JOURNAL OF ALGEBRA 142, 405-413 (1991)

Large E-Modules Exist

MANFRED DUGAS*

Department of Mathematics, Baylor University, Waco, Texas 76798-7328

Communicated by Walter Feit

Received November 7, 1989

INTRODUCTION

If R is a ring with 1 and M an R-module then M is called E(R)-module (or E-module) if $\operatorname{Hom}_{\mathbb{Z}}(R, M) = \operatorname{Hom}_{\mathbb{R}}(R, M)$, where R (and M) is considered a right *R*-module. Moreover, *R* is called *E*-ring if the right module $R = R_{\rm R}$ is an *E*-module. It is easy to see that *E*-rings are commutative. *E*-rings were introduced by Schultz in [S] and studied further in [BS]. Torsion-free E-rings of finite rank play an important role in some investigations of torsion-free abelian groups of finite rank; cf. [APRVW]. We refer to [Pi] for a discussion of E(R)-modules. In the present paper we want to answer a question of C. Visonhaler's: If R is an E-ring, are there arbitrarily large indecomposable E(R)-modules? Since this question makes sense only for E-rings R without nontrivial idempotents we may rephrase Vinsonhaler's question: If R is an E-ring, are there arbitrarily large E(R)-modules M such that $\operatorname{End}_{\mathbb{Z}}(M) = R$? A partial answer to that question may be found in [DG1]: The Main Theorem in [DG1] states that for any cotorsion-free (cf. [DG1]) ring R with $|R| < \kappa$ there exist arbitrarily large, strongly κ -free R-modules M with End_x(M) = R if the set theoretic axiom V = L holds (or some weaker consequence of V = L). These modules are E(R)-modules since submodules of M of cardinality $|R| < \kappa$ are contained in free R-submodules of M. The aim of the present paper is to prove a similar result without using V = L but instead posing some mild restrictions on the (E-) ring R. The following theorem is our main result. (We refer to [FI/II] for undefined notations in the theory of abelian groups). Let κ denote a regular uncountable cardinal and \aleph_m the least measurable cardinal, [J], if there is any measurable cardinal at all.

THEOREM. Let R be a ring with 1 such that R^+ , the additive group of R, is slender and $|R| < \kappa < \aleph_m$. Let $\lambda > \kappa$ be any cardinal such that $\lambda = \lambda^{2^{\kappa}}$.

* Research partially supported by the NSF under Grant DMS-8900350.

MANFRED DUGAS

Then there exists an R-module G with the following properties:

- (a) $|G| = \lambda$.
- (b) $\operatorname{End}_{\mathbb{Z}}(G) = R$.

(c) Every R-submodule M of G of cardinality $< \kappa$ is R-torsionless, i.e., a submodule of a cartesian product $\prod R$.

(d) G is slender (cf. [FII], Sect. 94]).

As an immediate consequence of (c) we have

(e) If R is an E-ring, then G is an E(R)-module.

We would like to mention that every *R*-module *G* with property (c) is itself *R*-torsionless if κ is strongly compact (cf. [J], [AE]). This somewhat explains the presence of the restriction $\kappa < \aleph_m$. In [DMV] we constructed for any cotorsion-free ring *S* with 1 an *E*-ring *R* of large cardinality with $S \subseteq R$. All the rings constructed in [DMV] are slender if only *S* is slender. If *R* is an *E*-ring and *A* an *R*-algebra such that A^+ is slender and *A* is an E(R)-module then we may apply our Main Theorem with *R* replaced by *A*, and we obtain many examples of E(R)-modules *G* with "pathological decompositions." We refer to [DG1] for examples of such *R*-algebras *A*.

1. PRELIMINARIES

In all that follows, let A be a torsion-free reduced group and κ a (regular) uncountable cardinal. Let $A^{\kappa} = \prod_{\alpha < \kappa} A$ be the cartesian product of κ copies of A. Each element $a \in A^{\kappa}$ is a map from κ into A and we identify a with $(a(i))_{i < \kappa}$. We will work with the following canonical subgroups of A^{κ} . First, let

$$A^{<\kappa} = \{a \in A^{\kappa} \mid | \{\alpha < \kappa \mid a(\alpha) \neq 0\} \mid < \kappa\}$$

and

$$A^{(\kappa)} = \{ a \in A^{\kappa} | \{ \alpha < \kappa | a(\alpha) \neq 0 \} \text{ finite} \}.$$

Moreover,

$$A^{[\kappa]} = \{a \in A^{\kappa} | \{\alpha < \kappa | a(\alpha) \neq 0\} \text{ finite or countable} \}$$

and

$$A^{\langle \kappa \rangle} = \{a \in A^{\kappa} | \{a(\alpha) | \alpha < \lambda\} \text{ finite} \}.$$

Kaup and Keane [KK] generalized a celebrated result due to Nöbeling (cf. [FII, Sect. 97]) by showing that $A^{\langle \kappa \rangle}$ is isomorphic to a direct sum of

406

copies of A. Moreover, $A^{\langle \kappa \rangle} \cong \bigoplus_{x \in I} h_x A$, where h_x , $X \subseteq \kappa$, is the characteristic function of X and $A^{\langle \kappa \rangle} \cap A^{\langle \kappa \rangle}$ is a direct summand of $A^{\langle \kappa \rangle}$ with a complement generated by a characteristic A-basis; cf. [FII, Theorem 97.5].

Since A is reduced and $\kappa = cf(\kappa) > \omega$, all groups A^{κ} , $A^{<\kappa}$, $A^{\kappa}/A^{<\kappa}$, $(A^{\langle\kappa\rangle} + A^{<\kappa})/A^{<\kappa}$ are Hausdorff in the Z-adic topology and all inclusions are pure. For G any reduced group, let $G^{\wedge} = \hat{G}$ be the Z-adic completion of G. Then $(A^{\langle\kappa\rangle})^{\wedge} \subseteq (A^{\kappa})^{\wedge}$ and we define $A_{\kappa}^{\#} = (A^{\langle\kappa\rangle})^{\wedge} \cap A^{\kappa}$. The pure subgroup $A_{\kappa}^{\#}$ consists of all the elements $a = (a(\alpha))_{\alpha < \kappa}$ of A such that

- (1) $\{a(\alpha) | \alpha < \kappa\}$ is at most countable,
- (2) $\forall n < \omega, \{a(\alpha) \mid \alpha < \kappa, a(\alpha) \notin n! A\}$ is finite.

We are now ready to state a stronger version of Los' theorem (cf. [FII, Theorem 94.4]) that is crucial for us.

THEOREM 1.1. Let G be a slender group and $\eta \in \text{Hom}_{\mathbb{Z}}(A_{\kappa}^{\#}, G)$. If κ is nonmeasurable and $\eta(A^{(\kappa)}) = 0$, then $\eta = 0$.

Proof. Our proof will be essentially the same as the proof of Theorem 4.4 in [FII]. The group $A_{\kappa}^{*}/A^{\langle\kappa\rangle}$ is divisible and therefore $\eta = 0$ if and only if $\eta(A^{\langle\kappa\rangle}) = 0$. By way of contradiction, assume that $\eta(a) \neq 0$ for some $a \in A^{\langle\kappa\rangle}$. Since $\{a(\alpha) | \alpha < \kappa\}$ is finite we may assume that $a(\alpha) \in \{0, b\}$ for some fixed $0 \neq b \in A$. For any subset J of κ define $a_J \in A^{\langle\kappa\rangle}$ by $a_J(\alpha) = a(\alpha)$ for $\alpha \in J$ and $a_J(\alpha) = 0$ for $\alpha \notin J$. Note that $a_{\kappa} = a$ and $a_J \in A^{\langle\kappa\rangle}$ for all $J \subseteq \kappa$. We define a G-valued measure ν on κ by $\nu(J) = \eta(a_J)$. Then $\nu(\kappa) = \eta(a) \neq 0$ and $\nu(\{\alpha\}) = 0$ for all $\alpha < \kappa$. Note that ν is additive, let J_n , $n < \omega$, be pairwise disjoint subsets of κ and set $a^{(n)} = a_{J_n}$. Then $P = \prod_{n < \omega} (a^{(n)}n!)\mathbb{Z}$ is contained in A_{κ}^{*} and $P \cong \mathbb{Z}^{\omega}$. Since G is slender we obtain $n_0 < \omega$ and $\eta(a^{(n)}n!) = n! \eta(a^{(n)}) = 0$ for all $n \ge n_0$. Let

$$y = \sum_{k=n_0}^{\infty} a^{(k)} \in A^{\langle \kappa \rangle}.$$

Then

$$v\left(\bigcup_{n<\omega}J_n\right)=\eta\left(\sum_{k=0}^{m_0-1}a^{(k)}+y\right)=v\left(\bigcup_{k=0}^{n_0-1}J_k\right)+\eta(y).$$

We will show that $\eta(y) = 0$. Set $y_n = \sum_{k=n_0}^n a^{(k)}$ and let $\pi = \sum_{n=0}^\infty n! z_n \in \hat{\mathbb{Z}}$. Then $w = \sum_{n=0}^\infty (y - y_{n+n_0}) n! z_n \in A_{\kappa}^{\#}$ and since η is continuous in the \mathbb{Z} -adic topology we have $\eta(w) = \sum_{n=0}^\infty \eta(y - y_{n+n_0}) n! z_n = \sum_{n=0}^\infty \eta(y) n! z_n = \eta(y) \pi$. This shows that $\eta(y)\hat{\mathbb{Z}} \subseteq G$ and we conclude $\eta(y) = 0$ since the slender group G is also cotorsion-free. This shows $v(\bigcup_{n < \omega} J_n) =$

MANFRED DUGAS

 $\sum_{n=0}^{n_0-1} v(J_n) = \sum_{n < \omega} v(J_n)$ and v is countably additive. Now consider the countably additive ideal $\mathbb{I} = \{J \subseteq \kappa | v(J') = 0 \text{ for all } J' \subseteq J\}$ and let \mathbb{B} be the boolean algebra of all subsets of κ . As in the proof of Theorem 94.4 in [FII] it follows that \mathbb{B}/\mathbb{I} is finite. Thus v gives rise to a countably additive, $\{0, 1\}$ -measure on κ and we arrived at a contradiction since κ is non-measurable.

The next definition may be found in [BS] and we refer to [Pi] for easy reference.

DEFINITION 1.2. Let R be a ring. If for each $\varphi \in \operatorname{End}_{\mathbb{Z}}(R)$ there is an $r \in R$ such that $\varphi(x) = xr$ for all $x \in R$, then R is called an E-ring. Note that E-rings are commutative. An R-module M is called an E-module (or E(R)-module) if $\operatorname{Hom}_{\mathbb{Z}}(R, M) = \operatorname{Hom}_{\mathbb{R}}(R, M)$. Note that R is an E-ring iff the R-module $R_{\mathbb{R}}$ is an E(R)-module. Finally, an R-module M is called R-torsionless if M is isomorphic to an R-submodule of R^{κ} for some cardinal κ .

Remark 1.3. If R is an E-ring then every R-torsionless module is an E(R)-module, and the class of E(R)-modules is closed with respect to submodules, cartesian products, and direct sums.

Remark 1.4. Let \aleph_m be the least measurable cardinal (if it exists), κ a regular cardinal $< \aleph_m$, and R an E-ring of cardinality $< \kappa$. Then $R^{\kappa}/R^{<\kappa}$ is an E(R)-module.

Proof. By the Wald-Los lemma (cf. [DG2]), every submodule of $R^{\kappa}/R^{<\kappa}$ of cardinality $<\kappa$ is *R*-torsionless. Since $|R| < \kappa$ this implies that $R^{\kappa}/R^{<\kappa}$ (and all its submodules) are E(R)-modules.

In order to prove the theorem mentioned in the Introduction, we will have to construct an *R*-module *G* with End(G) = R. This will be done using a "Black Box" construction similar to the one in [DMV]. Therefore, we will be a little sketchy at times and point out only the major differences.

2. The Black Box

Let $\kappa < \aleph_m$ be a regular cardinal and λ a cardinal $\geq \kappa$ with $\lambda^{(2^{\kappa})} = \lambda$. Moreover, let R be a cotorsion-free ring such that $|R| < \kappa$. Let $F = \bigoplus_{\alpha < \lambda} \bigoplus_{k < 2^{\kappa}} ((R^{\langle \kappa \rangle} + R^{<\kappa})/R^{<\kappa})(\alpha, k)$, where $((R^{\langle \kappa \rangle} + R^{<\kappa})/R^{<\kappa})(\alpha, k)$ is a copy of $R^{\langle \kappa \rangle} + R^{<\kappa}/R^{<\kappa}$ labelled by (α, k) , $\alpha < \lambda$, $k < 2^{\kappa}$. We set $B = (R^{\langle \kappa \rangle} + R^{<\kappa})/R^{<\kappa}$ and $\overline{B} = (R^{\#}_{\kappa} + R^{<\kappa})/R^{<\kappa} \subseteq R^{\kappa}/R^{<\kappa}$. Note that B is a free R-module and because of 1.1, $\operatorname{Hom}_{\mathbb{Z}}(\overline{B}, G) = 0$ for any slender

408

group G. Moreover, \overline{B}/B is divisible (as abelian group). Eventually, we will construct an R-module M such that

$$\bigoplus_{\alpha < \lambda} \bigoplus_{k < 2^{\kappa}} B(\alpha, k) = F \subseteq M \subseteq \left(\bigoplus_{\alpha < \lambda} \bigoplus_{k < 2^{\kappa}} \overline{B}(\alpha, k) \right) + (B^{(\lambda + 2^{\kappa})})^{-} = \widetilde{F},$$

where $(B^{(\lambda \times 2^k)})^-$ is the \mathbb{Z} -adic closure of $B^{(\lambda \times 2^k)}$ in $B^{\lambda \times 2^k} = \prod_{\alpha < \lambda} \prod_{k < 2^k} B(\alpha, k)$. Note that \tilde{F}/F is divisible and $\tilde{F} \subseteq \bar{B}^{\lambda \times 2^k} \subseteq \prod_{\lambda \times 2^k} (R^{\kappa}/R^{<\kappa})$. Thus every submodule L of \tilde{F} of cardinality $<\kappa$ is R-torsionless. Moreover, for each $\varphi: F \to \tilde{F}$ there exists a unique extension $\tilde{\varphi}: \tilde{F} \to (\tilde{F})^{\wedge}$ and we will identify φ and $\tilde{\varphi}$. For $x \in \tilde{F}$ let $[x] = \{(\alpha, k) \in \lambda \times 2^{\kappa} | x(\alpha, k) \neq 0\}$ and $[x] = \{\alpha < \lambda | \exists k < 2^{\kappa}((\alpha, k) \in [x])\}$. If P is any R-submodule of \tilde{F} , we define $||P|| = \sup\{[x]| | x \in P\}$.

DEFINITION 2.1. (1) A canonical submodule P of \tilde{F} is any R-submodule P of \tilde{F} such that for some fixed $I \subseteq \kappa$, $|I| \leq 2^{\kappa}$, we have $x \in P$ iff $[x] \in I$.

(2) A trap is a triple (f, P, φ) , where f is a sequence of ordinals $f(0) < f(1) < \cdots < \lambda$; P is a canonical submodule such that $\overline{B}(\alpha, k) \subseteq P$ for any $(\alpha, k) \in \lambda \times 2^{\kappa}$ whenever $\alpha = f(n)$ for some $n < \omega$ and $\|P\| = \sup\{f(n) | n < \omega\}$ and $\varphi \in \operatorname{Hom}_{\mathbb{Z}}(P \cap F, P)$.

Without proof we state Shelah's principle, the so-called "Black Box." A proof may be found in [DMV, Theorem 2.6].

THEOREM 2.2. For some ordinal λ^* there exists a sequence of traps $\tau_{\alpha} = (f_{\alpha}, P_{\alpha}, \varphi_{\alpha}), \alpha < \lambda^*$, such that

(1) $||P_{\alpha}|| \leq ||P_{\beta}||$ if $\alpha \leq \beta$.

(2) If $\alpha \neq \beta$ then Im $f_{\alpha} \cap \text{Im } f_{\beta}$ is finite.

(3) If $\beta + (2^{\kappa})^{\omega} \leq \alpha$ then for all $e: \omega \to 2^{\kappa}$ there exists $n_0 < \omega$ such that $\prod_{n < n_0} \overline{B}(f_{\alpha}(n), e(n)) \cap P_{\beta} = 0.$

(4) If $A \subseteq \tilde{F}$, $|A| \leq 2^{\kappa}$ and if $\varphi \in \text{Hom}(F, \tilde{F})$ then there exists $\alpha < \lambda^*$ such that $A \subseteq P_{\alpha}$, $||A|| \leq ||P_{\alpha}||$ and $\varphi \upharpoonright (F \cap P_{\alpha}) = \varphi_{\alpha}$.

3. THE CONSTRUCTION

Let $1(\alpha, k)$ be the element in $B(\alpha, k)$ induced by $a \in R^{\langle \kappa \rangle}$ with a(i) = 1 for all i < k, i.e., $1(\alpha, k) = (a + R^{\langle \kappa \rangle})(\alpha, k)$.

We will utilize the sequence of traps $(f_{\alpha}, P_{\alpha}, \varphi_{\alpha})$, $\alpha < \lambda^*$. For $\alpha < \lambda^*$ and a sequence $e_{\alpha}(0) < e_{\alpha}(1) < e_{\alpha}(2) < \cdots < \kappa$ let

$$\bar{e}_{\alpha} = \sum_{n < \omega} 1(f_{\alpha}(n), e_{\alpha}(n)) \, n \, ! \in P_{\alpha}.$$

Further, choose $b_{\alpha} \in P_{\alpha}$ such that $||b_{\alpha}|| < ||P_{\alpha}|| = \sup\{f_{\alpha}(n): n < \omega\}$ and set

$$a_{\alpha} = \bar{e}_{\alpha} + b_{\alpha} \in P_{\alpha}. \tag{(*)}$$

Using any elements of this form we obtain a transfinite chain of pure subgroups G_{α} of \tilde{F} , which are also *R*-modules, satisfying

- $(\mathbf{I}_0) \quad G_0 = F;$
- $(\mathbf{I}_{\alpha}) \quad G_{\alpha} = \bigcup_{n < \alpha} G_{n+1};$

(II_{α}) $G_{\alpha+1} = \langle G_{\alpha}, a_{\alpha}R \rangle_{*}$, the pure submodule of \tilde{F} generated by G_{α} and a_{α} .

We will set $G = \bigcup_{\alpha < \lambda^*} G_{\alpha}$. We will specify later how to choose the functions $e_{\alpha} : \omega \to 2^{\kappa}$ and the elements b_{α} in (*) to ensure $\operatorname{End}_{\mathbb{Z}}(G) = R$.

LEMMA 3.1. (a) For each $g \in G$ there exist $\alpha_1 < \alpha_2 < \cdots < \alpha_n < \lambda^*$, $r_i \in R$ and $m \in \mathbb{N}$, $u \in F$ such that $mg = \sum_{i=1}^n a_{\alpha_i}r_i + u$. Moreover, the pair (m, g) determines α_i , r_i , $1 \leq i \leq n_1$, and u uniquely.

- (b) If R is cotorsion-free, then G is cotorsion-free.
- (c) If R is slender, then G is slender.

Proof. (a) The existence of m, $r_i \in R$, $1 \le i \le n$, and $u \in F$ is obvious and the uniqueness follows from 2.2(2). A proof of (b) may be found in [CG] or [DMV] and is omitted here. We will prove (c): Let $\mathbb{Z}^{\omega} = \prod_{n < \omega} d_n \mathbb{Z}$, where $d_n(i) = \delta_{ni}$ and let $\varphi: \mathbb{Z}^{\omega} \to G$ be a homomorphism of groups. We may assume that $0 \ne \varphi(d_n) = \sum_{i=1}^{k_n} a_{\alpha_{i,n}} r_{i,n} + u^{(n)}$, where the $\alpha_{i,n}$, $1 \le i \le k_n$, are distinct and $r_{i,n} \ne 0$ for all *i*, *n*.

Case 1. $\{\alpha_{i,n} | n < \omega, 1 \le i \le k_n\}$ is infinite. W.l.o.g. we may assume $\{\alpha_{1,n} | n < \omega\}$ is infinite and $\alpha_{1,n} \ne \alpha_{1,m}$ for $n \ne m$. By induction on n we find a cofinite subset $T_n \subseteq [a_{\alpha_{1,n}}]$ and $k_{n-1} < k_n \in \mathbb{N}$ such that $T_m \subseteq [(\sum_{n < \omega} \varphi(d_n) k_n!)]$ for all $m < \omega$. Thus $\bigcup_{m < \omega} T_m \subseteq [\sum_{n < \omega} \varphi(d_n) k_n!]$, which contradicts (a) and 2.2(2). Thus we may assume

Case 2. $\{\alpha_{i,n} | n < \omega, 1 \le i \in k_n\}$ is finite. Restricting ourselves to an infinite subset of ω , we may assume $\alpha_{i,n} = \alpha_{i,1}$ for all $1 \le i \le k_1$, and $k_1 = k_n$ for all $n < \omega$. Then there exists $j_0 < \omega$ such that $f_{\alpha_{1,1}}(j) \notin [a_{\alpha_{i,1}}]$ for all $j \ge j_0$ and i > 1. Thus

$$\left(\varphi\left(\sum_{n} d_{n} z_{n}\right)\right)\left(f_{\alpha_{11}}(j), e_{\alpha_{11}}(j)\right) = \left(1\left(f_{\alpha_{11}}(j), e_{\alpha_{11}}(j)\right)\right)\left(j!\sum_{n<\omega} r_{n} z_{n}\right)$$

for every $j \ge j_0$ and every \mathbb{Z} -adic zero-sequence $\{z_n | n < \omega\}$.

410

This implies that $\sum_{n < \omega} r_n z_n \in R$ for every \mathbb{Z} -adic zero-sequence $\{z_n | n < \omega\}$. This implies (since R is slender and hence cotorsion-free) that $r_n = 0$ for almost all n. This cotradicts our assumption $0 \neq \varphi(d_n)$ for all n.

Case 3. $\varphi(d_n) \in F$ for almost all n. W.l.o.g. we may assume that $\varphi(d_n) \in F$ for all $n < \omega$.

Case 3.1. $\bigcup_{n < \omega} [\varphi(d_n)]$ is infinite. By induction and substituting ω by an infinite subset if necessary we find a sequence $(\alpha_n, k_n) \in \lambda \times 2^{\kappa}$ such that $(\alpha_n, k_n) \in [\varphi(d_n)]$ and $(\alpha_n, k_n) \notin [\varphi(d_i)]$ for $1 \le i \le n-1$. Moreover we may assume that $\alpha_n \le \alpha_{n+1}$ for all $n < \omega$. Suppose $\sum_{n < \omega} \varphi(d_n) t_n! \in G$, where $t_n \in \mathbb{N}$ is a sequence such that $(\varphi(d_n) t_n!)(\alpha_n, k_n) \notin t_{n+1}! \overline{B}(\alpha_n, k_n)$ and $n \cdot t_n < t_{n+1}!$ for all n. This implies that there exists $\alpha < \lambda^*$ such that for a subsequence $(\alpha_{n_i}, k_{n_i}), i < \omega$, we have $(\alpha_{n_i}, k_{n_i}) = (f_{\alpha}(i), e_{\alpha}(i)), i \ge i_0$, and $(\varphi(d_{n_i}) t_{n_i}!)(\alpha_{n_i}, k_{n_i}) \equiv i! r \cdot 1(f_{\alpha}(i), e_{\alpha}(i)) \mod t_{n_i+1}! \overline{B}(\alpha_{n_i}, k_{n_i})$. We now pick another sequence $\{\tilde{t}_n | n < \omega\}$ such that $t_n < \tilde{t}_n$ and $\tilde{t}_{n_i} > 2i$. If again $\sum \varphi(d_n) \tilde{t}_n! \in G$ we obtain for some $s \in R$,

$$(\varphi(d_{n_i}) \tilde{t}_{n_i}!)(\alpha_{n_i}, k_{n_i}) \equiv i! s \cdot 1(f_\alpha(i), e_\alpha(i)) \mod \tilde{t}_{n_i+1}! \bar{B}(\alpha_{n_i}, k_{n_i})$$

for all $i \ge \tilde{\iota}_0$. The latter implies $s \in \tilde{\iota}_{n_i}!$ $(i!)^{-1} R$ and since $\{t_{n_i} - i | i < \omega\}$ is unbounded we arrive at the contradiction s = 0. Thus we have to consider

Case 3.2. $\bigcup_{n < \omega} [\varphi(d_n)]$ finite. In this case φ gives rise to a map $\varphi: \mathbb{Z}^{(\omega)} \to \bigoplus_{\text{finite}} B$ since the only elements in G with finite support are the elements of F. By continuity of φ we have $: \prod d_n n! \mathbb{Z} \to F$. Since F is a free R-module and R is slender we obtain $\varphi(d_n) = 0$ for all but finitely many n. This shows that G is slender.

We introduce a symbol $\infty \notin \tilde{F}$ and refine the construction of G_{α} by constructing, together with $a_{\alpha} = b_{\alpha} + \bar{e}_{\alpha}$, elements $t_{\alpha} \in \tilde{F} \cup \{\infty\}$ such that, in addition to (I_0) , (I_{α}) , (II_{α}) we have

(III_{α}) $t_{\beta} \notin G_{\alpha}$ for $\beta < \alpha$.

(IV_a) (a) If for all $b \in P_{\alpha} \cap \bigoplus_{(a,k) \in \lambda \times 2^{\kappa}} \overline{B}(\alpha, k)$ with $||b|| \leq ||P_{\alpha}||$, $t_{\beta} \notin \langle G_{\alpha}, (b + \overline{e}_{\alpha}) R \rangle_{*}$ when $\beta < \alpha$ but $(b + \overline{e}_{\alpha}) \varphi_{\alpha} \in \langle G_{\alpha}, (b + \overline{e}_{\alpha}) R \rangle_{*}$ then we set $t_{\alpha} = \infty$ and $a_{\alpha} = \overline{e}_{\alpha}$, where $\overline{e}_{\alpha} = \sum_{n < \omega} 1(f_{\alpha}(n), e(n))n!$

(b) If (a) does not hold we set $t_{\alpha} = \varphi_{\alpha}(a_{\alpha})$ and set $a_{\alpha} = b + \bar{e}_{\alpha}$, where b is a witness for the failure of (a).

LEMMA 3.2. There exists a sequence of triples $(G_{\alpha}, a_{\alpha}, t_{\alpha}), \alpha < \lambda^*$, such that $(I_0), (I_{\alpha})-(IV_{\alpha})$ hold.

Proof. [DMV, Lemma 3.4].

LEMMA 3.3. If one chooses $(G_{\alpha}, a_{\alpha}, t_{\alpha})$, $\alpha < \lambda^*$, as in 3.2, then $G = \bigcup_{\alpha < \lambda^*} G_{\alpha}$ is an *R*-module, $F \subseteq G \subseteq \tilde{F}$, and $\operatorname{End}_{\mathbb{Z}}(G) = R$.

Proof. Let $\varphi: G \to G$ be a \mathbb{Z} -homomorphism and $F_{\alpha} = F \cap P_{\alpha}$. Assume that for each $\alpha < \lambda^*$ with $\varphi \upharpoonright F_{\alpha} = \varphi_{\alpha}$ we have some $r_{\alpha} \in R$ such that $\varphi \upharpoonright F_{\alpha} = \varphi_{\alpha} = r_{\alpha}$. If $\varphi \notin R$ then there is some $\beta < \lambda^*$ with $r_{\alpha} \neq r_{\beta}$ and by (2.2) there exists $\gamma < \lambda^*$ such that $\varphi \upharpoonright F_{\gamma} = \varphi_{\gamma} = r_{\gamma}$ and $F_{\alpha}, F_{\beta} \subseteq F_{\gamma}$. Let $B(\alpha^0, 0) \subseteq F_{\alpha}$ and $B(\beta^0, 0) \subseteq F_{\beta}$. Then

$$\varphi(1(\alpha^0, 0)) = (1(\alpha^0, 0)) r_{\alpha} = (1(\alpha^0, 0)) r_{\gamma}$$

and

$$\varphi(1(\beta^0, 0)) = (1(\beta^0, 0)) r_\beta = (1(\beta^0, 0)) r_\gamma$$

These equations imply $r_{\alpha} = r_{\gamma} = r_{\beta}$. Thus $\varphi \in R$. Therefore we may assume that for some $\alpha < \lambda^*$ we have $\varphi \upharpoonright F_{\alpha} = \varphi_{\alpha}$ and $\varphi \upharpoonright F_{\alpha} \notin R \upharpoonright F_{\alpha}$. We will show that this ordinal $\alpha < \lambda^*$ satisfies $(IV_{\alpha})(b)$.

Suppose $\varphi_{\alpha}(\bar{e}_{\alpha}) \in \langle G_{\alpha}, \bar{e}_{\alpha}R \rangle_{*}$. This implies $n\varphi_{\alpha}(\bar{e}_{\alpha}) \equiv \bar{e}_{\alpha}r \mod G_{\alpha}$. Since *R* is pure in Hom (F, \tilde{F}) and $\varphi_{\alpha} \notin R$ we conclude $n\varphi_{\alpha} \notin R$ and therefore $n\varphi_{\alpha} - r$: $F_{\alpha} \to P_{\alpha}$ is not the zero map. Thus there is some $(\alpha, k) \in \lambda \times 2^{\kappa}$ such that $B(\alpha, k) \subseteq F_{\alpha}$ and $(n\varphi_{\alpha} - r) \upharpoonright B(\alpha, k) \neq 0$. Since G_{α} is slender, there is some $b \in \overline{B}(\alpha, k)$ such that $(n\varphi_{\alpha} - r)(b) \notin G_{\alpha}$.

Now set $a_{\alpha} = b + \bar{e}_{\alpha}$. If $m\varphi_{\alpha}(a_{\alpha}) \in \langle G_{\alpha}, a_{\alpha}R \rangle_{*}$ for some $m \in \mathbb{N}$, then

$$m\varphi_{\alpha}(a_{\alpha}) \equiv (b + \bar{e}_{\alpha}) s \mod G_{\alpha}$$

and we obtain $nm\varphi_{\alpha}(b) \equiv bns + \bar{e}_{\alpha}(ns - mr) \mod G_{\alpha}$. Since ||b||, $||\varphi_{\alpha}(b)|| < ||P_{\alpha}||$ we conclude that ns = mr and $n\varphi_{\alpha}(b) \equiv br \mod G_{\alpha}$, which contradicts our choice of b. Therefore $(IV_{\alpha})(a)$ does not hold and by Lemma 3.2 we have that $(IV_{\alpha})(b)$ holds and $t_{\alpha} = \varphi_{\alpha}(a_{\alpha}) = \varphi(a_{\alpha}) \notin G$. This contradicts $\varphi \in End(G)$ and End(G) = R follows.

Remark. As in [DMV, Theorem 5.1] we may also construct rigid systems $\{G^{(\alpha)} | \alpha < 2^{\lambda}\}$ of such modules, i.e., $\operatorname{Hom}_{\mathbb{Z}}(G^{(\alpha)}, G^{(\beta)}) = \delta_{\alpha\beta}R$ for all $\alpha \neq \beta < 2^{\lambda}$.

REFERENCES

- [AE] Y. ABE AND I. EDA, Compact cardinals and abelian groups, *Tsukuba J. Math.* 11 (1987), 353-360.
- [APRVW] D. ARNOLD, R. S. PIERCE, J. D. REID, C. VINSONHALER, AND W. WICKLESS, Torsion-free abelian groups of finite rank projective as modules over their endomorphism rings, J. Algebra 71 (1981), 1–10.
- [BS] R. A. BOWSHELL AND P. H. SCHULTZ, Unital rings whose additive endomorphisms commute, Math. Ann. 228 (1977), 197–214.
- [CG] A. L. S. CORNER AND R. GÖBEL, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3) 50, 447–479.

- [DG1] M. DUGAS AND R. GÖBEL, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3) 45 (1982), 319–336.
- [DG2] M. DUGAS AND R. GÖBEL, On radicals and products, *Pacific J. Math.* 118 (1985), 79-104.
- [DMV] M. DUGAS, A. MADER, AND C. VINSONHALER, Large E-rings exist, J. Algebra 108 (1987), 88-101.
- [FI/II] L. FUCHS, "Infinite Abelian Groups," Vols. I, II, Academic Press, New York, 1970, 1973.
- [J] T. JECH, "Set Theory," Academic Press, New York, 1978.
- [KK] L. KAUP AND M. S. KEANE, Induktive Limiten endlich erzeugter freier Moduln, Manuscripta Math. 1 (1969), 9–21.
- [Pi] R. S. PIERCE, E-modules, Contemp. Math. 87 (1989), 221–240.
- [S] P. SCHULTZ, The endomorphis ring of the additive group of a ring, J. Austral. Math. Soc. 15 (1973), 60-69.