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INTRODUCTION 

If R is a ring with 1 and M an R-module then A4 is called E(R)-module 
(or E-module) if Hom,(R, M) = Hom,(R, M), where R (and M) is con- 
sidered a right R-module. Moreover, R is called E-ring if the right module 
R = R, is an E-module. It is easy to see that E-rings are commutative. 
E-rings were introduced by Schultz in [S] and studied further in CBS]. 
Torsion-free E-rings of finite rank play an important role in some 
investigations of torsion-free abelian groups of finite rank; cf. [APRVW]. 
We refer to [Pi] for a discussion of E(R)-modules. In the present paper we 
want to answer a question of C. Visonhaler’s: If R is an E-ring, are there 
arbitrarily large indecomposable E( R)-modules? Since this question makes 
sense only for E-rings R without nontrivial idempotents we may rephrase 
Vinsonhaler’s question: If R is an E-ring, are there arbitrarily large 
E(R)-modules A4 such that End,(M) = R? A partial answer to that 
question may be found in [DGl 1: The Main Theorem in [DGl] states 
that for any cotorsion-free (cf. [DGl]) ring R with 1 RI < K there exist 
arbitrarily large, strongly K--free R-modules M with End,(M) = R if the set 
theoretic axiom V= L holds (or some weaker consequence of V = L). 
These modules are E(R)-modules since submodules of M of cardinality 
IRI < K are contained in free R-submodules of M. The aim of the present 
paper is to prove a similar result without using V= L but instead posing 
some mild restrictions on the (E-) ring R. The following theorem is our 
main result. (We refer to [FI/II] for undefined notations in the theory of 
abelian groups). Let K denote a regular uncountable cardinal and K, the 
least measurable cardinal, [J], if there is any measurable cardinal at all. 

THEOREM. Let R be a ring with 1 such that R +, the additive group of R, 
is slender and 1 RI < K < K,. Let 1. > K be any cardinal such that 2 = 2”. 
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Then there exists an R-module G with the following properties: 

(a) IGI =i. 

(b) End,(G) = R. 

(c) Every R-submodule M of G of cardinality < tc is R-torsionless, i.e., 
a submodule of a Cartesian product n R. 

(d) G is slender (cf. [FII], Sect. 943). 

As an immediate consequence of (c) we have 

(e) If R is an E-ring, then G is an E(R)-module. 

We would like to mention that every R-module G with property (c) is 
itself R-torsionless if IC is strongly compact (cf. [J], [AE]). This somewhat 
explains the presence of the restriction IC < K,. In [DMV] we constructed 
for any cotorsion-free ring S with 1 an E-ring R of large cardinality with 
Ss R. All the rings constructed in [DMV] are slender if only S is slender. 
If R is an E-ring and A an R-algebra such that A+ is slender and A is an 
E(R)-module then we may apply our Main Theorem with R replaced by A, 
and we obtain many examples of E(R)-modules G with “pathological 
decompositions.” We refer to [DGl] for examples of such R-algebras A. 

1. PRELIMINARIES 

In all that follows, let A be a torsion-free reduced group and rc a 
(regular) uncountable cardinal. Let A” = n,, K A be the Cartesian product 
of K copies of A. Each element a E A” is a map from IC into A and we iden- 
tify a with (a(i)),,,. We will work with the following canonical subgroups 
of A”. First, let 

A <K= {aEA”Jj{ cl<rcIa(a)#O}I <tc} 

and 

A(“)= {aEA”I {a<tcIa(cr)#O} finite}. 

Moreover, 

AC”]= {aEA”I { tl < IC I a(a) # 0} finite or countable} 

and 

A<“>= (aeA”I {a(cr)la<l} finite}. 

Kaup and Keane [KK] generalized a celebrated result due to Niibeling 
(cf. [FII, Sect. 971) by showing that A<“> is isomorphic to a direct sum of 
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copies of A. Moreover, A<‘> E @ xel h,A, where h,, Xs IC, is the charac- 
teristic function of X and A <K n A(“> is a direct summand of A(“) with a 
complement generated by a characteristic A-basis; cf. [FII, Theorem 97.51. 

Since A is reduced and K = cf(lc) > o, all groups A”, A <K, AK/A <K, 
(A<“>fA’“)/A’” are Hausdorff in the Z-adic topology and all inclusions 
are pure. For G any reduced group, let G h = 6 be the Z-adic completion 
of G. Then (A<“>) h c (A”) * and we define A,# = (A<“>) h n A”. The pure 
subgroup A,# consists of all the elements a= (a(a)),,, of A such that 

(1) {u(a) 1 c1< K} is at most countable, 

(2) Vn<w, {u(a)Ia<Ic, a(a)$n! A) is finite. 

We are now ready to state a stronger version of Los’ theorem (cf. [FII, 
Theorem 94.43) that is crucial for us. 

THEOREM 1.1. Let G be a slender group and r] E Horn, (A,#, G). If K is 
nonmeasurable and ?(A’“‘) = 0, then q = 0. 

Proof: Our proof will be essentially the same as the proof of 
Theorem 4.4 in [FII]. The group A,# /A<“> is divisible and therefore q = 0 
if and only if ?(A<“>) = 0. By way of contradiction, assume that q(a) #O 
for some a~ A<“). Since {a(a)/ a < K} is finite we may assume that 
a(a)~{O,b}forsomefixedO#b~A.ForanysubsetJof~definea,~A’“> 
by a,(a)=a(a) for aEJ and a,(a)=0 for a$J. Note that uK= a and 
aJE A’“) for all Jc K. We define a G-valued measure v on K by 
v(J) = ~(a~). Then V(K) = q(a) # 0 and v( {a}) = 0 for all a < K. Note that v 
is additive since r] is a homomorphism. In order to show that v is countably 
additive, let J,, n < o, be pairwise disjoint subsets of K and set a’“’ = a,“. 
Then P=n,,, . (a(“h ‘)E is contained in A # and P z Z”. Since G is 
slender we obtain n, < w  and v(a% !) = n! ~(a 74 ) = 0 for all n 2 n,. Let 

y= f’ #JEA<K> 
k = n,, 

Then 

We will show that q(y) = 0. Set y, = xi=,, uCk) and let 7c = C,“=, n ! z, E 2. 
Then w=C,“=,(V-y,+.,)n!z,EA,# and since q is continuous in the H- 
adic topology we have q(w) = zz’ 0 q( y - y, + ,J n ! z, = C,“= ,, q(y) n ! z, = 
q(y) rr. This shows that q(y)Z E G and we conclude q(y) = 0 since the 
slender group G is also cotorsion-free. This shows v( U, <o J,,) = 
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zF2 WJ = c,,, v(J,) and v is countably additive. Now consider the 
countably additive ideal 0 = {Jc rc 1 v(Y) = 0 for all J’ s J} and let lE8 be the 
boolean algebra of all subsets of K. As in the proof of Theorem 94.4 in 
[FII] it follows that B/O is finite. Thus v gives rise to a countably additive, 
(0, 1 }-measure on K and we arrived at a contradiction since K is non- 
measurable. 

The next definition may be found in [BS] and we refer to [Pi] for easy 
reference. 

DEFINITION 1.2. Let R be a ring. If for each cp E End,(R) there is an 
r E R such that q(x) = xr for all x E R, then R is called an E-ring. Note that 
E-rings are commutative. An R-module M is called an E-module (or E(R)-, 
module) if Horn, (R, M) = Hom,(R, M). Note that R is an E-ring iff the 
R-module R, is an E(R)-module. Finally, an R-module M is called 
R-torsionless if M is isomorphic to an R-submodule of R” for some 
cardinal K. 

Remark 1.3. If R is an E-ring then every R-torsionless module is an 
E(R)-module, and the class of E(R)-modules is closed with respect to 
submodules, Cartesian products, and direct sums. 

Remark 1.4. Let N, be the least measurable cardinal (if it exists), K a 
regular cardinal < K,, and R an E-ring of cardinality < K. Then R”/R <K 
is an E(R)-module. 

Proof. By the Wald-Los lemma (cf. [DG2]), every submodule of 
RX/R < Ic of cardinality -K K is R-torsionless. Since IRI < K this implies that 
R”/R < K (and all its submodules) are E(R)-modules. 

In order to prove the theorem mentioned in the Introduction, we will 
have to construct an R-module G with End(G) = R. This will be done using 
a “Black Box” construction similar to the one in [DMV]. Therefore, we 
will be a little sketchy at times and point out only the major differences. 

2. THE BLACK Box 

Let K < K, be a regular cardinal and 1 a cardinal 2 K with A(2K) = 2. 
Moreover, let R be a cotorsion-free ring such that 1 RI < K. Let F= 
Qol<l Ok<2K ((R<“> + R<“)/R<“)(a, k), where ((R<“> + R<“)/R’“)(a, k) 
is a copy of R<“> + RcK/RGK labelled by (c(, k), a<& k<2”. We set 
B= (R<“>+ RcK)/RcK and B= (R,# + R’“)IR’“G RX/RcK. Note that B 
is a free R-module and because of 1 .l, Horn, (R, G) = 0 for any slender 
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group G. Moreover, B/B is divisible (as abelian group). Eventually, we will 
construct an R-module M such that 

@ @ B(~,~)=FEME @ @ B(cc,k) +(B(“+2K))- =F, 
I<). k<ZL ( n<i. kc2* > 

where (B” x 2k)) ~ is the Z-adic closure of B(” x2”) in B’x2K = 

n,<,J. nk<2K B(cr, k). Note that p/F is divisible and FL B” x 2* c 
n AX2x (R”/R’“). Thus every submodule L of F of cardinality < K is 
R-torsionless. Moreover, for each cp: F-+ P there exists a unique exten- 
sion 4: P+ (P) A and we will identify q~ and (p. For XE F let 
[x]={(cc,k)~Ax2~lx(a,k)#O} and [xl]={~<AI3k<2”((a,k)~[x])}. 
If P is any R-submodule of p, we define llPll= sup{ [xl] /x E P}. 

DEFINITION 2.1. (1) A canonical submodule P of F is any R-sub- 
module P of F such that for some fixed IL K, 111 < 2”, we have x E P iff 
[x] E I. 

(2) A trap is a triple (f, P, cp), where f is a sequence of ordinals 
f(0) <f( 1) < ... < 2; P is a canonical submodule such that @cc, k) G P 
for any (~1, k)EA x 2” whenever c( =f(n) for some n<o and 
l/Pll =sup{f(n)In<w} and cp~Hom,(PnF, P). 

Without proof we state Shelah’s principle, the so-called “Black Box.” 
A proof may be found in [DMV, Theorem 2.61. 

THEOREM 2.2. For some ordinal A* there exists a sequence of traps 
t,= (f,, P,, cp,), a<l*, such that 

(1) IIP,ll d lIP,Il ifa<B. 
(2) Zf CI # p then Im f, n Im fD is finite. 

(3) If fl + (2”)” < LY then for all e: o + 2” there exists n, < o such that 
rI ,,,,B(f,(n),e(n))nPg=O. 

(4) Zf A E F, IAl d 2” and ij’ cp E Hom(F, F) then there exists CI < A* 
such that A E P,, l/All < llP,ll and cp r (Fn P,) = (Pi. 

3. THE CONSTRUCTION 

Let l(a, k) be the element in B(cc, k) induced by a E R<“> with a(i) = 1 for 
all i<k, i.e., l(cr, k)=(a+R’“)(cc,k). 

We will utilize the sequence of traps (f,, P,, cp,), GL < I.*. For !I <I* and 
a sequence e,(O) < e,( 1) <e,(2) < . < K let 

em= C l(f,(nLe,(n))n!EP,. 
n < <” 
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Further, choose b, E P, such that Ilb,ll < /I P,ll = sup(f,(n): 12 <o} and 
set 

a,=e,+b,EP,. (*I 

Using any elements of this form we obtain a transtinite chain of pure 
subgroups G, of F, which are also R-modules, satisfying 

(I,) G,=F; 

(1,) G,=U,,<.%+G 
(II,) G,+l = <GE, a,R)*, the pure submodule of P generated by G, 

and a,. 

We will set G=Uacl. G,. We will specify later how to choose the 
functions e, : o -+ 2” and the elements b, in (*) to ensure End,(G) = R. 

LEMMA 3.1. (a) For each gEG there exist u~<Lx~< ... <cL,<;~*, 
ri E R and m E N, u E F such that mg = x1= 1 a.,ri + u. Moreover, the pair 
(m, g) determines cli, ri, 1 < i<n,, and u uniquely. 

(b) If R is cotorsion-free, then G is cotorsion-free. 

(c) If R is slender, then G is slender. 

Proof: (a) The existence of m, riE R, 1 < i < n, and u E F is obvious 
and the uniqueness follows from 2.2(2). A proof of (b) may be found 
in [CG] or [DMV] and is omitted here. We will prove (c): Let 
zw=n,<, d,Z, where d,(i) = 6,; and let cp: Z” -+ G be a homomorphism 
of groups. We may assume that 0 # cp(d,) = CF= 1 a,,,“ri,+ + u@), where the 
ui,n3 1 < i < k,, are distinct and ri,n # 0 for all i, n. 

Case 1. {ui,,In<w, 1 < i < k,} is infinite. W.1.o.g. we may assume 
{~lr,~ In < o} is infinite and c(,,~ # ~lr,~ for n fm. By induction on n 
we find a colinite subset T,,s[~,,.] and k,-,<k,EN such 

that T, c CCL,, cp(d,)k,!)] for all’ m<w. Thus ~,,,,T,G 

cc,<, cp(d,) k,!], which contradicts (a) and 2.2(2). Thus we may assume 

Case 2. {~l~,~ I n <co, 1 < iE k,} is finite. Restricting ourselves to an 
infinite subset of o, we may assume CL~,~ = cli,l for all 1 < i < k,, and k, = k, 
for all n < o. Then there exists j, < o such that f,,,,(j) +! [a,J for all j aj0 
and i> 1. Thus 

for every ja j, and every Z-adic zero-sequence (zn ( n < o}. 
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This implies that C, <o r”z, E R for every Z-adic zero-sequence 
(zn 1 n < o}. This implies (since R is slender and hence cotorsion-free) that 
r, = 0 for almost all II. This cotradicts our assumption 0 # cp(d,,) for all n. 

Case 3. cp(d,)c F for almost all n. W.1.o.g. we may assume that 
cp(d,) E F for all n < o. 

Case 3.1. U,,,, CddJl is infinite. By induction and substituting o 
by an infinite subset if necessary we find a sequence (cI,, k,) E I x 2” such 
that (cI,, k,) E [q(d,)] and (c1,, k,) 4 [g$d,)] for 1 < i < n - 1. Moreover we 
may assume that ~1, d u,+ , for all n < o. Suppose C, <(u cp(d,) t, ! E G, 
where t,EN is a sequence such that (cp(d,) t,!)(a,,k,)$t,+I! B(a,,k,,) 
andn.t,<t,+, ! for all n. This implies that there exists ct < %* such that for 
a subsequence (a,,, k,,), i < w, we have (u,~~, k,) = (f,(i), e,(i)), i3 i,, and 
(dd,,) t,,!)(cc,,, k,) = i! r. l(f,(i), e,(i)) mod t,<+, ! B(G~, k,,). We now 
pick another sequence { i,,I n < o} such that t, < 1, and i,,, > 2i. If again 
C cp(d,) 1, ! E G we obtain for some s E R, 

(ddq) in, !)(G,, k,)-i!s.l(f,(i),e,(i))modi,,+,!B(a,,k,,) 

for all i 3 I,. The latter implies s E i,, ! (i!)-‘R and since (t,-i(i<w} is 
unbounded we arrive at the contradiction s = 0. Thus we have to consider 

Case 3.2. U”<, [q(d,)] finite. In this case cp gives rise to a map 
cp: zCw’ + Bfinite B since the only elements in G with finite support are the 
elements of F. By continuity of cp we have : n d,n ! Z + F. Since F is a free 
R-module and R is slender we obtain cp(d,,) = 0 for all but finitely many n. 
This shows that G is slender. 

We introduce a symbol cc $ F and refine the construction of G, by 
constructing, together with a, = b, + F,, elements t, E Fu {co } such that, 
in addition to (I,), (I,), (II,) we have 

(III,) tg $ G, for B < c(. 

(IV,) (a) If for all bEP,n 0 (U,k)tj.xZX B(E, k) with llbll d llP,II, 
tg$(G,, (b+e,)R)* whenfl<cr but (b+e,)cp,E(G,,(b+e,)R), then 
we set t,=co and a,=?,, where e,=C,,, l(f,(n),e(n))n! 

(b) If (a) does not hold we set t,= ~,(a,) and set a, = b +e,, 
where b is a witness for the failure of (a). 

LEMMA 3.2. There exists a sequence of triples (G,, a,, t,), a < II*, such 
that (I,), (I,)-(IV,) hold. 

Proof: [DMV, Lemma 3.41. 

LEMMA 3.3. Zf one chooses (G,, a,, t,), cr<II*, as in 3.2, then 

G= Ua-ci* G, is an R-module, FS G E F, and End,(G) = R. 
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Proof Let cp: G + G be a Z-homomorphism and F, = F n P,. Assume 
that for each cc < A* with cp r F, = (Pi we have some r,E R such that 

cp r Fa = (pa: = rl. If cp $ R then there is some PC ;1* with r,#rp and by 
(2.2) there exists y <lb* such that cp r F, = (py = ry and F,, F,$E F,,. Let 
B( x0, 0) s F, and B(B’, 0) c FB. Then 

and 

cp(l(aO, 0)) = (l(aO, 0)) r, = (l(uO, 0)) ry 

cp(l(PO, O))= (l(B”, 0)) rg= (l(B”, 0)) ry. 

These equations imply ror = ry = rB. Thus cp E R. Therefore we may assume 
that for some u <A* we have cp r F, = (P= and cp r F, # R r F,. We will 
show that this ordinal a < 1* satisfies (IV,)(b). 

Suppose q,(Z,) E (G,, ?,R),. This implies ncp,(if,) E t?,r mod G,. Since 
R is pure in Hom(F, P) and cpI # R we conclude ncp, $ R and therefore 

w, - r: F, + P, is not the zero map. Thus there is some (a, k) E 1 x 2” such 
that B(cc, k) c F, and (ncp, - r) r B(cc, k) #O. Since G, is slender, there is 
some b E @a, k) such that (ncp, - r)(b) 4 G,. 

Now set a,=b+e,. If mql(al)E (G,, a,R), for some rn~f+J, then 

mcp, (a,) = (b + 2,) s mod G, 

and we obtain nmcp,(b) = bns + C,(ns - mr)mod G,. Since Ilbll, 
IIcp,(b)ll < llP,ll we conclude that ns = mr and q,(b) = br mod G,, which 
contradicts our choice of 6. Therefore (IV,)(a) does not hold and by 
Lemma 3.2 we have that (IV,)(b) holds and t, = ~,(a,) = (p(a,)$G. This 
contradicts cp E End(G) and End(G) = R follows. 

Remark. As in [DMV, Theorem 5.11 we may also construct rigid 
systems {G’“’ 1 CI < 2’) of such modules, i.e., Horn, (G”‘, GCB’) = 6,,R for all 
a#p<2? 
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