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1. INTRODUCTION

If G is a permutation group on a set .S, and H a permutation group on a
set T, then the (complete) wreath product G | H is defined (see [3]) to be the
group of those permutations ¢ on .S X 7 of the form (s, £)¢ = (sg, , th) where
g.€ G and & € H. The main use of wreath products in group theory has been
to supply examples of groups with special properties, and applications of this
sort are too numerous and well known to be listed here. It is well known that
the wreath product has a certain universal property, which we may describe
in the following way. If G is a transitive permutation group on a set S, if C
is a G-congruence on S, and if x€ S, then G induces, in a natural way,
a permutation group A on the set xC, and a permutation group B on the
set S/C. Then the universal property is that G may be embedded in the
wreath product 4 /B = W. Moreover, there is a W-congruence K defined
on R = xC X S{C by (a, b) = (¢, d)(mod K) if and only if &6 = d, and on
any onc of the K-classes, W induces a permutation group isomorphic to A4,
while on R/K, W induces a permutation group isomorphic to B.

In [6], Krasner and Kaloujnine devised a way to define the wreath product
(which they called “complete product”) of a finite sequence G, , G, ,..., G, of
permutation groups on sets Sy , Sy ,..., S, , respectively, as a certain subgroup
of the group of permutations of $; X S, X -+« X .S, , and which is isomorphic
to the iterated wreath product (-<((G, { G;) [ G,) [ ---) [ G,, . They also showed
that the wreath product has the universal property, which, in this more
general case, we may roughly describe as follows. If W is the wreath product
of transitive permutation groups G, G,,..., G,, on sets S;,S;,..., S,
respectively, and R = S; X S, X -+« X S, , then the equivalence relation K*
defined on R by

(81 5 8 ey $p) = (25 Lo 5eee, Bp)(mod KY)
if and only if s; = ¢; for allj > ¢,
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is respected by W; in other words, K? is a W-congruence for cach
1 =0,1,2,..,n For each x € R, the set (xK?)/K*! can be identified with .S,
in a natural way. Also, I¥ induces a permutation group on (xK*)/K*!, namely
W=/, , where

Wiz == {ge W|xg = x(mod K?)}, and
W,.={ge W]z = z(mod K1) for all 2 xK*},

and the “component” Wie/l¥, . may be identified with G, in a natural way.
Thus, W is constructed from the components G; , and the components can be
retrieved from W and a natural sequence of congruences. Now the universal
property of W is this: If G is a transitive permutation group on a set S, if
C'C C1C --- C C™ are G-congruences on S, with C" and C° the trivial con-
gruences, and if the components of G with respect to the congruences C?,
defined as above for W with respect to K? are isomorphic to G, , respectively,
then there is a “nicc” embedding of G in the wreath product W. In
short, W has components G;, and W contains every transitive permutation
group with the same (ordered set of) components G; .

There is nothing in the discussion above that depends in any essential way
either on the finiteness of the set of congruences, or on the fact that they form
a chain. In fact, if we have any collection of congruences of a transitive
permutation group H on a set T, and if Q, C (¥ are congruences of the
collection such that O “covers” Q, (there is no congruence of the collection
which lies between them), then we may define components just as above, say
the permutation group G, on the set S, is the component corresponding to the
pair of congruences (Q, , 0”). There is a natural partial order on the index
set I' = {y} whereby y;, <<y, if 0" CQ, . Now we may ask whether there
exists a permutation group which is universal for groups with components G,
onS,,yel.

The need to consider possibly infinite sets of congruences arises very
naturally. The goal of a theory of this sort is to describe an arbitrary permu-
tation group as composed in some cannonical way of permutation groups of
a more elementary type. For instance, in ([8], p. 18), Wielandt considers a
maximal chain of congruences on a finite permutation group, observes that
the components, as we have defined them here, are primitive, and suggests
that the relationship between properties of the given group and properties of
the components be studied. To obtain similar primitive components in the
case of an infinite permutation group obviously requires consideration of
maximal chains which may be infinite.

rom a synthetic point of view, some authors have found it useful to
construct groups using wreath products iterated infinitely many times (for
instance [4] and [7}). Such constructions are convenient only if the index set
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is well ordered. In [5], P. Hall described a construction for the wreath product
of permutation groups {G, | y € I'} where I is an arbitrary totally ordered set
(we shall describe his construction in detail later). Hall’s construction is a
generalization of the “‘restricted wreath product,” where the restricted wreath
product G I f of two permutation groups is defined just as the complete
wreath product with the additional requirement that for each permutation,
all but finitely many g,’s be the identity.

What we shall do in this paper is define the complete wreath product of
a collection {G, ,ye '} of permutation groups, where I" is an arbitrary
partiaily ordered set. Our wreath product has the universal property, and is,
in fact, characterized by it (to within permutation isomorphism). In the case I”
1s a finite chain, our wreath product is the same as the “‘complete product” of
Krasner and Kaloujnine, and so if I' is a two-element chain, it is the ordinary
wreath product. If I' is an arbitrary chain, our wreath product contains the
restricted wreath product of P. Hall. And if I is trivially ordered, our wreath
product is the cartestan product.

To the reader familiar with the work of Krasner and Kaloujnine, it will be
apparent that the process of embedding a given transitive permutation
group G on S, (with a given finite chain of congruences), into the wreath
product of its components 1s essentially a matter of adjoining to G certain
other permutations of S. In the infinite case, however, an added difficulty
presents itself: the set S may itself fail to be “complete,” and thus have to be
enlarged. For example, it may occur that there are congruences
{C; |7 = 1,2,..} and C;-classes k; such that k, 2 k, 2 ---, and yet (), k; is
cmpty. Whenever this occurs, the set S may be increased by adjoining a point
contained in each of the classes %; , still without changing the components of G.
For this and similar reasons, we are led into the necessity to say precisely
what we mean by embedding one permutation group in another. Section 2 is
devoted to notation, including a general discussion of homomorphism theory
for permutation groups, and the precise definition of components. In
Section 3 (which does not depend on section 2) we construct the wreath
product, show that it satisfies a general associative law, and that it is transitive
if each of the factors is. In Scction 4, we show that if G is a transitive permu-
tation group on S, if € is a collection of G-congruenceson S, if I' = {(C, , C%)}
is a suitable collection of covering pairs of congruences in %, and if G has
components G, , y € I', then G can be embedded in the wreath product W of
the components G, , y € I'. Moreover, every extension of G with the same
components can be embedded in W, and W has no proper extensions with
the same components. Thus, W is the unique maximal extension of G with
the same components.

For the proofs, we borrow freely from the methods of Conrad [/] and
Conrad, Harvey, and the author [2] for abelian groups with valuation, and
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abelian lattice ordered groups. Indeed, our results here may be thought of as
a noncommutative analogue of some of the results in those papers.

2. SoMmE NotarioN

If S is a set, P(S) denotes the symmetric group on S. If G 1s a subgroup of
P(S), we may use the symbol (G, S) to denote G. If RC S, and if FC G,
then RF = {rf |r € R, fcF}, where rf denotes the image of r under the
permutation f. By an F-congruence, or block system is meant an equivalence
relation E on S such that if fe F and x, y € S, then ¥ = y(mod E) if and only
if xf = yf(mod E); in other words, each feF permutes the E-classes
according to the rule (xE) f == (xf )E. An F-fixed block is a subset S* ¢ S such
that for each feF, S'f = S".

Let (G, S) and (H,T) be permutation groups. By a homomorphism
7 : (G, 8)-»(H, T) is meant a pair of functions (both denoted by the same
letter) w : § — T and = : G — H, where

(1) # : G— H is a group homomorphism, and
(2) (xem)(gm) = (wg)m forallxe S, geG.

If # : S — T is onto, (1) follows from (2).

Let 7 : (G, S)~— (H, T') be a homomorphism. The equivalence relation O
on S defined by x == y(mod Q) if x= = ym, is a G-congruencc, for if g€ G,
and if x, y € S with 7 = ym, then (xg)r = (wm)(gm) = (yw)(g7) = (Hg)n.

If K is the kernel of 7 : G— I and Q the equivalence relation defined
before, we note that, if = : S — T is onto,

Ng = No(G) = {ge G| xg = x(mod Q) forall xe S} = K.

We shall call Q the kernel of = : (G, S)— (H, T).

A homomorphism 7 : (G, 8)— (1, T) is an epimorphism if each part of =
is onto; and = is an ésomorphism if = is an epimorphism, each part of which of
which is one-to-one. It then follows that = : G — H is a group isomorphism.
A homomorphism 7 is an embedding if 7 is one-to-one on S, and Gr is faithfu!
on Sm; that is, (x7){ gr) = xm for all x € .S implies gn is the identity of H.

If (G, S)is a permutation group and E a G-congruence on S, the permutation
Jactor group (G, S)/E is defined to be the permutation group (G/Ng, S/E)
where S/E is the set of E-classes, and for gNgze G/Ng, xE e S/FE,
(xE)(gNg) = (xg)E. The natural map = : G— G/Ngand = : S — S/E is an
epimorphism of (G, S) onto (G, S)/E. Conversely, if 7 : (G, ) — (H, T)isan
epimorphism with kernel Q, then = = of where « : (G, S)— (G, S)/Q is the
natural map, and B : (G, S)/Q — (H, T) is an isomorphism.

Let (H, T) be a permutation group, let F be a subgroup of H, and RC T
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an F-fixed block. Then the restriction ' | R of F to R is a subogroup f P(R);
if F'is faithful on R, we shall say (F | R, R) is a permutation subgroup of (H, T).
Note that if 7 : (G, S) — (H, T) is an embedding then (Gn, S7) is a permu-
tation subgroup of (H, T). Also, if G is a subgroup of I/, then certainly (G, T)
is a permutation subgroup of (4, T).

Let (G, S) be a permutation group and € a collection of G-congruences on
S, and let C,, C*e¥. Then C¥ covers C, (in €) if C~ properly contains C,
and no element of ¥ properly contains C, while being properly contained in
C». We shall also say that (C, , C¥) is a covering pair in €. We shall frequently
make the identification y = (C, , C¥). There is a natural partial order on the
set of all covering pairs in %, whereby « < 8 if C*C C, . Now suppose that
(G, S) is a permutation subgroup of (H, T") and let ¢ be a collection of
H-congruenceson T.If K e #, K| S = KN (S x S)denotes the restriction
of K to S, which is obviously a G-congruence on S. Let 4 = {(K, , K*)} be
a set of covering pairs in &, and let I' = {(K,, | S, K| S)}. Then we will say
that (H, T, 4) is an extension of (G, S, I') if

(i) each (K, | S, K¥!S)is a covering pair in X" | S, the set of restric-
tions of elements of £~ to .S, and
(ii) the correspondence (K, , K¥) — (K, ' S, K¥ | S) is one-to-one, and
an order isomorphism, of 4 on I', and
(i) if x€8, ge€G, and 2zg = 2(mod K,) for all 2exK”|.S, then
zg == z(mod K ) for all z € xK>.

Let (G, S) be any permutation group, let € be a collection of G-con-
gruences on S, let I" be a set of covering pairs in %, let x € S and y € I'. Then
we define

Gv® = {ge G| xg = x(mod C?)},

which is clearly a subgroup of G. Also, xC¥ is a G”*-fixed block. Now we
define the component of (G, S, I') at (y, x) to be

(Gra» Sya) = (G ] 2C%, 2C)|(C, | C).

The component of (G, S, I') at (y, x) may be thought of roughly as the
restriction of (a certain subgroup of) G to the congruence class ¥C?, modulo
the smaller congruence C, . In the sequel we sometimes write C, | xC” as
just C, . For example, S, , = (xC”)/C, . We shall also omit another restriction
bar and write (G¥-* | xC”, xC¥) = (G¥*, xC¥). Thus, in the shorter notation,

(G, .z, S, = (G, xC)IC, .

If (H, T, 4) is an extension of (G, .S, I') there should be no confusion if
we identify the sets 4 and I We want to show that the components of
(G, S, I') may be thought of as permutation subgroups of those of (4, T, I').
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Lemva 2.1. If (H, T, I') is an extension of (G, S, ), if xS and ye I,
then there is a natural embedding of (G, ., S, ) im (I, ., T, ).

Proof. Let (K,,K") and (C,,C*) = (K, S,Kv;S) be the corre-
sponding covering pairs. There is a subgroup F of H with S an F-fixed block
of T'and G =F | S. Let Q == C, | xC” and IV, the corresponding normal
subgroup of G**|xC”, and let I> = K, | xK” and Np the corresponding
normal subgroup of H¥=|xK>. Then we must establish an embedding of
(G»®, xC¥){O in (H¥=, xK*){P. If z€xCv define (2C,yr = 2K, . And if
ge G| xCv sothatg = §| xCv, geF N H7-*, definc (gNp)m == (| K" )Np.
If 5| xCv e Ny, , then g' xK” € Np by the third condition in the definition of
extension, so 7 is well defined and one-to-one. Also = is a homomorphism,
since

(2C ) gN W = (35C,)m = (s9) K, = (a(g | 2K7) K,
— (K, )(£| ¥K?) Np) == (2C,) a(gNo)m.

Finally, if (gNg)m is the identity on ((»C?){Q)r then for each zexCv,
2K, = (2K, Y gNp) = (3¢) K, , which certainly implies that 2C, = (28) C, ,
and thus that (gN)m is the identity on all of (xK?)iP.

Lemma 2.2. If (G, S) is transitive, and € 1s a set of G-congruences on S,
then for each covering pair y in 4, and for each x,y € S, (G, ., S, ) is isomorphic
to (Gv.'u ’ S’/.'y)'

Proof. By transitivity, there exists fe G such that xf =y. Let

Q=0C,|xC” and P = C,|yC». Define =:(G,,,, S,.)—>(G,,,S,,) as
follows. For 2C, € S, ., (2C,)7 = (2f) C, ; and for g € G*%,

((g1%C) Noym = (f7¢f) [yC) Np -

Then it is a straight-forward matter to verify that = is an isomorphism.
Thus, in the transitive case, which is the case that mainly concerns us,
we shall usually drop the subscript x, and write

(Gv ’ Sy) = (Gyr ’ Sv.;r)

for any x, and call it the component of (G, S, I') at +.
If (H, T)is a permutation group, if " is a set of FH-congruences on T, and
if 4 1s a set of covering pairs in .4, then 4 is said to be plenary if
(i) if x,y € T with x 5= ¥, then there exists y € 4 such that x = y(mod C?)
and x == y(mod C,), and

(i) if x,ye T and «€ 4 such that x = y(mod C?), then there exists
Bed, B > « such that x = y(mod C¥) and x == y(mod Cj).
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Such a y described in (i) is said to be a value of the pair {x, y). The terminology
is that of [2], and the idea stems from general valuation theory [/]. Plenary
sets arise in many ways. We list three examples, in which 4 is plenary.

1. If every chain in X is finite, if ¢ contains the trivial congruences,
and if 4 is the set of all covering pairs in X',

2. If A is the set of all H-congruences on T and 4 is the set of all covering
pairs in ¢,

3. If A" is the set of all H-congruences on 7" and 4 is the set of those
covering pairs ¢ in " such that there exist x, y € T with y a value of (x, y).

We will say that (H, T, 4) is an immediate extension of (G, S, I') if
(i) 4 is plenary
(i) (H, T, 4) is an extension of (G, S, I')
(iii) the natural embedding described in Lemma 2.1 is onto for each

component of (G, S, I') (there may be components of (H, T, 4) in which no
component of (G, S, I') is naturally embedded), and

(iv) the H-orbit of every £ € T contains an element of S. (It follows that
if (G, S) is transitive, so is (4, T).)

Roughly in words, (H, T, 4) is an immediate extension of (G, S, I') if it is an
extension with the same components.

3. CoONSTRUCTION OF THE WREATH PRrobucT

Let I'"be a partially ordered set, and for eachy € I, let (G, , S,) be a permu-
tation group with S, more than one point. We wish to construct a permutation
group (G, S) with a suitable set of G-congruences on S, and a set I' of
covering pairs of congruences such that the components of (G, S, I') are
exactly the groups (G, , S,).

First, consider the elements of the cartesian product [ ], S, as functions
defined on I, so that if xe[]S,, x(y) denotes the yth coordinate of x.
Fix, for the remainder of this discussion, an arbitrary element 0[] S, .
IfxeT]S,, the support of x is {y € I' | x(y) £ O(y)}. Now Jet .S consist of
those x € [T S, such that the support of x satisfies the maximum condition;
that is, every nonempty subset of the support of ¥ has a maximal element, or
equivalently, every strictly increasing chain in the support of x is finite. It
follows that for every x , ¥, €S, the set {y e I' | w;(y) % wy(y)} satisfies the
maximum condition.

For each y € I, let K, be the equivalence relation on S defined by

x, = xy(mod K)) if aya) = xu(cx) for all « = 4.
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We shall also abbreviate x; == x,(mod K,) by x, =z, x, . Let
G' = {ge P(S)| K, is a g-congruence for each y e I'}.

Then G’ is readily seen to be a subgroup of the symmetric group P(S).
For each y e I, let

K» = (Y Kz, (and K == S X Sif thereis no 8 > y),
B>y

so that
X, = x(mod K¥) if x,(8) = xo(F) forall B > y.

We shall abbreviate x, ~= a,(mod K¥) by x, =" x,. Then each K¥ is a
G’-congruence.

Lemnya 3.1, For each subset X of I', define an equivalence relation E(Z)on S
by x, = xy(mod E(2)) if x,(B) = x,(B) for each B € X. Then the correspondence
L — E(Z2) is one-to-one. Also, £ C @ if and only if E(Z) 2 E(P).

Proof. TForeachye I, choose b(y) € S, , b,(y) 5 O(y), which can be done

o :# y. Then the support of b, is {y}, so b, € S. Now, if Z and @ are subsets
of I' and 2L P, there cxists asZ\®. Then b, = O(mod E(P)) but
b, 3= O(mod E(2)) so E(Z)D E(®P). On the other hand, it is obvious that if
2 C @ then E(2) O E(P). Thus, the second conclusion of the lemma is true.
Also, if Z' # @ then we may suppose Z ¢ @, so E(Z)] E(P); in particular,
E(Z2) s E(®), and the correspondence is one-to-one.

CoOROLLARY 3.2. [In the collection of equivalences
H ={K,|yeTJU{K"iye T},
the pairs (K, , K¥) are covering pairs.

Proof. Obviously the set @, = {8 > y} covers the set &” =
{8 I'| B > y}in the set of subsets of I'. And K¥ = E(®”), while K, == E(P,).
The result follows from Lemma 3.1 and the observation that for any K € .7,
there exists a subsct ¥ C I' such that E(¥) = K.

Let ge G,y eI, and x € S. We define a function g, ,on S, , which will
turn out to be a permutation of .S, , and which we will think of as the “com-
ponent of g at (y, x),” in the following way. If ac S,, define '€ S by
x'(B) = x(B), if B > y; x'(y) = a; and x'(8) = O(B) if B = y. Now, we define

gy = (¥g))-
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The first thing to observe is that if ¥ = y, then g, , = g, ,, because if &’
is defined as above, and ¥’ is defined similarly, then ¥" = y’ since if B > y,
#(8) = x(8) = (8) = ¥'(8). Hence ag,. = @e)y) = (YON») = gy -
Next, we see that (x(y))g, . = (xg)(y), for if 2'(8) = %(f), § =y, and
x'(B) = 0(B) otherwise, then x =, »" and so xg =, x'g, and

(7)) &, = (*'&)y) = (2g)(»)-
Lemva 3.3. g,.,€P(S,).

Proof. g, ,isone-to-one, forif a 54 b, a,be S, , and if %,(B) = x,(8) = x(B)
for B >y, if %,(B) = xy(B) = O(B) for B 2= y, and if (y) = aand wy(y) = b,
then x, =Yx, but ¥ 5%, %,, s0 ¥ g="x¢ but x93, x,2. Hence
ag,» = (%, 8)(¥) # (%8)(y) = bg, = -

2, maps S, onto itself, for if a€.S,, define x,€.5 by x,(8) = (x2)(F)
for B >, x(B) =0(B) for B £y, and xy(y) = a. Then x, =" xg so
%2, 871 =" x. Moreover, (%, 271)(y) € S, . Hence

(g™ 8.0 = ((*a87)¥)) &r,mo~r = (187 Ny) = maly) = @

DeriNiTION. The wreath product of the permutation groups (G, , S,),
y € I, over the partially ordered index set I" is the set of those permutations
ge G such thatg, ,€ G, foreveryyeI'and x € S.

We note the following important rules for computation.

L. (x(y)) &2 = (xg)(y)-
2. Ifx =vytheng, , =g,,.

3. (&M)ye = & oft,uo -

4. (g_l)v,ac - (gv,acg—l)_l'
Of these, 1. and 2. have already been proved, 3. follows from a straight-
forward computation, and 4. is an immediate consequence of 3. From 1. it is
clear that each g € G’ is completely determined by theset {g, , |y I, x € S}.
And from 3. and 4., we have

THuEOREM 3.4. The wreath product of the permutation groups (G, , S,) is
a ( permutation) subgroup of the symmetric group P(S).

Let us look at some special cases. When every chain in I” is inversely
well-ordered (and only then), S == T] S, . In particular, if I' = {&, 8}, & << B,
then the wreath product of permutation groups (G,,S,), ye I, is the
classical wreath product G, [ G, .

The cartesian product of a set of permutation groups (G, , S,) is the permu-
tation group [] (G, , S,) = (1 G, , I1S,) such that

(coos Sy gee)ooes £y 5ees) = (bos §, 8y 5eer)-
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In casc I' is trivially ordered, the wreath product of permutation groups
(G,, S,), ye T, is just the cartesian product, becausc x = y for all x, y € S,
ye I'(therearenof > y),and thusg, ., = g, , = g, ,say; and (gh), = g,h, .
Thus the mapping s — s of S (= [ S,) onto itself, and g — (..., g, ,...) of G
to [] G, is an isomorphism of the wreath product onto the cartesian product.

If I" is an arbitrary totally ordered set, then the wreath product of permu-
tation groups (G,, S,), y€ I, contains as a permutation subgroup, the
wreath product (G, S) defined by P. Hall [5], which may be described as
follows. Let S consist of those elements of S with finite support, and G
those g € G such that g, , is the identity for all but finitely many pairs (y, x)
(where, for each y, we choose only one x from cach K>-class).

The equivalences K, and K, being G'-congruences, are also G-con-
gruences. Also, by Corollary 3.2, the pairs (K, , K”) are covering pairs. Thus,
we may ask: What are the components of (G, S, I')?

Lemma 3.5.  The component of (G, S, I') at (y, x) is isomorphic to (G, , S,).

Proof. If zexK>, let (2K )7 = 2(y)e S, . Then = : (xK*)/K,— S, is
one-to-one and well-defined. Moreover, = is onto, since for each x € § and
a < S, there exists 2 € S such that 2 = x and 2(y) = a (see the definition of
&,.0)-1f g € G such that x :=v xg, let (gNKy)rr =g,.. Thenz: G’”-x/’NKy -G,
is well-defined, one-to-one, and onto. Morcover,

(=K,)(gNg ) == ((38) K))m = (38)(v) = (3()) &.2
= (3(¥) &2 = (3K,) n(gNg ).

Hence, = is an isomorphism from the component (G, ., S, ) of (G, S), onto
(G, , S,).

There is a certain amount of arbitrariness in the construction of the wreath
product arising from the choice of the element 0 € [T S, . In fact, the wreath
products resulting from different choices of 0 may fail to be isomorphic, as the
following example shows.

Example 3.6. Let I' be the naturally ordered set of positive integers, and
for cach ye I', let S, = {0, I, 2'}, and G, the 2-element subgroup of P(S,)
which fixes 0", If we construct the wreath product (G, S) using the clement
0TI S, such that O(y) — 0’ for each y, then 0 is a fixed point for (G, .S)
since (0g)(y) = (0(y)) &,., = O(y) for all g € G. However, if we construct the
wreath product (G*, S*) of the same permutation groups using the clement
0* €1 S, such that 0%(y) == 1’ for each y, then (G*, S$*) has no fixed points,
for let x € S*, so that the support of x (with respect to 0*) satisfies the
maximum condition. Then for some v, x(y) 7 0’. Now define g component-
wise by letting g, , be the identity when « % y, g, , the identity when y =7 x,



162 HOLLAND

and g, , the 2-cycle (1’,2'). Then g is an element of (G*, %), and since
(4€)(3) = #(;) 8.5 7 (), then ag = x.

However, in the case of main interest, when each (G, , S,) is transitive, the
wreath product is independent of the choice of 0. In fact, something slightly
more general is true.

Lemmva 3.7. Let I’ be a partially ordered set and for each ve T, (G, , S,)
a permutation group such that the normalizer of G, in P(S,) is transitive on S, .
Let (G, S) be the wreath product constructed using the element 0 €11 S, and
(G*, S*) the wreath product constructed using the element 0% <[] S, . Then
(G, S) is isomorphic to (G*, S¥).

Proof. For each y there is a permutation p, in the normalizer
of G, such that (0(y)) p, = 0*(y). Now define a mapping p : S— S* by
(xp)(y) = (%(y)) p, . From the fact that the support of x with respect to 0 is
the same as the support of xp with respect to 0%, it is seen that p is a one-to-one
map of S onto S*, And now let p on G be the naturally induced map g — p~1gp.
It is easily seen that p~gp respects K, if g does. Thus, the lemma will be
proved if we can show that the components of p~lgp are in the right place.
We claim that (p~gp),..p = £;',,«p, € G, since g, ,€ G, and p, is in the
normalizer of G,. To see the equality, if a€.S,, and if 2 € S* such that
z =" ap and 2(y) = a, so that zp~? =" x, then

a(p7gP)y.an = (2p7'gPNY) = (207°0)¥) by = (307)¥) &y,
= z('y) P;lgv,wpv = aP;lgv.va .

If I'is a partially ordered set, if (G, , S,) is a permutation group for each
yel, and if 0] S, then *ngr (G, , S,) will denote the wreath product
of the permutation groups (G, , S,) constructed using the element 0 JT S, .
‘When it can be done without confusion, we shall omit the superscript 0.

The classical wreath product is well known to be associative in the sense
that A I(B [ C) is isomorphic to (4 I B) [ C. The wreath product of P. Hall
satisfies a generalized associative law [5]. The wreath product we have
defined satisfies an associative law which generalizes both the classical one and
that of Hall. Let {4, | y € I'} be a collection of partially ordered sets, and
suppose I' is also partially ordered. The lexicographic union of the sets {4,}
is the disjoint union of those sets, partially ordered by letting & <C b if either
acd,,bedsand o << B,ora,bed,and a < b in the order of 4, .

‘TueorREM 3.8. (The associative law) Let I' be a partially ordered set, and
Jor each yeI' let (G, , S,) = *]'[ee‘,y (G, .5, S,.5) be a wreath product. Let A
be the lexicographic union of the sets {4, yeTI}, and let 0 €1, S, . Then
Hloer (G, , S,) is isomorphic 1o T Toey (Gy.s 5 S,.5) for a suitable 0% € [ Toes S5 -
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Proof. Let (G,S) = *[T,er(G,,S,). There is a natural one-to-one
mapping of the set [I.rS, into [[ses S, s, namely for se[]S,, let
s*e[1S,,; be defined by s*@8) = (s(y))(8), where §e€4d,. This merely
expresses the associative law for the cartesian product of sets, Let se[] .S,
differ from O0e[] S, on a set DC I satisfying the maximum condition.
Let D* be the subset of 4 where 0* and s* differ. Then D = {y € I'| there

exists 8 € D* with 8 € 4,}. Now let E* be any nonvoid subset of D* and let

E = {y e’ there cxists § € E* with 6 € 4,}.

Then E is a nonvoid subset of D, and se K contains a maximal element y,, .
LetF = E*XNd, . Then

{84, [0m)®) # (svm)))}

satisfles the maximum condition, and contains F as a nonvoid subset.
Therefore, ' has a maximal element, §,, . Clearly, §,, is 2 maximal element
of E£*. Thus D* satisfies the maximum condition. Thus, if the support of s
with respect to O satisfies the maximum condition, the support of s* with
respect to 0 does too. That the converse is true, can be seen in a similar
way. Then * maps S onto S* where § is those elements of [, .S, whose
support with respect to O satisfies the maximum condition, and S* is those
elements of [ [5.4 S, s whose support with respect to 0* satisfies the maximum
condition.

Let (G*, $*%) = *[Tes (G,.5, S,.5)- For g € P(S), define
g* = *lg¥ e P(S¥),

Then for s € S, s*g* = (sg)*, and * is certainly one-to-one on G. We must
show that G*, which we have defined independently above, is actually the
image of G under *.

Let g€ G and 8 € 4. We first show that K is respected by g*. Lets, te S
with s* =, 1*; say 8 €4, . Then for cach fe 4 with 8 > 3, say 8 eA,,B ,
we have s*(8) = t*(B), or (s(ys))(B) = (2(ys)}B). In particular, if y; > vy, then
(78)(%) = (dys))(w) for each we d, , since 7o = , . Thus, s(zs) == ), if
vs = s . Lhis means that s =5 ¢, and so sg =78 1g, ot (sg)(ys) = (28)(vs), if
vz >> s . In particular,

() ¥e))B) = (E)va))B), it v > vs- 6

Also, (s(y5))(B) = (#(ys)XB) for all Be 4, , B = 8. This means s(y;) =; (y:),
and as gva,s € G/ ) S(‘)’a) gva.s =5 t(V&) gyd‘x - Hence

(()ya)B) = (5(75) &rysNB) = (U¥s) &5, MB)
= ()P if Bed, ., B=0. (2)
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Combining (1) and (2), we have for all 8 = 3, B 4,
(s*g*)(B) = (©)*(B) = () wa))B) = ((1&)(vu))B)
= (1)*(B) = (£¢*)B);

80 s¥g* = t¥g*,
Now we need to show that (g*); € G, 5. This will follow if (£*); + =
(£,.9s.56) where 8 € 4, . To establish the last equality,

(N8, do.560 = (BN &r.5)s.560 = ((5(¥)) £.5)(8) = ((L)¥))®)
= ((5)")@) = (") &™) = ((*NE)N 8o, -

Since for any z€S,,, there is an s'€ S with §'* ==®s* (and hence
s'(y) =% s(y), and s =7 5") and (s"*}8) = (5'(¥))(8) = 2, it follows that

#8550 = (SO &y.5)5.57) = (YN8 s = 2(£%)s.s* »

so that (g, )s.s) = (£%)s,s* € G,.5, as claimed. This shows that * maps G
into G*.

Next we show that * maps G onto G*. Let f € G*, and g = *f*~! € P(S).
Then if y € I', we want to show that g respects K, . Suppose s = ¢, 5, L € S.
Then s(B) == #(B) forall fe I, B = y. Hence for all €4y, 8 = v,

$*(8) = (s(B))®) = (HB)(®) = t*(3),
= t% =, and () = EF)O)
Hence, forallfel, 8 > y,and all 6 e 4,

(R)BNE) = (S *HBNE) = (sH)N®) = (¥ )(?)
= (B *NBNG) = (()B)E)s
S0
(sg)B) = ()P,
and therefore
g =, 1p.

Finally, since (g,.0)s.5¢) = f5.s € G, 5 for all , 5, and 8 € 4, , we have that
2,..€ G, , and so g € G, completing the proof.

THeOREM 3.9. If eack (G,, S,) is transitive, then so is *[](G,, S,) =
(G, S) transitive.

Proof. Lects, € S. For cach y, there exists g, € G such that s() g, = #(y),
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and we may assume that if () = #(y) then g, is the identity. Now define a
function g on S by (xg)(y) = x(y) g, . Clearly sg = t. Also, the set

R = {yis(y) # (y)} = {y g, is not the identity}
satisfies the maximum condition. Then

{vi(xe)y) # 2()} C R,

and so

support (xg) C R U support (x),

which implies that the support of xg satisfics the maximum condition,
Therefore, xge S, so g:.S— S. By symmetry, g1, which is defined by
(xg" Yy) = 2(y) &, also maps S into S, and thus g € P(S). It is immediate
that g respects each K, and that g, , = g,€ G, . Thus g€ G, and (G, S) is
transitive,

Of course, higher degrees of transitivity do not carry over in the same way,
since if I" has more than one point, (G, S) has the proper congruence K, .

We make one final observation.

Levmma 3.10. The set I' = {(K, , K*)} is plenary.

Proof. If 5,te.S, s/ t, then therc is a maximal element « in the set
{yeI'|s(y) % t(¥)}. Then s —= ¢ and s 5=, ¢. Also, if s =? ¢, then there is
a maximal clement § in the set {y e I" vy > 8, s(y) -# #y)}. Thens =2 ¢ but
§ 7‘?5 i.

4., AN EMBEDDING THEOREM

Let (G, S) be a transitive permutation group, € a set of G-congruences on
S,and I' = {(C, , C*)} a set of covering pairs from €. Our aim is to show that
if there are enough elements of I', then there is a nice embedding of (G, S) in
the wreath product *[ T, (G, , S,) of the components of (G, S, I').

Let (H, T) be a permutation group and X a sct of pairs of H-congruences
on T. Let ¢: (G, S)— (H, T) be an embedding, and let I'$ denote the
corresponding set of covering pairs of Gé-congruences on S¢. We shall say
that ¢ is an immediate embedding of (G, S, I') in (H, T, ZY if (H, T, 2) is
an immediate extension of (G¢, S¢, I'p).

We wish to warn the reader at this point that we are going to change our
convention and denote the wreath product by (¥, R) instead of (G, S) as in
the last section; and we shall avoid any notational distinction between
I'={(C,, C")} as a set of covering pairs of G-congruences on S, and
I' = {(K,, K7)} as the natural set of covering pairs of W-congruences on R.

481/13/2-2
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TueoreMm 4.1. Let (G, S) be a transitive permutation group, € a set of
G-congruences on S, and I' a plenary set of covering pairs in €. Then there is an
immediate embedding of (G, S, I')in (W, R, I"), where (W, R) = *T1,r (G, , S,)
is the wreath product of the components of (G, S, I).

Progf. 1In the proof of the corresponding theorem in [2] the crucial role is
played by a lemma of Banaschewski. Here, the corresponding lemma is much
simpler.

LevMa 4.2. Let G be any group. Then there exists a set {T(A)| A is a
subgroup of G} such that T(A) consists of exactly one element from each right
coset of A in G (T(A) s a “transversal of A”’), T(A) N A is the identity, and if A
and B are subgroups of G with A C B, then T(A) 2 T(B).

Proof. Well-order the elements of G with the identity element smallest.
Then let T(A) consist of the smallest element in each right coset of 4 in G.

Returning to the proof of the theorem, we first choose an arbitrary 0 € S.
Remembering that G** = {ge G | Og = O(mod C¥)}, we choose a set of
transversals as in Lemma 4.2, and in accordance with Lemma 2.2 and the
remark after it, we take (G, , S,) = (G, ¢, S,.0)- We will use the transversals
to “coordinatize” each of the sets (sC?)/C, by the set (0C¥)/C, . Now we
define a functiond : S — [T S, in the following way. Let s € S. By transitivity,
there exists 2Ze G such that 0k =s. There is exactly one element
g€ T(G”%) N G™%. Let

(P)y) = 7'C, €S, .

This definition is independent of the choice of %, for if also 0&" = s, then
G¥ O = GvO).

Because of the transitivity of G, it is easily seen that that the components
(G, , S,) are also transitive. Thus, by Lemma 3.7, we have a certain amount of
freedom in the construction of the wreath product. We are going to use as a
reference point, the point O¢ € T S, . Thus, R will consist of those elements
of [1 S, whose support with respect to O¢ satisfies the maximum condttlon
We note that (04)(y) = 0C, .

To see that ¢ maps S into R, suppose s and % are as before, and P is the
support of s¢. Suppose that y; << y, < y3 < -+ Is an ascending sequence in P.
Let A = (J G¥*°. Then since G¥10 C G72:0 C G730 C ---, 4 is a subgroup of G.
Hence, there is exactly one a € 7(4) N Ah. Now, ha—tec A, so for some =,
ha™te G0, 1f, for some 7, y; >y, , then C=CC, CC¥, and G»°C
G¥°*C 4. Hence T(G*»%) 2 T(G*°) 2 T(A4). There is just one element
ce T(G¥%) N G¥+%. Now, hatle G C G so aecGw%. Also,
ae T(4)C T(G”+%). Therefore, a = ¢. Thus, hc! = hale G Hence
s¢! = O(mod C"), which implies sc~1 = O(mod C,). We conclude that
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(s¢)y:) = sc71C, = OC, = O¢(y;) so that y; is not in the support of s¢, a
contradiction. Hence, y; <{ y, for all 7. Thus, P satisfies the maximum con-
dition, which proves

$:S—R. (1

Ifs 2 1,5, 1€ S, there isay € I'such that s = #{(mod C~) but s = #(mod C,),
because I is plenary. If 0h, = s and 04, = ¢, with &, , #, € G, then

Ohyhyt = sh3* == thy == O(mod C7),
so hyh, ' € G0 If g is the unique clement of
(G N GOy = T(G™*) N G-, ,
(sd)y) = sg71C, = tg*C, = (I$)(y), since sC, # tC, . Hence, s¢ # i¢, and
¢ is one-to-one on S. (2)

Next, let {(K, , K£)} be the natural covering pairs for the wreath product.
We aim to show that

== t(mod C,) if and only if s¢ == té(mod K,). (3)

First, suppose s = t(mod C,). Then for every 8 > y, s =: #{(mod Cy and C¥).
1f Ok, = s and Ohy == t, then GB%, = G*, and if g € T(G**) N GBCh, ,

()P = sg7'Cy = 1g71Cy = (1)(B)-

Therefore, s¢ — t¢(mod K.). Conversely, if s == #(mod C,), then because I’
is plenary, there is a 8 > v such that s == #(mod C#) but s 5= #(mod Cj), and
as before,

()P = sg7'Cy 7 1g71C = (2h)(P),

50 s¢ == th(mod K).

Let 7 € R such that 7 =¥ 0¢ for some y € I'. Then r(y) £ S, —= (0C”),C,,
so for some s€0C?, r(y) == sC,. If Oh ==s, he G, then ke G»0 and if
g€ T(G"®) N G0, g is the identity, so (s¢)(y) = sC, = r(y). Hence the
natural correspondence sC, — (s¢) K, between (0C*)/C, and ((0¢) K*)/K,, is
onc-to-one¢ and onto. By transitivity, the same is true of the natural corre-
spondence between any (¢C*)/C, and ((t¢) K*)/K,, .

Now let ge G, ye I, and xe€ R. Then g induces a permutation of S, ,
which we shall formally denote by (g¢), ., as follows. First, if xK¥ N S¢ is
empty, let ( g8), .. be the identity of P(S,). However, if there exists £ € S with
t¢ & xK>, then for cach a € S, there exists x” € xK* such that x'(y) = g, and by
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the preceding paragraph there exists s € 2C¥ such that (s¢) K, = x'K, . In
other words, s¢ =" x and (s¢)(y) = 2'(y) = a. Now define

a(g8),.. = ((2)8)(r)-
This is well defined, for if also " ¢ xK¥ and x"(y) == a then &’ =, »”; and if
(s:9) K, == ¥'K, = (s,¢) K, , then s;¢ ==, 5,6 and so by (3), 5; = sy(mod C.),
which implies s, g = 5, g(mod C,) and by (3) again, (s, 2)¢ =, (s,2)é. There
is another way to view this definition. There is a unique f; € 7(G”?) such that
0f, = {(mod C»),and there is a unique f, € T(G”-%such that 0f, = 7g(mod C7).
Then for a€ S, , a(gd), . == af, &f 3" Since f; gf 3 € G**, it is apparent that

(g¢)v.a: €G, = GV'O/IVCV - 4

Now we define g¢ as a function on R by

(r(g))(y) = (r(7))(&$)y.r -

The first thing to observe is that the notation is consistant—the permutation
(g4),.- which has just been defined is the same as the (y, x)-component of g¢,
since they agree on x(y). Next, we sce that

()N ePN) = (sB)PIN &B)y.s0 = ((2))¥)

by definition, so that

(P) g8) = (s2)¢- )

To see that g € W, we must first show that for all 7 € R, r( g¢) € R, that is,
that the support of ( g$) satisfies the maximum condition. Let 4 be a non-
empty subset of the support of 7( g¢). If for every é € 4, there is no s € S with
s¢ =% r, then for cach é € 4,

0(8) # (r(g#)(®) = ()N &8)s.r = 7(),

so 4 is a subset of the support of 7, and consequently has a maximal clement.
In the other case, there exists « € 4 and s € S such that s¢ ==, 7, and for all
B=aoBed,

0(8) # (r(8p)(B) = (r(B)N&8)s.r = ()P 8P)s.58 = ((s8)PNB)-

Thus {84 B = «} is a non-empty subset of the support of (sg)$ which
must, therefore, poscss a maximal element 8, , and 8, is clearly a maximal
clement of 4. This shows that g : R — R.

Next, we show that

if (sd)(gd) =s¢ forall seS, then x(gp) ==x forall xeR.(6)
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If there is no s S with s¢ =, x, then (x(gé))(y) = (*(¥¥ £8),.. = x(y).
On the other hand, if there is such an s, then

()28 = (BENY) = (D) &) = (h)v) = *()-

Thus, in either case (x( g¢))(y) = x(y), so x( gp) = x.

It is immediate from the definition that if x —, 3, then x(g¢) =, ¥(gd).
On the other hand, if x 5, y, then there cxists o 2> ¥ with ¥ =y and
x %, %. Then

() = (N8P 7= (M()(&D)a = (M)W &H)arw = (Y(gN()-

Hence x(g¢) ==, y(gé). Next we show that for g, he G, (gd)hd) = (gh) é.
Let xe R and y e I'. First, suppose there cxists s € S with s =, x. Then for
B2 ((gh)B) = ((B)ed)s.e = () H)B) s0 *(gd) =, (). Then a
straight-forward computation shows that (x((g¢)(hé)))(y) = ((sgh) )(y) =:
(x((gh) $)}(y). On the other hand, if there is no s€ S with s¢ =, x, then
neither is there any te S with 1 =2, x(gd), since (1g71)¢ 7=, x implies

td = ((tg ) g) b = ((tg7) ) gd) 7=, x(g$). Hence

(*((g)apN)r) = (HePNINPD). 208 = (x(r)N D)y ) = 2(¥)
= x(y)(gh) $)v.x == (¥((gh) EN(¥)-

Thus in either case (gh) ¢ —= (g¢)(hep). Hence (gd)g71p) = (g7b)(gd) += the
identity function. Thus, we finally see that. g : R— R is one-to-one and

onto, and so is a permutation of R. Hence g¢ € W. Moreover, (5) and (6)
show that ¢ : (G, S} — (W, R) is a homomorphism, and by (2), ¢ is one-to-
one on S. Hence ¢ is an embedding of (G, S) in (¥, R).

Now we must show that (W, R, I') is an cxtension of (G, S¢, I'). By (3),
K, | S¢ = C,¢ (s¢ = td(mod C,¢) if s = t(mod C,)). Hence, conditions (i)
and (ii) in the definition of extension are satisfied. As for condition (iii),
suppose that (s¢)(gp) =, s¢ for all s¢ € (xé) K¥, and let z € (x¢) K. Then

& =, s¢ for some s, and
2(gd) =, (sp)(g4) =, ¢ =, =.

Hence, in this casc too, 2( gé) ==, 2.

Now we check that the extension is immediate. By Lemma 3.10, I' is
plenary for (I, R). Also, since (G, .S) is transitive, each component (G, , S,)
is transitive, and hence by Theorem 3.9 (W, R) is transitive, which makes
condition (iv) in the definition of immediate extension trivial. There remains
condition (iii). We have already seen that the natural set correspondence
sC, — (s¢) K, from (0C»)/C, to ((0¢) K*)/K, is onto. In order to show that
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the group part of the natural correspondence is also onto, we must show
that for each we Wv% there exists g G”0 such that for each se0C?,
(sd)(g9) =, (s¢)w. Now w, o € G, = GVO/N , so there exists g € G*° such
that @, 4, = gNc . Then if s € 0C7, v

(sp)ew =7 s = (sg)¢ == (s)(8¢);

and
((s) w)y) =- ((6)¥)) y.06 = (sC,) gN¢, = (sg) C,
= ((2) $)¥) == ((s$)(g#))(¥),

so (sl =, (s6)(4).

Thus, (W, R, I') is an immediate extension (G, S¢, I') and the proof is
complete.

If (G, S) is transitive, if € is the collection of all G-congruences on S, and I
the set of all covering pairs in &, then clearly I is plenary. And in this case,
the components (G, , S,) are primitive, that is, (G, ,.S,) has no proper
congruences. For if K is a G,-congruence on S, = .S, . == (*C)/C,,
then there is a natural Gv#*-congruence K’ on xC” defined by 2 = y(mod K')
if 2C, = yC (mod K). And K’ has a natural extension to a G-congruence K"
on S defined by a = b(mod K”") if there exists g € G such that ag =
bg(mod K"). Then K” lies between C, and Cv, and since (C, , C*) is a covering
pair in the set of all G-congruences, either K’ = C, or K" = Cv. This
implies that K is trivial on S, . Thus we have the following.

TororeM 4.3A. If (G, S) is a transitive permutation group, (G, S) can be
embedded in a wreath product of primitive permutation groups (G, , S,).

We can refine this theorem a bit more. If ¥ is a maximal chain of G-
congruences on S, and I" the set of all covering pairs in €, then I is plenary
and as before, each component (G, , .S,) is primitive.

THEOREM 4.3B. If (G, S) is a transitive permutation group, (G, S) can be
embedded in a wreath product *[1,.(G,,S,) suck that each (G,,S,) is
primitive and I is totally ordered.

Now we need a slight refinement of Theorem 4.1.

THEOREM 4.4. Let (G, S) be a transitive permutation group, € a set of
G-congruences on S, I' a plenary set of covering pairs in €, and
é: (G, S, I')— (W, R, I) an immediate embedding, where (W, R) is the wreath
product of the components of (G,S,I'). Let :(G,S, Iy~ (H,T,T)
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be an immediate embedding. Then there exists an immediate embedding
¥ (H, T,I'Y— (W,R, T') such that y¢* =¢ on S, and for each geG,
gpd* | Sb = g | S¢.

We only outline the proof. If t € T, y € I', and if there is an s € S such that
t =, s, then let (26*)(y) = (s¢)(y). If there is no such s, we define (1¢*)(y)
as in the proof of Theorem 4.1. It is easy to check that ¢*: 7"— R and
Pd* = ¢ on S. The rest of the proof follows the lines of the proof of
Theorem 4.1.

We shall say a permutation group (G, S, I') is émmediately closed if every
immediate embedding 4 : (G, S, I') — (H, T, I) is an isomorphism.

CoroLLary. If, in addition to the hypotheses of Theorem 4.4, (H, T, I')
ts immediately closed, then (H, T, I') is isomorphic to (W, R, I').

Proof. The isomorphism is ¢ *.

THeOREM 4.5. If (W, R, I') is a transitive wreath product then (W, R, I')
is immediately closed.

Proof. The identity map z: (W, R, I')— (W, R, I') is an immediate
embedding. If 4 : (W, R, I')— (H, T, I') is an immediate embedding, then
by Theorem 4.4, there exists an immediate embedding

¢*:(H, T, ")~ (W, R, T)

such that ¥¢* = 7 on R (and so Ry = T since ¢* : T'— R is one-to-one),
and for each we W, wé* | Ri = w | Ri, or widp* = w (and so Wi = H
since ¢* : H — W is one-to-one). Thus s is an isomorphism.

Combining the previous Corollary and Theorem, we have the following
characterization of wreath products.

TueoreM 4.6. If (G, S, I") and (W, R, I") are as in Theorem 4.4, the
wreath product (W, R, I') ts the unique (to within isomorphism) immediately
closed immediate extension of (G, S, I'). (G, S, I') is immediately closed if and
only if (G, S, I') is isomorphic to (W, R, I").
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