# Large $E$-Modules Exist 

Manfred Dugas*<br>Department of Mathematics, Baylor University, Waco, Texas 76798-7328

Communicated by Walter Feit
Received November 7, 1989

## Introduction

If $R$ is a ring with 1 and $M$ an $R$-module then $M$ is called $E(R)$-module ( or $E$-module) if $\operatorname{Hom}_{\mathbb{Z}}(R, M)=\operatorname{Hom}_{\mathrm{R}}(R, M)$, where $R$ (and $M$ ) is considered a right $R$-module. Moreover, $R$ is called $E$-ring if the right module $R=R_{\mathrm{R}}$ is an $E$-module. It is easy to see that $E$-rings are commutative. $E$-rings were introduced by Schultz in [S] and studied further in [BS]. Torsion-free $E$-rings of finite rank play an important role in some investigations of torsion-free abelian groups of finite rank; cf. [APRVW]. We refer to [Pi] for a discussion of $E(R)$-modules. In the present paper we want to answer a question of C. Visonhaler's: If $R$ is an $E$-ring, are there arbitrarily large indecomposable $E(R)$-modules? Since this question makes sense only for $E$-rings $R$ without nontrivial idempotents we may rephrase Vinsonhaler's question: If $R$ is an $E$-ring, are there arbitrarily large $E(R)$-modules $M$ such that $\operatorname{End}_{\mathbb{Z}}(M)=R$ ? A partial answer to that question may be found in [DG1]: The Main Theorem in [DG1] states that for any cotorsion-free (cf. [DG1]) ring $R$ with $|R|<\kappa$ there exist arbitrarily large, strongly $\kappa$-free $R$-modules $M$ with $\operatorname{End}_{\mathbb{Z}}(M)=R$ if the set theoretic axiom $V=L$ holds (or some weaker consequence of $V=L$ ). These modules are $E(R)$-modules since submodules of $M$ of cardinality $|R|<\kappa$ are contained in free $R$-submodules of $M$. The aim of the present paper is to prove a similar result without using $V=L$ but instead posing some mild restrictions on the ( $E$-) ring $R$. The following theorem is our main result. (We refer to [FI/II] for undefined notations in the theory of abelian groups). Let $\kappa$ denote a regular uncountable cardinal and $\aleph_{m}$ the least measurable cardinal, [J], if there is any measurable cardinal at all.

Theorem. Let $R$ be a ring with 1 such that $R^{+}$, the additive group of $R$, is slender and $|R|<\kappa<\boldsymbol{\aleph}_{\mathrm{m}}$. Let $\lambda>\kappa$ be any cardinal such that $\lambda=\lambda^{2^{\kappa}}$.

[^0]Then there exists an $R$-module $G$ with the following properties:
(a) $|G|=\lambda$
(b) $\operatorname{End}_{\mathbb{Z}}(G)=R$.
(c) Every $R$-submodule $M$ of $G$ of cardinality $<\kappa$ is $R$-torsionless, i.e., a submodule of a cartesian product $\Pi R$.
(d) $G$ is slender (cf. [FII], Sect. 94]).

As an immediate consequence of (c) we have
(e) If $R$ is an E-ring, then $G$ is an $E(R)$-module.

We would like to mention that every $R$-module $G$ with property (c) is itself $R$-torsionless if $\kappa$ is strongly compact (cf. [J], [AE]). This somewhat explains the presence of the restriction $\kappa<\boldsymbol{N}_{\mathrm{m}}$. In [DMV] we constructed for any cotorsion-free ring $S$ with 1 an $E$-ring $R$ of large cardinality with $S \subseteq R$. All the rings constructed in [DMV] are slender if only $S$ is slender. If $R$ is an $E$-ring and $A$ an $R$-algebra such that $A^{+}$is slender and $A$ is an $E(R)$-module then we may apply our Main Theorem with $R$ replaced by $A$, and we obtain many examples of $E(R)$-modules $G$ with "pathological decompositions." We refer to [DG1] for examples of such $R$-algebras $A$.

## 1. Preliminaries

In all that follows, let $A$ be a torsion-free reduced group and $\kappa$ a (regular) uncountable cardinal. Let $A^{\kappa}=\prod_{\alpha<\kappa} A$ be the cartesian product of $\kappa$ copies of $A$. Each element $a \in A^{\kappa}$ is a map from $\kappa$ into $A$ and we identify $a$ with $(a(i))_{i<\kappa}$. We will work with the following canonical subgroups of $A^{\kappa}$. First, let

$$
A^{<\kappa}=\left\{a \in A^{\kappa}| |\{\alpha<\kappa \mid a(\alpha) \neq 0\} \mid<\kappa\right\}
$$

and

$$
A^{(\kappa)}=\left\{a \in A^{\kappa} \mid\{\alpha<\kappa \mid a(\alpha) \neq 0\} \text { finite }\right\} .
$$

Moreover,

$$
A^{[\kappa]}=\left\{a \in A^{\kappa} \mid\{\alpha<\kappa \mid a(\alpha) \neq 0\} \text { finite or countable }\right\}
$$

and

$$
A^{\langle\kappa\rangle}=\left\{a \in A^{\kappa} \mid\{a(\alpha) \mid \alpha<\lambda\} \text { finite }\right\} .
$$

Kaup and Keane [KK] generalized a celebrated result due to Nöbeling (cf. [FII, Sect. 97]) by showing that $A^{\langle\kappa\rangle}$ is isomorphic to a direct sum of
copies of $A$. Moreover, $A^{\langle\kappa\rangle} \cong \oplus_{x \in I} h_{x} A$, where $h_{x}, X \subseteq \kappa$, is the characteristic function of $X$ and $A^{\langle\kappa} \cap A^{\langle\kappa\rangle}$ is a direct summand of $A^{\langle\kappa\rangle}$ with a complement generated by a characteristic $A$-basis; cf. [FII, Theorem 97.5].

Since $A$ is reduced and $\kappa=c f(\kappa)>\omega$, all groups $A^{\kappa}, A^{<\kappa}, A^{\kappa} / A^{<\kappa}$, $\left(A^{\langle\kappa\rangle}+A^{<\kappa}\right) / A^{<\kappa}$ are Hausdorff in the $\mathbb{Z}$-adic topology and all inclusions are pure. For $G$ any reduced group, let $G^{\wedge}=\hat{G}$ be the $\mathbb{Z}$-adic completion of $G$. Then $\left(A^{\langle\kappa\rangle}\right)^{\wedge} \subseteq\left(A^{\kappa}\right)^{\wedge}$ and we define $A_{\kappa}^{*}=\left(A^{\langle\kappa\rangle}\right)^{\wedge} \cap A^{\kappa}$. The pure subgroup $A_{\kappa}^{*}$ consists of all the elements $a=(a(\alpha))_{\alpha<\kappa}$ of $A$ such that
(1) $\{a(\alpha) \mid \alpha<\kappa\}$ is at most countable,
(2) $\forall n<\omega,\{a(\alpha) \mid \alpha<\kappa, a(\alpha) \notin n!A\}$ is finite.

We are now ready to state a stronger version of Los' theorem (cf. [FII, Theorem 94.4]) that is crucial for us.

Theorem 1.1. Let $G$ be a slender group and $\eta \in \operatorname{Hom}_{\mathbb{Z}}\left(A_{\kappa}^{\#}, G\right)$. If $\kappa$ is nonmeasurable and $\eta\left(A^{(\kappa)}\right)=0$, then $\eta=0$.

Proof. Our proof will be essentially the same as the proof of Theorem 4.4 in [FII]. The group $A_{\kappa}^{*} / A^{\langle\kappa\rangle}$ is divisible and therefore $\eta=0$ if and only if $\eta\left(A^{\langle\kappa\rangle}\right)=0$. By way of contradiction, assume that $\eta(a) \neq 0$ for some $a \in A^{\langle\kappa\rangle}$. Since $\{a(\alpha) \mid \alpha<\kappa\}$ is finite we may assume that $a(\alpha) \in\{0, b\}$ for some fixed $0 \neq b \in A$. For any subset $J$ of $\kappa$ define $a_{J} \in A^{\langle\kappa\rangle}$ by $a_{J}(\alpha)=a(\alpha)$ for $\alpha \in J$ and $a_{J}(\alpha)=0$ for $\alpha \notin J$. Note that $a_{\kappa}=a$ and $a_{J} \in A^{\langle\kappa\rangle}$ for all $J \subseteq \kappa$. We define a $G$-valued measure $v$ on $\kappa$ by $v(J)=\eta\left(a_{J}\right)$. Then $v(\kappa)=\eta(a) \neq 0$ and $v(\{\alpha\})=0$ for all $\alpha<\kappa$. Note that $v$ is additive since $\eta$ is a homomorphism. In order to show that $v$ is countably additive, let $J_{n}, n<\omega$, be pairwise disjoint subsets of $\kappa$ and set $a^{(n)}=a_{J_{n}}$. Then $P=\prod_{n<\omega}\left(a^{(n)} n!\right) \mathbb{Z}$ is contained in $A_{\kappa}^{*}$ and $P \cong \mathbb{Z}^{\omega}$. Since $G$ is slender we obtain $n_{0}<\omega$ and $\eta\left(a^{(n)} n!\right)=n!\eta\left(a^{(n)}\right)=0$ for all $n \geqslant n_{0}$. Let

$$
y=\sum_{k=n_{0}}^{\infty} a^{(k)} \in A^{\langle\kappa\rangle} .
$$

Then

$$
v\left(\bigcup_{n<\omega} J_{n}\right)=\eta\left(\sum_{k=0}^{m_{0}-1} a^{(k)}+y\right)=v\left(\bigcup_{k=0}^{n_{0}-1} J_{k}\right)+\eta(y) .
$$

We will show that $\eta(y)=0$. Set $y_{n}=\sum_{k=n_{0}}^{n} a^{(k)}$ and let $\pi=\sum_{n=0}^{\infty} n!z_{n} \in \hat{\mathbb{Z}}$. Then $w=\sum_{n=0}^{\infty}\left(y, y_{n+n_{0}}\right) n!z_{n} \in A_{k}^{*}$ and since $\eta$ is continuous in the $\mathbb{Z}$ adic topology we have $\eta(w)=\sum_{n=0}^{\infty} \eta\left(y-y_{n+n_{0}}\right) n!z_{n}=\sum_{n=0}^{\infty} \eta(y) n!z_{n}=$ $\eta(y) \pi$. This shows that $\eta(y) \hat{\mathbb{Z}} \subseteq G$ and we conclude $\eta(y)=0$ since the slender group $G$ is also cotorsion-free. This shows $v\left(\bigcup_{n<\omega} J_{n}\right)=$
$\sum_{n=0}^{n_{0}-1} v\left(J_{n}\right)=\sum_{n<\omega} v\left(J_{n}\right)$ and $v$ is countably additive. Now consider the countably additive ideal $0=\left\{J \subseteq \kappa \mid \nu\left(J^{\prime}\right)=0\right.$ for all $\left.J^{\prime} \subseteq J\right\}$ and let $\mathbb{B}$ be the boolean algebra of all subsets of $\kappa$. As in the proof of Theorem 94.4 in [FII] it follows that $\mathbb{B} / \mathbb{D}$ is finite. Thus $v$ gives rise to a countably additive, $\{0,1\}$-measure on $\kappa$ and we arrived at a contradiction since $\kappa$ is nonmeasurable.

The next definition may be found in [BS] and we refer to [Pi] for easy reference.

Definition 1.2. Let $R$ be a ring. If for each $\varphi \in \operatorname{End}_{\mathbb{Z}}(R)$ there is an $r \in R$ such that $\varphi(x)=x r$ for all $x \in R$, then $R$ is called an $E$-ring. Note that $E$-rings are commutative. An $R$-module $M$ is called an $E$-module (or $E(R)$ module) if $\operatorname{Hom}_{\mathbb{Z}}(R, M)=\operatorname{Hom}_{\mathrm{R}}(R, M)$. Note that $R$ is an $E$-ring iff the $R$-module $R_{\mathrm{R}}$ is an $E(R)$-module. Finally, an $R$-module $M$ is called $R$-torsionless if $M$ is isomorphic to an $R$-submodule of $R^{\kappa}$ for some cardinal $\kappa$.

Remark 1.3. If $R$ is an $E$-ring then every $R$-torsionless module is an $E(R)$-module, and the class of $E(R)$-modules is closed with respect to submodules, cartesian products, and direct sums.

Remark 1.4. Let $\boldsymbol{\aleph}_{\mathrm{m}}$ be the least measurable cardinal (if it exists), $\kappa$ a regular cardinal $<\boldsymbol{\aleph}_{\mathrm{m}}$, and $R$ an $E$-ring of cardinality $<\kappa$. Then $R^{\kappa} / R^{<\kappa}$ is an $E(R)$-module.

Proof. By the Wald-Los lemma (cf. [DG2]), every submodule of $R^{\kappa} / R^{<\kappa}$ of cardinality $<\kappa$ is $R$-torsionless. Since $|R|<\kappa$ this implies that $R^{\kappa} / R^{<\kappa}$ (and all its submodules) are $E(R)$-modules.

In order to prove the theorem mentioned in the Introduction, we will have to construct an $R$-module $G$ with $\operatorname{End}(G)=R$. This will be done using a "Black Box" construction similar to the one in [DMV]. Therefore, we will be a little sketchy at times and point out only the major differences.

## 2. The Black Box

Let $\kappa<\boldsymbol{X}_{\mathrm{m}}$ be a regular cardinal and $\lambda$ a cardinal $\geqslant \kappa$ with $\lambda^{\left(2^{\kappa)}\right.}=\lambda$. Moreover, let $R$ be a cotorsion-free ring such that $|R|<\kappa$. Let $F=$ $\oplus_{\alpha<\lambda} \oplus_{k<2^{\kappa}}\left(\left(R^{\langle\kappa\rangle}+R^{<\kappa}\right) / R^{<\kappa}\right)(\alpha, k)$, where $\left(\left(R^{\langle\kappa\rangle}+R^{<\kappa}\right) / R^{<\kappa}\right)(\alpha, k)$ is a copy of $R^{\langle\kappa\rangle}+R^{<\kappa} / R^{<\kappa}$ labelled by $(\alpha, k), \alpha<\lambda, k<2^{\kappa}$. We set $B=\left(R^{\langle\kappa\rangle}+R^{<\kappa}\right) / R^{<\kappa}$ and $\bar{B}=\left(R_{\kappa}^{*}+R^{<\kappa}\right) / R^{<\kappa} \subseteq R^{\kappa} / R^{<\kappa}$. Note that $B$ is a free $R$-module and because of $1.1, \operatorname{Hom}_{\mathbb{Z}}(\bar{B}, G)=0$ for any slender
group $G$. Moreover, $\bar{B} / B$ is divisible (as abelian group). Eventually, we will construct an $R$-module $M$ such that

$$
\oplus_{\alpha<i} \bigoplus_{k<2^{k}} B(\alpha, k)=F \subseteq M \subseteq\left(\bigoplus_{x<i} \bigoplus_{k<2^{k}} \bar{B}(\alpha, k)\right)+\left(B^{\left(\lambda+2^{\kappa}\right)}\right)^{-}=\tilde{F}
$$

where $\left(B^{\left(\lambda \times 2^{k}\right)}\right)^{-}$is the $\mathbb{Z}$-adic closure of $B^{\left(\lambda \times 2^{k}\right)}$ in $B^{i \times 2^{k}}=$ $\prod_{x<\lambda} \prod_{k<2^{\kappa}} B(\alpha, k)$. Note that $\tilde{F} / F$ is divisible and $\tilde{F} \subseteq \bar{B}^{\lambda \times 2^{k}} \subseteq$ $\prod_{\lambda \times 2^{\kappa}}\left(R^{\kappa} / R^{<\kappa}\right)$. Thus every submodule $L$ of $\tilde{F}$ of cardinality $<\kappa$ is $R$-torsionless. Moreover, for each $\varphi: F \rightarrow \tilde{F}$ there exists a unique extension $\tilde{\varphi}: \tilde{F} \rightarrow(\tilde{F})^{\wedge}$ and we will identify $\varphi$ and $\tilde{\varphi}$. For $x \in \tilde{F}$ let $[x]=\left\{(\alpha, k) \in \lambda \times 2^{\kappa} \mid x(\alpha, k) \neq 0\right\}$ and $[x]=\left\{\alpha<\lambda \mid \exists k<2^{\kappa}((\alpha, k) \in[x])\right\}$. If $P$ is any $R$-submodule of $\widetilde{F}$, we define $\|P\|=\sup \{\llbracket x \rrbracket \mid x \in P\}$.

Definition 2.1. (1) A canonical submodule $P$ of $\tilde{F}$ is any $R$-submodule $P$ of $\tilde{F}$ such that for some fixed $I \subseteq \kappa,|I| \leqslant 2^{\kappa}$, we have $x \in P$ iff $\llbracket x \rrbracket \in I$.
(2) A trap is a triple $(f, P, \varphi)$, where $f$ is a sequence of ordinals $f(0)<f(1)<\cdots<\lambda ; P$ is a canonical submodule such that $\bar{B}(\alpha, k) \subseteq P$ for any $(\alpha, k) \in \lambda \times 2^{\kappa}$ whenever $\alpha=f(n)$ for some $n<\omega$ and $\|P\|=\sup \{f(n) \mid n<\omega\}$ and $\varphi \in \operatorname{Hom}_{\mathbb{Z}}(P \cap F, P)$.

Without proof we state Shelah's principle, the so-called "Black Box." A proof may be found in [DMV, Theorem 2.6].

Theorem 2.2. For some ordinal $\lambda^{*}$ there exists a sequence of traps $\tau_{\alpha}=\left(f_{\alpha}, P_{\alpha}, \varphi_{\alpha}\right), \alpha<\lambda^{*}$, such that
(1) $\left\|P_{\alpha}\right\| \leqslant\left\|P_{\beta}\right\|$ if $\alpha \leqslant \beta$.
(2) If $\alpha \neq \beta$ then $\operatorname{Im} f_{\alpha} \cap \operatorname{Im} f_{\beta}$ is finite.
(3) If $\beta+\left(2^{\kappa}\right)^{\omega} \leqslant \alpha$ then for all $e: \omega \rightarrow 2^{\kappa}$ there exists $n_{0}<\omega$ such that $\prod_{n<n_{0}} \bar{B}\left(f_{\alpha}(n), e(n)\right) \cap P_{\beta}=0$.
(4) If $A \subseteq \tilde{F},|A| \leqslant 2^{\kappa}$ and if $\varphi \in \operatorname{Hom}(F, \tilde{F})$ then there exists $\alpha<\lambda^{*}$ such that $A \subseteq P_{x},\|A\| \leqslant\left\|P_{\alpha}\right\|$ and $\varphi \upharpoonright\left(F \cap P_{\alpha}\right)=\varphi_{\alpha}$.

## 3. The Construction

Let $1(\alpha, k)$ be the element in $B(\alpha, k)$ induced by $a \in R^{\langle\kappa\rangle}$ with $a(i)=1$ for all $i<k$, i.e., $1(\alpha, k)=\left(a+R^{<\kappa}\right)(\alpha, k)$.

We will utilize the sequence of traps $\left(f_{x}, P_{\gamma}, \varphi_{x}\right), \alpha<\lambda^{*}$. For $\alpha<\lambda^{*}$ and a sequence $e_{\alpha}(0)<e_{\alpha}(1)<e_{\alpha}(2)<\cdots<\kappa$ let

$$
\bar{e}_{\alpha}=\sum_{n<\omega} 1\left(f_{\alpha}(n), e_{\alpha}(n)\right) n!\in P_{\alpha}
$$

Further, choose $b_{\alpha} \in P_{\alpha}$ such that $\left\|b_{\alpha}\right\|<\left\|P_{\alpha}\right\|=\sup \left\{f_{\alpha}(n): n<\omega\right\}$ and set

$$
\begin{equation*}
a_{\alpha}=\bar{e}_{\alpha}+b_{\alpha} \in P_{\alpha} \tag{*}
\end{equation*}
$$

Using any elements of this form we obtain a transfinite chain of pure subgroups $G_{\alpha}$ of $\widetilde{F}$, which are also $R$-modules, satisfying
( $\left.\mathrm{I}_{0}\right) \quad G_{0}=F$;
(I $\left.\mathrm{I}_{\alpha}\right) \quad G_{\alpha}=\bigcup_{\eta<\alpha} G_{\eta+1}$;
( $\mathrm{II}_{\alpha}$ ) $\quad G_{\alpha+1}=\left\langle G_{\alpha}, a_{\alpha} R\right\rangle_{*}$, the pure submodule of $\tilde{F}$ generated by $G_{\alpha}$ and $a_{x}$.

We will set $G=\bigcup_{\alpha<\lambda^{*}} G_{\alpha}$. We will specify later how to choose the functions $e_{\alpha}: \omega \rightarrow 2^{\kappa}$ and the elements $b_{\alpha}$ in (*) to ensure $\operatorname{End}_{\mathbb{Z}}(G)=R$.

Lemma 3.1. (a) For each $g \in G$ there exist $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}<\lambda^{*}$, $r_{i} \in R$ and $m \in \mathbb{N}, u \in F$ such that $m g=\sum_{i=1}^{n} a_{\alpha_{i}} r_{i}+u$. Moreover, the pair ( $m, g$ ) determines $\alpha_{i}, r_{i}, 1 \leqslant i \leqslant n_{1}$, and $u$ uniquely.
(b) If $R$ is cotorsion-free, then $G$ is cotorsion-free.
(c) If $R$ is slender, then $G$ is slender.

Proof. (a) The existence of $m, r_{i} \in R, 1 \leqslant i \leqslant n$, and $u \in F$ is obvious and the uniqueness follows from $2.2(2)$. A proof of (b) may be found in [CG] or [DMV] and is omitted here. We will prove (c): Let $\mathbb{Z}^{\omega}=\prod_{n<\omega} d_{n} \mathbb{Z}$, where $d_{n}(i)=\delta_{n i}$ and let $\varphi: \mathbb{Z}^{\omega} \rightarrow G$ be a homomorphism of groups. We may assume that $0 \neq \varphi\left(d_{n}\right)=\sum_{i=1}^{k_{n}} a_{\alpha_{i, n}} r_{i, n}+u^{(n)}$, where the $\alpha_{i, n}, 1 \leqslant i \leqslant k_{n}$, are distinct and $r_{i, n} \neq 0$ for all $i, n$.

Case 1. $\left\{\alpha_{i, n} \mid n<\omega, \quad 1 \leqslant i \leqslant k_{n}\right\}$ is infinite. W.l.o.g. we may assume $\left\{\alpha_{1, n} \mid n<\omega\right\}$ is infinite and $\alpha_{1, n} \neq \alpha_{1, m}$ for $n \neq m$. By induction on $n$ we find a cofinite subset $T_{n} \subseteq\left[a_{x_{1, n}}\right]$ and $k_{n-1}<k_{n} \in \mathbb{N}$ such that $T_{m} \subseteq\left[\left(\sum_{n<\omega} \varphi\left(d_{n}\right) k_{n}!\right)\right]$ for all $m<\omega$. Thus $\bigcup_{m<\omega} T_{m} \subseteq$ [ $\sum_{n<\omega} \varphi\left(d_{n}\right) k_{n}!$ ], which contradicts (a) and 2.2(2). Thus we may assume

Case 2. $\left\{\alpha_{i, n} \mid n<\omega, 1 \leqslant i \in k_{n}\right\}$ is finite. Restricting ourselves to an infinite subset of $\omega$, we may assume $\alpha_{i, n}=\alpha_{i, 1}$ for all $1 \leqslant i \leqslant k_{1}$, and $k_{1}=k_{n}$ for all $n<\omega$. Then there exists $j_{0}<\omega$ such that $f_{\alpha_{1,1}}(j) \notin \llbracket a_{\alpha_{i, 1}} \rrbracket$ for all $j \geqslant j_{0}$ and $i>1$. Thus

$$
\left(\varphi\left(\sum_{n} d_{n} z_{n}\right)\right)\left(f_{x_{11}}(j), e_{\alpha_{11}}(j)\right)=\left(1\left(f_{\alpha_{11}}(j), e_{\alpha_{11}}(j)\right)\right)\left(j!\sum_{n<\omega} r_{n} z_{n}\right)
$$

for every $j \geqslant j_{0}$ and every $\mathbb{Z}$-adic zero-sequence $\left\{z_{n} \mid n<\omega\right\}$.

This implies that $\sum_{n<\omega} r_{n} z_{n} \in R$ for every $\mathbb{Z}$-adic zero-sequence $\left\{z_{n} \mid n<\omega\right\}$. This implies (since $R$ is slender and hence cotorsion-free) that $r_{n}=0$ for almost all $n$. This cotradicts our assumption $0 \neq \varphi\left(d_{n}\right)$ for all $n$.

Case 3. $\varphi\left(d_{n}\right) \in F$ for almost all $n$. W.l.o.g. we may assume that $\varphi\left(d_{n}\right) \in F$ for all $n<\omega$.

Case 3.1. $\bigcup_{n<\omega}\left[\varphi\left(d_{n}\right)\right]$ is infinite. By induction and substituting $\omega$ by an infinite subset if necessary we find a sequence $\left(\alpha_{n}, k_{n}\right) \in \lambda \times 2^{\kappa}$ such that $\left(\alpha_{n}, k_{n}\right) \in\left[\varphi\left(d_{n}\right)\right]$ and $\left(\alpha_{n}, k_{n}\right) \notin\left[\varphi\left(d_{i}\right)\right]$ for $1 \leqslant i \leqslant n-1$. Moreover we may assume that $\alpha_{n} \leqslant \alpha_{n+1}$ for all $n<\omega$. Suppose $\sum_{n<\omega} \varphi\left(d_{n}\right) t_{n}!\in G$, where $t_{n} \in \mathbb{N}$ is a sequence such that $\left(\varphi\left(d_{n}\right) t_{n}!\right)\left(\alpha_{n}, k_{n}\right) \notin t_{n+1}!\bar{B}\left(\alpha_{n}, k_{n}\right)$ and $n \cdot t_{n}<t_{n+1}$ ! for all $n$. This implies that there exists $\alpha<\lambda^{*}$ such that for a subsequence $\left(\alpha_{n_{i}}, k_{n_{i}}\right), i<\omega$, we have $\left(\alpha_{n_{i}}, k_{n_{i}}\right)=\left(f_{\alpha}(i), e_{\alpha}(i)\right), i \geqslant i_{0}$, and $\left(\varphi\left(d_{n_{i}}\right) t_{n_{i}}!\right)\left(\alpha_{n_{i}}, k_{n_{i}}\right) \equiv i!r \cdot 1\left(f_{x}(i), e_{\alpha}(i)\right) \bmod t_{n_{i}+1}!\bar{B}\left(\alpha_{n_{i}}, k_{n_{i}}\right)$. We now pick another sequence $\left\{\tilde{t}_{n} \mid n<\omega\right\}$ such that $t_{n}<\tilde{t}_{n}$ and $\tilde{t}_{n_{i}}>2 i$. If again $\sum \varphi\left(d_{n}\right) \tilde{t}_{n}!\in G$ we obtain for some $s \in R$,

$$
\left(\varphi\left(d_{n_{i}}\right) \tilde{t}_{n_{i}}!\right)\left(\alpha_{n_{i}}, k_{n_{i}}\right) \equiv i!s \cdot 1\left(f_{\alpha}(i), e_{\alpha}(i)\right) \bmod \tilde{t}_{n_{i}+1}!\bar{B}\left(\alpha_{n_{i}}, k_{n_{i}}\right)
$$

for all $i \geqslant \tilde{\imath}_{0}$. The latter implies $s \in \tilde{t}_{n_{i}}!(i!)^{-1} R$ and since $\left\{t_{n_{i}}-i \mid i<\omega\right\}$ is unbounded we arrive at the contradiction $s=0$. Thus we have to consider

Case 3.2. $\bigcup_{n<\omega}\left[\varphi\left(d_{n}\right)\right]$ finite. In this case $\varphi$ gives rise to a map $\varphi: \mathbb{Z}^{(\omega)} \rightarrow \oplus_{\text {finite }} B$ since the only elements in $G$ with finite support are the elements of $F$. By continuity of $\varphi$ we have $: \Pi d_{n} n!\mathbb{Z} \rightarrow F$. Since $F$ is a free $R$-module and $R$ is slender we obtain $\varphi\left(d_{n}\right)=0$ for all but finitely many $n$. This shows that $G$ is slender.

We introduce a symbol $\infty \notin \tilde{F}$ and refine the construction of $G_{\alpha}$ by constructing, together with $a_{\alpha}=b_{\alpha}+\bar{e}_{\alpha}$, elements $t_{\alpha} \in \tilde{F} \cup\{\infty\}$ such that, in addition to $\left(\mathrm{I}_{0}\right),\left(\mathrm{I}_{\alpha}\right),\left(\mathrm{II}_{\alpha}\right)$ we have
$\left(\mathrm{III}_{\alpha}\right) \quad t_{\beta} \notin G_{\alpha}$ for $\beta<\alpha$.
( $\mathrm{IV}_{\alpha}$ ) (a) If for all $b \in P_{\alpha} \cap \oplus_{(a, k) \in \lambda \times 2^{x}} \bar{B}(\alpha, k)$ with $\|b\| \leqslant\left\|P_{\alpha}\right\|$, $t_{\beta} \notin\left\langle G_{\alpha},\left(b+\bar{e}_{\alpha}\right) R\right\rangle_{*}$ when $\beta<\alpha$ but $\left(b+\bar{e}_{\alpha}\right) \varphi_{\alpha} \in\left\langle G_{\alpha},\left(b+\bar{e}_{\alpha}\right) R\right\rangle_{*}$ then we set $t_{\alpha}=\infty$ and $a_{x}=\bar{e}_{x}$, where $\bar{e}_{x}=\sum_{n<\omega} 1\left(f_{x}(n), e(n)\right) n$ !
(b) If (a) does not hold we set $t_{\alpha}=\varphi_{x}\left(a_{x}\right)$ and set $a_{\alpha}=b+\bar{e}_{\alpha}$, where $b$ is a witness for the failure of (a).

Lemma 3.2. There exists a sequence of triples $\left(G_{\alpha}, a_{x}, t_{\alpha}\right), \alpha<\lambda^{*}$, such that $\left(\mathrm{I}_{0}\right),\left(\mathrm{I}_{\alpha}\right)-\left(\mathrm{IV}_{\alpha}\right)$ hold.

## Proof. [DMV, Lemma 3.4].

Lemma 3.3. If one chooses $\left(G_{\alpha}, a_{\alpha}, t_{\alpha}\right), \alpha<\lambda^{*}$, as in 3.2, then $G=\bigcup_{\alpha<\lambda^{*}} G_{\alpha}$ is an $R$-modulc, $F \subseteq G \subseteq \tilde{F}$, and $\operatorname{End}_{\mathbb{Z}}(G)=R$.

Proof. Let $\varphi: G \rightarrow G$ be a $\mathbb{Z}$-homomorphism and $F_{\alpha}=F \cap P_{\alpha}$. Assume that for each $\alpha<\lambda^{*}$ with $\varphi \upharpoonright F_{\alpha}=\varphi_{\alpha}$ we have some $r_{\alpha} \in R$ such that $\varphi \upharpoonright F_{\alpha}=\varphi_{\alpha}=r_{\alpha}$. If $\varphi \notin R$ then there is some $\beta<\lambda^{*}$ with $r_{x} \neq r_{\beta}$ and by (2.2) there exists $\gamma<\lambda^{*}$ such that $\varphi \upharpoonright F_{\gamma}=\varphi_{\gamma}=r_{\gamma}$ and $F_{x}, F_{\beta} \subseteq F_{\gamma}$. Let $B\left(\alpha^{0}, 0\right) \subseteq F_{\alpha}$ and $B\left(\beta^{0}, 0\right) \subseteq F_{\beta}$. Then

$$
\varphi\left(1\left(\alpha^{0}, 0\right)\right)=\left(1\left(\alpha^{0}, 0\right)\right) r_{\alpha}=\left(1\left(\alpha^{0}, 0\right)\right) r_{\gamma}
$$

and

$$
\varphi\left(1\left(\beta^{0}, 0\right)\right)=\left(1\left(\beta^{0}, 0\right)\right) r_{\beta}=\left(1\left(\beta^{0}, 0\right)\right) r_{\gamma}
$$

These equations imply $r_{\alpha}=r_{\gamma}=r_{\beta}$. Thus $\varphi \in R$. Therefore we may assume that for some $\alpha<\lambda^{*}$ we have $\varphi \upharpoonright F_{\alpha}=\varphi_{\alpha}$ and $\varphi \upharpoonright F_{\alpha} \notin R \upharpoonright F_{\alpha}$. We will show that this ordinal $\alpha<\lambda^{*}$ satisfies ( $\mathrm{IV}_{\alpha}$ )(b).

Suppose $\varphi_{\alpha}\left(\bar{e}_{\alpha}\right) \in\left\langle G_{\alpha}, \bar{e}_{\alpha} R\right\rangle_{*}$. This implies $n \varphi_{\alpha}\left(\bar{e}_{\alpha}\right) \equiv \bar{e}_{\alpha} r \bmod G_{\alpha}$. Since $R$ is pure in $\operatorname{Hom}(F, \tilde{F})$ and $\varphi_{\alpha} \notin R$ we conclude $n \varphi_{\alpha} \notin R$ and therefore $n \varphi_{\alpha}-r: F_{\alpha} \rightarrow P_{\alpha}$ is not the zero map. Thus there is some $(\alpha, k) \in \lambda \times 2^{\kappa}$ such that $B(\alpha, k) \subseteq F_{\alpha}$ and $\left(n \varphi_{\alpha}-r\right) \upharpoonright B(\alpha, k) \neq 0$. Since $G_{\alpha}$ is slender, there is some $b \in \bar{B}(\alpha, k)$ such that $\left(n \varphi_{\alpha}-r\right)(b) \notin G_{\alpha}$.

Now set $a_{\alpha}=b+\bar{e}_{\alpha}$. If $m \varphi_{\alpha}\left(a_{\alpha}\right) \in\left\langle G_{\alpha}, a_{\alpha} R\right\rangle_{*}$ for some $m \in \mathbb{N}$, then

$$
m \varphi_{\alpha}\left(a_{\alpha}\right) \equiv\left(b+\bar{e}_{\alpha}\right) s \quad \bmod G_{\alpha}
$$

and we obtain $n m \varphi_{\alpha}(b) \equiv b n s+\bar{e}_{\alpha}(n s-m r) \bmod G_{\alpha}$. Since $\|b\|$, $\left\|\varphi_{\alpha}(b)\right\|<\left\|P_{\alpha}\right\|$ we conclude that $n s=m r$ and $n \varphi_{\alpha}(b) \equiv b r \bmod G_{\alpha}$, which contradicts our choice of $b$. Therefore $\left(\mathrm{IV}_{\alpha}\right)(a)$ does not hold and by Lemma 3.2 we have that $\left(\mathrm{IV}_{x}\right)(\mathrm{b})$ holds and $t_{\alpha}=\varphi_{\alpha}\left(a_{\alpha}\right)=\varphi\left(a_{\alpha}\right) \notin G$. This contradicts $\varphi \in \operatorname{End}(G)$ and $\operatorname{End}(G)=R$ follows.

Remark. As in [DMV, Theorem 5.1] we may also construct rigid systems $\left\{G^{(\alpha)} \mid \alpha<2^{\lambda}\right\}$ of such modules, i.e., $\operatorname{Hom}_{\mathbb{Z}}\left(G^{(\alpha)}, G^{(\beta)}\right)=\delta_{\alpha \beta} R$ for all $\alpha \neq \beta<2^{2}$.

## References

[AE] Y. Abe and I. Eda, Compact cardinals and abelian groups, Tsukuba J. Math. 11 (1987), 353-360.
[APRVW] D. Arnold, R. S. Pierce, J. D. Reid, C. Vinsonhaler, and W. Wickless, Torsion-free abelian groups of finite rank projective as modules over their endomorphism rings, J. Algebra 71 (1981), 1-10.
[BS] R. A. Bowshell and P. H. Schultz, Unital rings whose additive endomorphisms commute, Math. Ann. 228 (1977), 197-214.
[CG] A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3) 50, 447-479.
[DG1] M. Dugas and R. Göbel, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3) 45 (1982), 319-336.
[DG2] M. Dugas and R. Göbel, On radicals and products, Pacific J. Math. 118 (1985), 79-104.
[DMV] M. Dugas, A. Mader, and C. Vinsonhaler, Large E-rings exist, J. Algebra 108 (1987), 88-101.
[FI/II] L. Fuchs, "Infinite Abelian Groups," Vols. I, II, Academic Press, New York, 1970, 1973.
[J] T. Jech, "Set Theory," Academic Press, New York, 1978.
[KK] L. Kaup and M. S. Keane, Induktive Limiten endlich erzeugter freier Moduln, Manuscripta Math. 1 (1969), 9-21.
[Pi] R. S. Pierce, E-modules, Contemp. Math. 87 (1989), 221-240.
[S] P. Schultz, The endomorphis ring of the additive group of a ring, J. Austral. Math. Soc. 15 (1973), 60-69.


[^0]:    * Research partially supported by the NSF under Grant DMS-8900350.

