF) distributions of the eddy viscosity coefficient for the two-layer numerical experiments using the 
dynamic Leith model with resolutions of 512 ×512 (top row), 256 ×256 (middle row), and 128 ×128 (bottom row). 
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eith models, Figs. 8 and 9 , respectively, demonstrate the
ormalized PDF distributions for a set of numerical experi-
ents varying the computational computational resolution for

he case of Ro = 0.0004. First of all, it is clear that the eddy
iscosity increases with decreasing resolution. The dynamic
odels predict the eddy viscosity level between νe = 0 and

e = 30 m 

2 /s for the resolution of 256 ×512 and increases
o a level between νe = 0 and νe = 200 m 

2 /s when we use
 coarser resolution of 64 ×128. The dynamic Leith model
hows slightly less dissipative behaviur compared to the dy-
amic Smagorinsky model due to its more scale selective na-
ure. However, the PDF of c S shows more universal behavior
howing a peak probability close to c S = 0. 15 . We note that
his prediction agrees well with a priori estimation based on
he turbulence literature. However, it is also evident on ex-
mination of Fig. 9 that the dynamic coefficient of the Leith
odel varies between c L = 0. 15 and c L = 0. 3 . A quantita-

ive summary of the mean values (i.e., ensembled between
 = 20 and t = 100) are also documented in Table 2 (for
he dynamic Smagorinsky model) and Table 3 (for the dy-
amic Leith model). Performing the same type of analysis for
o = 0.0016, similar trends are shown in Figs. 10 and 11 con-
rming that the proposed dynamic model is robust with dif-
erent ocean dynamics. Tables 4 and 5 also summarize our
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Fig. 21. Normalized probability density function (PDF) distributions of the dynamic coefficient for the two-layer numerical experiments using the dynamic 
Leith model with resolutions of 512 ×512 (top row), 256 ×256 (middle row), and 128 ×128 (bottom row). 
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results. 
findings for Ro = 0.0016. It is also shown that an increase in
the filtering ratio κ yields less amount of eddy viscosity for
QG simulations. 

Finally, we investigate numerically whether we can re-
produce the four gyre time average circulation field by the
proposed models. Using a set of resolutions of 64 ×128,
128 ×256, and 256 ×512, Fig. 12 displays the mean stream-
function contour plots obtained by using the dynamic
Smagorinsky model for Ro = 0.0004. Solid and dashed lines
in this figure represent counterclockwise and clockwise cir-
culations, respectively. Fig. 13 provides the same data set for
the dynamic Leith model. It can be easily seen that the four-
yre mean circulation pattern can be reproduced by using
he proposed anisotropic dynamic eddy viscosity parameteri-
ations. Furthermore, the four-gyre pattern can also be repro-
uced by coarsening the resolution as shown in Figs. 12 and
3 . The same analysis is presented in Figs. 14 and 15 for the
ase of Ro = 0.0016. It is clear that the dynamic modeling
ramework provided in Section 3 can provide a physical level
f eddy viscosity coefficient varying spatially over the ocean
asin, as well as varying in time, and can be used as a robust
ubgrid-scale parametrization in QG ocean models. It can be
een that the Leith model provides slightly less dissipative
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Fig. 22. Mean streamfunction contour plots for the two-layer numerical experiments using the dynamic Leith model with resolutions of 512 ×512 (top row), 
256 ×256 (middle row), and 128 ×128 (bottom row). An equidistant contour interval of ψ = 0. 1 is used. 
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.2. Two-layer QG2 experiments 

The main goal of this section is to test the proposed dy-
amic models in the numerical simulation of the two-layer
G model. We also investigate the sensitivity of the pro-
osed dynamic models with respect to the filtering ratio κ .
ollowing the same procedure presented in the previous sub-
ection, we consider two different nonlinear viscosity kernels
n conjunction with the proposed dynamic framework, namely,
he dynamic Smagorinsky and Leith models. The two-layer
umerical experiments presented here represent a moderate
cean basin with the physical parameters used by Ozgokmen
nd Chassignet [71] and San et al. [83] . In terms of the classi-
cation given by Berloff and McWilliams [7] , these sets of ex-
eriments lie under the chaotic regime. Further details of the
wo-layer QG dynamics can be found in [83] . The dimension-
ess parameters used in our simulations are δ= 0.2, σ= 5.74,
r = 0.087, and Ro = 0.00025. This setting corresponds to

he physical parameters given as L = 2000 km, H 1 = 1 km,
 2 = 4 km, f 0 = 9.35 × 10 

−5 s −1 , β= 1.75 × 10 

−11 m 

−1 s −1 ,

 

′ = 0.02 m s −2 , ρ1 = 1030 kg m 

−3 , τ 0 = 0.1 N m 

−2 , γ= 5.0 ×
0 

−8 s −1 . The dimensionless computational domain is defined
n x ∈ [0, 1] and y ∈ [ −0. 5 , +0. 5] using the double-gyre wind
orcing stress given in Section 2.2 . 
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Table 6 
Dynamic Smagorinsky modeling of the two-layer experiment: mean values 
of the eddy viscosity coefficient and the Smagorinsky constant for the upper 
and lower layers (considering both space and time averaging). 

512 ×512 256 ×256 128 ×128 

Filter ratio νe (m 

2 /s) c S νe (m 

2 /s) c S νe (m 

2 /s) c S 

The upper layer: 
κ = 2 1.16 0.16 3.67 0.13 8.32 0.11 
κ = 

√ 

6 0.67 0.096 1.76 0.083 4.15 0.069 
κ = 3 0.27 0.055 0.75 0.049 1.72 0.037 

The lower layer: 
κ = 2 0.87 0.16 2.81 0.16 8.17 0.15 
κ = 

√ 

6 0.32 0.092 1.05 0.090 3.13 0.084 
κ = 3 0.14 0.058 0.45 0.057 1.29 0.051 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 
Dynamic Leith modeling of the two-layer experiment: mean values of the 
eddy viscosity coefficient and the Leith constant for the upper and lower 
layers (considering both space and time averaging). 

512 ×512 256 ×256 128 ×128 

Filter ratio νe (m 

2 /s) c L νe (m 

2 /s) c L νe (m 

2 /s) c L 

The upper layer: 
κ = 2 0.65 0.23 1.65 0.20 3.04 0.14 
κ = 

√ 

6 0.15 0.12 0.35 0.09 0.66 0.06 
κ = 3 0.04 0.06 0.08 0.05 0.21 0.04 

The lower layer: 
κ = 2 0.42 0.32 1.03 0.26 1.96 0.19 
κ = 

√ 

6 0.14 0.21 0.37 0.17 0.83 0.14 
κ = 3 0.06 0.14 0.15 0.12 0.40 0.10 
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Fig. 16 shows the time series of basin integrated kinetic
energy in each layer. It can be seen that a quasi-stationary
chaotic state is obtained after an initial transient period. We
have collected data between t = 2 and t = 10 to assess the
performance of the proposed subgrid-scale models. We note
that the dimensionless time unit corresponds to 3.64 years
providing approximately 30 years of data collection window
in our two-layer experiments. 

To quantify the effect of the numerical resolution, we per-
form our numerical experiments on a set of resolutions with
128 

2 , 256 

2 , and 512 

2 grid points. Fig. 17 demonstrates the
normalized PDF distributions of the provided eddy viscos-
ity by the Smagorinsky model. We note that the PDF dis-
tribution represents both space and time variations (i.e., over
the whole basin between t = 2 and t = 10). Because of the
dynamic procedure to obtain eddy viscosity coefficients in
each layer, the proposed model yields different eddy viscos-
ity magnitudes in the upper and lower layers according to
their flow characteristics. Since the upper layer is dynami-
cally more active, the proposed dynamical model successfully
provides higher eddy viscosity distribution in the upper layer.
Fig. 18 displays the normalized PDF distribution of the as-
sociated dynamic coefficient c S for upper and lower layers.
It is clear that c S varies between 0.1 and 0.2 which is agree
well with the previous studies [28] . We have also seen that
the variation of c S is also resolution dependant, while yield-
ing slightly higher values for higher resolutions. The results
of the time-averaged mean streamfunction field data obtained
in the statistically steady state are given in Fig. 19 . The re-
sults show strong western boundary currents with cyclonic
counter-clockwise rotating gyres and anticyclonic clockwise
rotating gyres producing a strong eastward jet. We emphasize
that the plot in Fig. 19 is similar to the mean streamfunc-
tion contour plots presented by Ozgokmen and Chassignet
[71] and San et al. [83] . Figs. 20 –22 illustrate same analysis
by using the dynamic Leith model. A quantitative summary
of the proposed models are presented in Tables 6 and 7 for
the dynamic Smagorinsky and the dynamic Leith models, re-
spectively. Although it follows the same trend, it is clear that
the Leith model provides slightly less amount of subgrid-scale
contribution to the mean flow dynamics. However, there is no
ignificant difference between models, besides the fact that
lightly less dissipative results can be obtained by using the
eith viscosity kernel. This can be attributed to the fact that

he Leith model is more scale-selective than the Smagorinsky
odel because it depends on a higher derivative of velocity

e.g., see also [37] ). 

. Conclusions 

The horizontal eddy viscosity parameterization plays a cru-
ial role in the dynamics of large scale ocean circulation prob-
ems because of the difference between the horizontal scale
f the ocean basin and the effective scale of molecular diffu-
ion. The associated eddy viscosity coefficient is much larger
han the molecular viscosity since the advection by the veloc-
ty fluctuations acts much more rapidly to transport momen-
um than the molecular diffusion. Therefore, an impractically
ne computational resolution is necessary if the ocean models
ere to resolve the full spectra of turbulence down to the Kol-
ogorov scale regarding the molecular viscosity coefficient of

ea water. In the present study, a dynamic modeling frame-
ork is developed to compute the horizontal eddy viscosity

oefficient used in the large-scale ocean circulation models.
e use a second-order conservative Arakawa scheme for the

patial discretization and a third-order Runge–Kutta scheme
or the temporal integration. 

First, the method is applied to a wind-driven quasi-
eostrophic four-gyre problem. The double-gyre wind forcing
ields a four-gyre circulation pattern in statistically steady
tate and represents an ideal test problem to assess whether
he dynamic model captures the four-gyre mean circulation
attern without using any a priori estimation for the eddy
iscosity. Two physical settings were used to assess the per-
ormance of the dynamic model for various resolutions in
hese one-layer numerical experiments. We showed that the
arge scale quasigeostrophic dynamics are well captured by
he proposed model even with small resolutions. The main
dvantages of the dynamic model are that it can easily adjust
he level of eddy viscosity coefficient from the local struc-
ure of the flow, it is clear as a physical concept and easy
o be implemented in general circulation models. An increase



R. Maulik, O. San / Journal of Ocean Engineering and Science 1 (2016) 300–324 323 

i  

o  

t  

t  

e  

p  

w  

t  

d  

w
 

l  

t  

b  

f  

d  

c  

c  

v  

e
 

a  

e  

t  

o  

w  

a  

i  

a  

0  

m  

l  

o  

t  

d  

s
c

R

 

 

 

 

 

[
[
[
[  

[  

[  

[
[  

[
[  

[  

 

[  

[  

 

[
[  

 

[  

 

 

[  

[  

[  

[
[  

[  

[
[
[
[  

[  

 

[  

[
[
[
[
[
[  

[  

[
[  

[  

[  

[  

[  

[
[
[

n the resolution adaptively results in a decrease in the level
f eddy viscosity and the four-gyre structure patterns of the
ime-averaged streamfunction contour plots are recovered by
he proposed dynamic model in each resolution. Indeed, we
mphasize that the mean four-gyre circulation pattern is sim-
ly the nature of beta and wind stress curl effects. However,
e show that the details of these gyres are related to horizon-

al eddy viscosity models. Therefore, we present a quantitative
ata set on the level of horizontal eddy viscosity coefficient
ith respect to the free modeling parameters. 
Next, the proposed models are extended to solve the two-

ayer quasigeostrophic equations. Our computations show that
he large scale stratified QG ocean dynamics are well captured
y the proposed model without using any a priori estimation
or the eddy viscosity. The main advantage of the proposed
ynamic model is that it puts forth a flexible framework and
an easily adjust the magnitude of the eddy viscosity coeffi-
ient in each layer from the local structure of the flow using
arious viscosity forms like the Smagorisnky and Leith mod-
ls tested in the present work. 

In all of the numerical experiments we compute the prob-
bility density functions for the horizontal eddy viscosity co-
fficient and the dynamic modeling constant and determine
heir mean values. It is shown that the self-adaptive value
f the Smagorinsky constant shows more universal behaviur
ith respect to change in resolution and varies between 0.12

nd 0.18 in both one- and two-layer experiments, which is
n agreement with previously reported values in LES liter-
ture. However, the dynamic Leith constant varies between
.14 and 0.25. By comparing the Smagorinsky and Leith
odels, we find that the dynamic Leith model provides a

ower amount of eddy viscosity production over the whole
cean basins. This first step in the numerical assessment of
he dynamic modeling of horizontal eddy viscosity coefficient
emonstrates that the proposed framework represents a viable
ubgrid-scale parametrization for more complicated general 
irculation models. 
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