J. Symbolic Computation (1995) 20, 1-41

Modular Properties of Composable Term
Rewriting Systems

ENNO OHLEBUSCH
Technische Fakultit, Universiiat Bielefeld, Postfach 100131, 83501 Bielefeld, Germany

{Received 12 June 1995)

In this paper we prove several new modularity results for unconditional and conditional
term rewriting systems. Most of the known modularity results for the former systems
hold for disjoint or constructor-sharing combinations. Here we focus on a more general
kind of combination: so-called composable systems. As far as conditional term rewrit-
ing systems are concerned, all known modularity result but one apply only to disjoint
systems. Here we investigate conditional systems which may share constructors. Fur-
thermore, we refute a conjecture of Middeldorp (1990, 1993).

1. Introduction

Term rewriting has applications in various fields of computer science such as symbolic
computation, functional programming, abstract data type specifications, program veri-
fication, program synthesis, and automated theorem proving. In an outstanding paper,
Knuth and Bendix (1970) describe a completion procedure which can often be success-
fully used to transform a given set of equations into a complete term rewriting systemn
(TRS) which defines the same equational theory. Thus TRSs provide an operational
maodel of algebraic specifications of abstract data types. Large specifications, however,
must be written in a modular way according to the one page principle of Mark Ardis: “A
specification that will not fit on one page of 8.5 x 11 inch paper cannot be understood”.

Modularity is a well-known programming paradigm in computer science. Programmers
should design their programs in a modular way, that is, as a combination of small pro-
grams. These so-called modules are implemented separately and are then integrated to
form the whole program. Since TRSs have important applications in computer science,
it is — not only from a theoretical viewpeint but also from a practical point of view — of
utmost importance to know under which conditions a combined system inherits desirable
properties from its constituent systems. For this reason modular aspects of term rewrit-
ing have been receiving increasing attention. A property P of TRSs (like confluence,
termination etc.) is called modular if whenever R, and R, are TRSs both satisfying P,
then their combined system i U R+ also satisfies P. The knowledge that (perhaps un-
der certain conditions) a property P is modular facilitates program synthesis because it
allows an incremental development of programs. On the other hand, it provides a divide
and conquer approach to establishing properties of TRSs. If one wants to know whether
a large TRS has a certain modular property P, then this system can be decomposed
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into small subsystems and one merely has to check whether each of these subsystems has
property P.

As all interesting properties are in general not modular, the starting-point of research
were disjoind unions, combinations of TRSs having no function symbols in common.
Toyama (19874) proved that confluence is modular for disjoint systems. In contrast
to that, termination and completeness lack a modular behavior (see Toyama, 19875).
Kurihara and Ohuchi (1992) investigated constructor-sharing systems; constructors are
function symbaols that do not occur at the root position of the left-hand side of any
rewrite rule, the others are called defined symbols. Among other things, they showed
that confluence is not modular for constructer-sharing systems. Middeldorp and Toyama
(1993) introduced composable systems which have to contain all rewrite rules that de-
fine a defined symbol whenever that symbol is shared. The authors, however, restricted
their investigations to constructor systems (where no proper subterm of a left-hand side
of a rewrite rule is allowed to contain defined symbols). Their main result states that
completeness is modular for composable constructor systems. We drop the constructor
system requirement, so the composable systems we consider are a proper generalization of
constructor-sharing systems. It is worthwhile to investigate combinations of composable
systems because they correspond to the union of specifications with common subparts
which exist in most specification languages.

The title of this paper reflects that the combination of composable systems is the most
general kind of combination which will be investigated here. It will be shown that for those
systems semi-completeness is modular, termination is modular for layer-preserving and
for non-duplicating systems, completeness is modular for averlay systems, and that the
simplifying property is modular as well. We stress the fact that it is pcssible to compute
in the combined system of pairwise composable complete systems. More precisely, the
unique normal form of a term can be obtained by any innermost reduction strategy.
Then conditional term rewriting systems (CTRSs) are studied. The rewrite rules of those
systems may possess conditions, and such a conditional rewrite rule is only applicable if its
conditions are fulfilled. We focus on the most prominent kind of CTRSs, the so-called join
or standard systems. It should be pointed out that conditional term rewriting is inherently
more complicated than unconditional term rewriting. So it is not surprising that most
of our results apply only to constructor-sharing systems — as a matter of fact, up until
now no positive modularity result is known for the combination of composable CTRSs
which may have extra variables in their conditions. Middeldorp (1990, 1593} was the first
to investigate modular properties of (disjoint) CTRSs. Among other things, he showed
that for disjoint conditional term rewriting systems confluence and semi-completeness
are modular whereas local confluence and normalization lack a modular behavior. So the
best one can hope for when considering constructor-sharing CTRSs is the modularity
of semi-completeness (all other above-menticned properties cannot be modular for those
systems since they already fail to be modular for more restricted systems). We prove that
semi-completeness is indeed modular for constructor-sharing CTRSs. Middeldorp has
also shown that termination is modular for non-collapsing, and complateness is modular
for non-duplicating disjoint CTRSs. Furthermore, he conjectured (see Middeldorp, 1990,
1993) that the disjoint union of two terminating join CTRSs is terminating if one of them
contains neither collapsing nor duplicating rules and the other is confluent. We will refute
this conjecture by a simple counterexample. Moreover, it will be shown that his results
also hold, mutatis mutandis, in the presence of shared constructors. We point out that
our proof (though based on the ideas of Middeldorp, 1993) is considerably simpler than
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that of Middeldorp (1993). Then we investigate finite and decreasing CTRSs. Since these
systems exactly capture the finiteness of recursive evaluation of conditions, they have
been studied by many authors. Our main result in this context states that it is possible
to compute in the combined system of decreasing, confluent, and pairwise constructor-
sharing CTRSs. Finally, it is shown that the related simplifying property is modular,
even for composable CTRSs.

Since very many new modularity results have been published recently, we cannot render
a detailed account of those here. Instead, the reader is referred to Marchiori (1995), Ohle-
busch (1993,19954, b) and Gramlich (1994c¢) for recent results on disjoint (conditional)
TRSs, to Dershowitz (1994), Gramlich (19944, b), and Ohlebusch (1994a) which deal
with constructor-sharing TRSs, and to Kurihara and Ohuchi (1995) as well as Middel-
dorp (19944) which contain results for composable (conditional) TRSs. In this paper we
do not investigate so-called hierarchical combinations of rewrite systems but refer to Sec-
tion 7 for a brief discussion of this related work. The paper is organized as follows. First
we briefly recall the basic notions of term rewriting. In Section 3 we specify the differ-
ent kinds of combination. Then the basic notions of composable systems are introduced.
Section 5 contains our results about composable TRSs, while Section 6 is concerned with
constructor-sharing CTRSs. The paper is concluded with a brief discussion of related
work and open problems.

2. Preliminaries

This section contains a concise introduction to term rewriting. The reader is referred
to the surveys of Dershowitz and Jouannaud (1990) and Klop (1992) for more detail.

A signature is a countable set F of function symbels or operaiors, where every f €
F is associated with a natural number denoting its arity. Nullary operators are called
constants. The set' T(F,V) of terms built from a signature F and a countable set of
vartables V with NV = 0 is the smallest set such that V C 7(F,V) and if f € F has
arity n and ¢1,...,t, € T(F, V), then f(t1,...,tn) € T(F,V). We write f instead of f( )
whenever f is a constant. The set of variables appearing in a term ¢ € T(F, V) is denoted
by Var(t). For t € T(F,V), we define root(t) by root(t) = t if t € V, and root(t) = f if
t= f(t1,...,t,). |t| denotes the sizeof {,ie. [t| =1ift €V, and Jt] = 1+ |t1]| +.. . + |ta]
lft = f(tl, .. .,tn).

A substitution ¢ is a mapping from V to T(F, V) such that {z € V| o(z)#z] is finite.
This set is called the domain of ¢ and will be denoted by Dom(o). Occasionally, we
present a substitution o as {z — o(z) | z € Dom(c)}. The substitution with empty
domain will be denoted by €. Substitutions extend uniquely to morphisms from T{F, V)
to T(F,V), that is, o(f(t1,...,ts)) = f(o(t1),...,0(t,)) for every n-ary function symbol
f and terms t;,...,t,. We call o(t) an instance of t. We also write to instead of o(t).

Let O be a special constant. A confezi is a term in T(F U {0}, V). C[,...,] denotes
a context which contains at least one occurrence of O and may be equal to O, CY,...,}
stands for a context which contains zero or more occurrence of O and may be equal to
O, while C{,..., } denotes a context which contains zero or more occurrence of O and is
different from O. If CT,...,] is a context with n occurrences of @ and {4, .. .,%, are terms,
then Cl[t1,...,1,] is the result of replacing from left to right the occurrences of O with
t1,...,tn. A context containing precisely one occurrence of O is denoted by C[]. A term
t is a sublerm of a term s if there exists a context C[] such that s = C[i]. A subterm
t of s is proper, denoted by s > ¢, if s # 1. By abuse of notation we write 7(F, V) for
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T(F u {0}, V), interpreting O as a special constant which is always available but used
only for the aforementioned purpose.

Let — be a binary relation on terms, i.e. — C T(F,V) x T(F,V). The reflexive
transitive closure of — is denoted by —*. If s —* ¢, we say that s reduces to ¢ and we call
t a reduct of s. We write s — t if £ — 5; likewise for 8 *— ¢. The transitive closure of —
is denoted by —*, and «— denotes the symmetric closure of — (i.e. =« = — U «). The
reflexive transitive closure of — is called conversion and denoted by «*. If s —* {, then
s and ¢ are convertible. Two terms t;,1, are joinable, denoted by ¢, | ta, if there exists a
term i3 such that ¢; —* #3 *— 5. Such a term ta is called a common reduct of £, and ¢5.
The relation | is called joinability. A term s is a normal form w.r.t. — if’ there is no term ¢
such that s — ¢. A term s has a normal form if s —* ¢ for some normal form {. The set of
all normal forms of — is denoted by N F(—). The relation — is normalizing if every term
has a normal form; it is terminating, if there is no infinite reduction sequence #; — ¢; —
ta — .... In the literature, the terminology weakly normalizing and strongly normalizing
is often used instead of normalizing and terminating, respectively. The relation — is
confluent if for all terms s,1;,42 with ¢; *— s —* {3 we have t1 | #5. It 13 well-known
that — is confluent if and only if every pair of convertible terms is joinable. The relation
— is locally confluent if for all terms s,¢;,%5 with £ — s — ¢y we have t; | {3. If —
is confluent and terminating, it is called complete or convergeni. The famous Newman’s
Lemma states that termination and local confluence imply confluence. If — is confluent
and normalizing, then it is called semi-complete. Sometimes this property is called enique
normalization because it is equivalent to the property that every term has a unique
normal form.

A term rewriting system (TRS) is a pair (F,R) consisting of a signature F and a set
R CT(F,V) xT(F,V) of rewrite rules or reduction rules. Every rewrite rule (I,) must
satisfy the following two constraints: (i) the left-hand side [ is not a variable, and (ii)
variables occurring in the right-hand side r also occur in I. Rewrite rules (I,r) will be
denoted by ! — ». An instance of a left-hand side of a rewrite rule is a redez (reducible
expression). The rewrite rules of a TRS (F,R) define a rewrile relation —x on T(F,V)
as follows: s — t if there exists a rewrite rule { — r in R, a substitution ¢ and a context
C1] such that s = C[le] and t = C[ro]. We say that s rewrites to ¢ by contracting redex
lo. We call s —r t a rewrite step or reduction step. A TRS (F,R) has one of the above
properties (e.g. termination) if its rewrite relation has the respective property. Let (F, R)
be an arbitrary TRS. A function symbol f € F is called a defined symbol if there is a
rewrite rule [ — r € R such that f = root(l). Function symbols from F which are not
defined symbols are called constructors. The set of normal forms of (F,R) will also be
denoted by N F(F,R). We often simply write R instead of (F, R) if there is no ambiguity
about the underlying signature F. A rewrite rule ! — r of a TRS ® is collapsing if r
is a variable, and duplicating if r contains more occurrences of some variable than {. A
TRS R is non-duplicating (non-collapsing, respectively) if it does not contain duplicating
(collapsing, respectively) rewrite rules.

In a join conditional term rewriting system (CTRS for short) (F,R), the rewrite rules
of R have the form{ —r < s; | ty,...,8, [t with ], 7,51,... 80,81, ...ty € T(F, V).
81 111,--.,8n | t, are the conditions of the rewrite rule. If a rewrite rule has no conditions,
we write | — r. We impose the same restrictions on conditional rewrite rules as on
unconditional rewrite rules. That is, we allow ezira variables in the conditions but not on
right-hand sides of rewrite rules. The rewrite relation associated with (F,R) is defined
by: s —x t if there exists a rewrite rule [ — r <51 | t1,..., 8, | &, in R, a substitution
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o:V — T(F,V), and a context C[] such that s = C[lo],t = C[ro], and s;0 |5 t;0 for
all j € {1,...,n}. For every CTRS R, we inductively define TRSs R;, i € N, by:

Ro ={l—=r|l—=reR}
Ripn ={le—=ro|l—resifty,.. .8, 1, €R and
sjo lg, tjo forall j € {1,...,n}}.

Note that R; C Ri41 for all i € N, Furthermore, s —x t if and oply if s —x, ¢ for some
i € N. The depth of a rewrite step s ~+x ¢ is defined to be the minimal ¢ with s —x, ¢.
Depths of reduction sequences s -—% 1, conversions s —% t, and valleys s | ¢ are defined
analogously. All notions defined previously for TRSs extend to CTRSs.

A partial ordering (A,>) is a pair consisting of a set A and a binary irreflexive and
transitive relation > on A. A partial ordering is called well-founded if there are no infinite
sequences a; > agz > a3 > ... of elements from A. A multiset is a collection in which
elements are allowed to occur more than once. If A is a set, then the set of all finite
multisets over A is denoted by M(A). The multiset exlension of a partial ordering (4, >)
is the partial ordering (M(A), >™*!) defined as follows: M; >™% M, if My = (M) \X)UY
for some multisets X,Y € M(A) that satisfy (i) @ # X C M; and (ii) for all y € Y there
exists an z € X such that z > y. Dershowitz and Manna (1979) proved that the multiset
extension of a well-founded partial ordering is a well-founded partial ordering.

A simplification ordering > is a partial ordering on terms which (i) is closed under con-
tezis (1.e. s >t implies Cfs] > C[t] for every context C[]), (1) closed under substitutions
(i.e. s > t implies so > to for every substitution ¢), and (iii) has the subterm property
(i.e. C[t] >t for all contexts C[] # 0).

3. Various combinations

Very simple examples show that in general all interesting properties are lost under
arbitrary combinations of TRSs. Thus, several restricted kinds of combinations have
been proposed in the literature. The next definition specifies these combinations.

DEFINITION 3.1. Let (F;,R;) and (F2,R3) be TRSs. Let D; and D; denocte their re-
spective sets of defined symbols and let £; and C; denote their respective sets of con-
structors. Their combined system is their union (F,R) = (F1 U F2,R1 UR2). Its set of
defined symbols is obviously D = Py U D and its set of constructors is C = F\ D.

(1) (F1,R1) and (F2,R2) are disjoint if they do not share function symbols, that is,
FiNFy=10 (or equivalently C, Nz =CiNDy =D NC, =D NDy = @)

In the literature, (¥, R) is sometimes called the direct sumof (F1,R4) and (F2,R2).

(2) (F1,R1) and (Fa,R2) are constructor-sharing if they at most share constructors,
i.e., F1NFy CC (or equivalently C; N Dy =D NC, =D NDy = §).

(3) (F1,R1) and (F2,R3) are composable if C; NPz = D; NCz; = B and both systems
contain all rewrite rules that define a defined symbol whenever that symbol is
shared, more precisely, § = {I{ = » € R | root(l) € D1 N D2} C Ry NR,. In this
situation, the set § is said to be the set of shared rules of Ry and Rs.

The different kinds of combinations are illustrated in Figure 1.
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Figure 1 Different combinations.

DeFNiTION 3.2. A property P is modular for composable TRSs if, for all composable
TRSs (F1,R1) and (Fa,Ryg), their union (Fy U Fa, R1 UR2) has the property P if and
only if both (F1,R1) and (F3, R3) have the property P.

We will also use the phrases modular for constructor-sharing TRSs and modular for
disjoint TRSs. The meanings of these phrases are obvious. We are of course not only
interested in the combination of two TRSs. It should also be possible to deal with sit-
uations where more than two systems are combined. The next proposition shows that
the combination of n TRSs, n > 2, can be reduced to the case n = 2 by successively
combining two systems. The simple proof is omitted.

ProposiTION 3.3. Let (F1,R1),-..,(Fn,Ry) be n, n > 2, pairwise composable TRSs.
Then the term rewriting systems (U;.‘;ll F;, U;.';ll R;) and (Fn,R,) are composable.

4. Composable systems: basic notions

In this section, the basic notiens concerning the combination of two composable term
rewriting systems (F;,R1) and (F3, R»)} are introduced. These notions will easily be
identified with those already introduced for disjoint systems (see e.g. Middeldorp, 1990)
and constructor-sharing systems (see e.g. Kurihara and Ohuchi, 1992). So from now on
we tacitly assume that (F1,R) and (F2, R2) are two composable TRSs and that (F,R)
denotes their combined system. In the sequel — = —-g = —g,ur,. First of all, we
introduce the chromatic terminology which is now commeon.

DEFINITION 4.1. The set F1 NFs of shared funciion symbols, i.e. function symbols that
oceur in both signatures, is denoted by B. A; = F1\ B is called the set of alien function
symbols for F5 and B because A; NFy = 0 and .A; N B = 0. A; is defined analogously.
Note that F = A; W.AsWB. In order to enhance readability, function symbols from .A; are
called black, those from .45 whife, and shared function symbols as well as variables are
called transparent. A term s is called top black (top white, top transparent) if root(s) is
black (white, transparent). In a term every transparent symbol ¢ acts like a chameleon,
that is, it changes its color to match the surrounding: If there is no black or white symbol
above ¢ (there is no surrounding so to speak), then it remains transparent. Otherwise,
its color is the same as the color of its parent (the definition applies recursively if the
parent is a shared symbol). If a term does not contain white {(black} function symbols, we
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speak of a black (white) term. A term containing both black and white function symbols
is called a mizred term. A term is said to be transparent if it only contains shared function
symbols and variables.

Please notice a subtlety in the preceding definition: A transparent term may be re-
garded as black or white; this is very convenient for later purposes.

EXAMPLE 4.2. Let Fy = {add, mult, S, 0} and

add(0, z) — z
add(S(z),y) — S(add(z,y))
mult(0, z) — 0

mult(S(z),y) — add(muli(z,y),y).

Moreover, let Fy = {add, fib, S, 0} and

Ry =

add(0, z) — =z
add(S(2),5) — Sladd(z,y))
Rz =< fib(0) - 0
Fib(S(0) = 5(0)
FiB(S(S(z)) — odd(fib(S(z)), b)),

It is apparent that (F1, R1) and (Fs, R3) are composable systems. mulf is the only black
symbol, fib is the only white symbol, and the symbols add, S,0 are transparent. Con-
sider the mixed term s = add(0, add(fib(S(mult(0,0))), mult(0, mult(fib(0), fib(0))))).
Figure 2 shows how s can be decomposed into an outer transparent and further inner
black and white parts. We will next specify this decomposition.

fib fib

Figure 2 A colored term.

LEMMA 4.3. Every term s € T(F,V) has unique representations
{ C'sy,...,s1), where C,....}€T(B,V), root(s;) € A1 WA,
& =

C¥t1,...,tm), where C®(,...,} € T(A WB,V), root(t;) € Az
C¥(uy,...,un), where C¥(,...,) € T(A;WB,V), root(u;) € A;.
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Proor. Routine. O

DEFINITION 4.4. In the situation of Lemma 4.3, we will use the following shorthands for
the unique representations of the term s:

{ C*{s1,...,51)
s={ Ct,... tm)
C"”((ul,...,uﬂ».

If we have some more information about a context C{, ..., %, then we also use different
notations. If we know that C{{,...,}) # O, then we write C{, ..., }. If it is known that
furthermore C{, ..., } contains at least one occurrence of O, then we write C[,...,].
Moreover, we define

S](S) = [sll "':sn]: S}u;(s) = [f'lz . ..,tm], S}’:(S) = [uls‘ ":uﬂ]'

t1,...,tm (U1,...,u,, respectively) are called white {black, respectively) principal sub-
terms of s. The topmost black homogeneous part top®(s) of s is the term C®(,...,} in the
unique representation s = C®{{t1,...,tm ). The topmost white homogencous part top®(s)
and the topmost fransparent homogeneous part top'(s) of s are defined analogously.

EXAMPLE 4.5. In the situation of Example 4.2, s has representations
CHFib(S(mult(0,0))), mult(0, mult(£ib(0), fi5(0))], C',...,] = add(0, add(D, O))

C*[fib(S(mult(0,0))), £5b(0), fib(0)], C*[,...,] = add(0, add(O, mult(0, mult(0, D))))

C¥ [mult(0, 0), mult(0, mult(£ib(0), £ib(0))], C*[,- ..,] = add(0, add(fib(S(D)), O)).

To exemplify the above, we have for instance Sp(s) = [fib(S(mult(0,0))), fib(0), fib(0)]
and topt(s) = add(0, add(O, mult(0, mult(D, O)))).

The term ¢ = mult(0,0) has representations ¢ = C'{t}), t = C*{{t}, and { =
C¥,...,}), where C*{,...,) = C¥®{,...,) =D and C%(,...,) contains no accurrence of
O, i.e. is equal to mult(0,0). We have for instance SE(¢) =[], Sh(2) = [t], top®(¢) = O,
and fop®(t) = mult(0,0).

The term v = add(fib(0), fib(0)) has representations u = C*{fib(0), fib(0)), u =
CY{fib(0), £ib(0)), and w = C¥{,...,)), where C*{,...,) = C*(,...,} = add(O, O) and
C®{,...,) contains no occurrence of 0, i.e. is equal to u. We have for instance Sh(u) = (],

B(u) = [fib(0), fib(0)], and top™ (u) = u.

DEFINITION 4.6. The rank of a term £ € T(F, V) is defined as follows.
If ¢ is a top black or top white term, then

K(t) = 1 ifteT(AWBVIUT(A¥B,Y)
ran T | 1+ maz{rank(t;) | 1<j<n} ift=CMh,. .. ta]ort=C¥[t,...,ta].
If t is a top transparent term, then

v [0 if t € T(B,V)
rank(t) = maz{rank(t;) | 1<j<m} ift=Cty,... tm].

The term s of Example 4.5 has rank 2. Several definitions and considerations are sym-
metrical in the colors black and white. Therefore, we often state the respactive definitions
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and considerations only for one color (the same applies mutatis mutandis for the other
color).

DEFINITION 4.7. Let s —t by an application of a rewrite rule ] - r € R.
If s = C%[s1,...,5,] is a top black term, then we write

s tift = C”[s1,...,sj_l,tj,3j+1,...,sﬂ] and s; — 1; for some j € {1,...,n}.
s =4, t otherwise.

If s = C*[s1, ..., 5n] is a top transparent term, then we write
s—=*tift=C"[s1,...,85-1,4;,8j+1,---, 8] and s; —* ; for some j € {1,...,n}.
s =9, tift= C:[S1,...,Sj-1,tj,8j+1,...,sn] and s; —?%, t; for a top black s;.
s =9, tift=0C [51,...,8j-1,tj,8j41,-..,5n] and s; —%, t;i for a top white s;.

s —* t otherwise.

The relations —*, —% , —%, , —=° = —%, U =%, , and —' are called inner, black
outer, white outer, outer, and transparent reduction, respectively. We will also use the
abbreviations —»;‘: =—='U-=9 , —»;'; =—=tU =9 ,and »"° = = U —° Note
that every reduction step s — ¢t is classified by the above definition: it is either an inner
or a black outer or a white outer or a transparent reduction step. Moreover, if s is top
black (top white), then the reduction step cannot be a transparent or white (black) outer

reduction step.

For disjoint and constructor-sharing systems, respectively, we will use the common
—%, instead of —% because for those system the reduction in a “black part” of a
term implies that the applied rule stems exclusively from R;. As to composable TRSs,
this is not true in general. If s is for instance a top black term, then the topmost black
homogeneous part may very well be reduced by a rule from Ry (but never at the root!).
However, since Ry and R, are composable, we know that this rule is also contained
Ri. So if the topmost black homogeneous part is reduced, we may w.l.o.g. assume that

the applied rule stems from R; (notwithstanding the fact that it may also stem from
Ra).

ExaMPLE 4.8. Once again, consider the TRSs R, and R4 as well as the term s of
Example 4.2.

s = add(0, add( fib(S(mult(0,0))), mult(0, mult(£ib(0), fi5(0)))))
—t add(fib(S(mult(0,0))), mult(0, mult(fib(0), £ib(0))})

i add(fib(S(0)), mult(0, mult(b(0), £ib(0))))

—%, add(S(0), mult(0, mult(£ib(0), fib(0))))
—i add(S(0), mult(0, mult(0, fib(0))))
—o.  add(5(0),0).

DEFINITION 4.9. Let 5 be a top black term. A rewrite step 5 — 1 is destructive at level 1
if the root symbols of s and ¢ have different colors (that is to say, root(t) € A, & BW V).
It is destructive at level m + 1, m > 1, if s —*' {, where s = C®[s1,...,s;,...,84],
t=C%s1,...,1j,...,5n), and s; — 1, is destructive at level m. For a top transparent term
s, a rewrite step s — ¢ is destructive at level 0 if the root symbols of s and ¢ have different
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colors (that is to say, root(t) € A; W A;). It is destructive at level m for some m > 1 if
it has a representation of the form s = C*sy,...,s;,...,80] = C*[s1,...,¢j,...,8n] = ¢
with s; — t; destructive at level m.

In the reduction sequence of Example 4.8, the third and the last rewrite steps are
destructive at level 1, whereas the second and fourth are destructive at level 2.

LEMMA 4.10. Let s — ¢ by an application of some rule | — r € R.

(1) If s — t is destructive at level 0, then { — r is a shared collapsing rule.
(2) If s — ¢ is destructive at level m > 0, then root(l) € Ay WAz and root(r) € Bw V.

PrOOF, Straightforward. O

In order to code certain special subterms by variables and to cope with transparent or
outer rewrite steps using non-left-linear rules, the following notation is convenient.

DEFINITION 4.11. Let 53,..., 8, and £y,...,t, be sequences of terms from T(F, V). We
write 81, ...,8, < {1,...,1, if 5; = 5; implies?; =¢; for all 1 < i < j < n. If we have both
S1,...,83 0y, ...t and t1,...,8, O 81,...,5n, then we write 81,...,8, coty,... 14,

We omit the simple proofs of the following lemmata.
LEMMA 4.12. The pair (B, S} is a term rewriting system.

LeEMMA 4.13. Let s,t be terms such that s — ¢ by an application of somerule! — r € R.
Then s € T(B,V) implies{ — r € § and t € T(B, V). Moreover, the restrictions of —s
and —g to T(B,V) coincide.

The following facts will be heavily used in the sequel (sometimes withaut being explic-
itly mentioned).

LEMMA 4.14. If s —' t, then s = C*{s1,...,s.},¢ = C*{{si,, .., 8i,.)) for some trans-
parent contexts Ct{,...,}, C*{,...,}, i1,...,im € {1,...,n}, and terms s,,..., s, with
root(s;) € AL WAy If 5 —* ¢ is not destructive at level 0, then ¢ = Csiy 0803
If C*fs1,...,5,} —* C'{si,,..., i)}, by application of some rule I — r € R, then we
also have C*{ty,...,tn} — C*{t;,,...,t;,.} by an application of the same rule { — r for
all terms £3,...,t, with s1,...,8, o« 11,...,1,. Moreover, { — r € §. Please note that

analogous statements hold for s "*fi'i t and s —>f4': 1.

LEMMA 4.15. Let s = C%[s1,...,8,]. If s -9, tors —* ¢, then thereisa j € {1,...,n}
such that s; — t; for some term ¢;. That is, ¢ = C[s1, - < ostjy .- -, 8u]. If the reduction
step is non-destructive, then t = C®fs1,...,%;,..., sa].

Now it is possible to prove that the rank of a term is never increased by a reduction
step s — t. This can be done by induction on rank(s) and further distinguishing the
cases s —'t, 5 —9 f,and s -,
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PROPOSITION 4.16. If s —* ¢, then rank(s) > rank(t).

DEFINITION 4.17. Let o and 7 be substitutions. We write ¢ o« 7 if 2z¢ = yo implies
z7 = yr for all z,y € V. The notation ¢ —* 7 is used if o —=* 7 for all x € V. Note
that ¢ —* 7 implies i —* {7 for all ¢ € T(F,V). Moreover, ¢ is said to be in normal
form or — normalized if zo € NF(—) for every = € V. A substitution ¢ is called black
if zo is black for all € Dom(o) and it is said to be top black if zo is top black for all
z € Dom(o).

ProrosiTioN 4.18. Every substitution o can be decomposed into &5 0 &y such that o
is black and o3 is top white and o3 € (recall that ¢ denotes the empty substitution).

PRoOF. Essentially the same as for disjoint systems, see Middeldorp (1990, 1993). O

5. Modular properties of composable systems

5.1. SEMI-COMPLETENESS

Our first result is the modularity of semi-completeness for composable TRSs. From our
point of view, this result is very important because semi-completeness is one of the most
desirable properties of TRSs. Let us make this more precise. A TRS is a kind of applicative
program that computes by reducing terms to other terms. The point of a computation is,
of course, its result which consists of an irreducible term. If the TRS under consideration
is confluent, then we know that a computed result is uniquely determined. That is, the
normal form obtained is independent of the strategy used to compute it. If the TRS is
also normalizing, then we know in addition that every term has a normal form. Thus, if
the TRS is semi-complete, then every term has a unique normal form and all we further
need is a {good) normalizing reduction strategy to compute that unique normal form
(efficiently). On the other hand, there is hardly a method to prove semi-completeness of a
TRS. In practise, one always tries to apply the following technique to prove completeness:
At first, termination of the TRS is proved (mostly by some simplification ordering), and
then convergence of all critical pairs is checked. Moreover, many complete TRSs are
obtained via Knuth-Bendix completion. Since completeness is not modular (even for
disjoint systems}, the combination of pairwise composable complete TRSs does not yield
a complete system. However, it yields a semi-complete and innermost terminating TRS
(see below). So in this very important case the unique normal form w.r.t. the combined
system can be obtained by any innermost reduction strategy.

LEmMMA 5.1. Let (F1,R41) and (F2,R3) be composable TRSs.
(1) If one of the systems is confluent, then (B, S) is confluent.

(2) If one of the systems is normalizing, then (B, S) is normalizing.
(3) If one of the systems is semi-complete, then (B, 8) is semi-complete.

ProoF. Routine. O

The basic proof idea of Theorem 5.2 is illusirated in Figure 3. For each term in a
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Figure 3 The proof idea of Theorem 5.2.

conversion ¢; "« t —"* {4 we construct a normal form! and then show that all these
normal forms are identical. Hence every term ¢ has a unique normal form. The simplified
proof of the modularity of confluence for disjoint TRSs given by Klop et al. (1994) is
based on a similar idea. There, every term in a conversion t; * ¢ —* t; is first reduced
to a so-called witness and then it is shown that these witnesses have a common reduct. As
a matter of fact, their approach has been extended to composable systems. In Ohlebusch
(19945), it is shown that confluence is modular for composable systems provided that
a certain collapsing reduction relation —. is normalizing. In the case of semi-complete
constructor-sharing TRSs, we know that —. is normalizing, see Ohlebusch (19944, ).
However, it is unknown whether —. is also normalizing for semi-complete composable
TRSs. Thus we use a different approach.

THEOREM 5.2. Semi-completeness is a modular property of composable TRSs.

Proor. Let (Fi,R1) and (F2,R2) be two composable TRSs. It has tc be shown that
their combined system (F,R) is semi-complete if and only if (F1,R1) and (F2, Ry} are
semi-complete. The only-if direction is straightforward, so suppose that (F,R) is the
combined system of two semi-complete composable TRSs (F;,R;) and (Fa2,R2). We
show by induction on rank(t) = k that every term ¢ € T(F, V) has a unique norm form
w.r.t. R. In the base case, £ = 0 impliest € T(B,V). Here the claim follows from the
semi-completeness of (B,8) and Lemma 4.13. So let k¥ > 1 and consider a conversion
t; *—1 =%,

Case (i): t is top black.

Let u be any term in the conversion {; "«— 1 —* t5. With u we associate terms # and
4 which are defined as follows. If rank(u) < k, then u has a unique normal form u]
according to the induction hypothesis and we set & = & = ul. If rank/u) = k, then u
cannot be top white, hence it can be written as u = C*{{s1,...,s,}. Since rank(s;) < k,
it follows from the induction hypothesis that, for every j € {1, ..., n}, the white principal
subterm s; has a unique normal form s;}. The result of replacing each white principal

1t One of the referees has observed that a similar construction appeared in Middeldorp (19944).
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subterm with its unique normal form is denoted by @, i.e. & = C*{51],...,5n1}. Note
that u —* &. Moreover, & has a unique representation @ = C*{uy,...,un}} in which
the u;, i € {1, .., m}, are top white normal forms. Choose variables #;, ...,z not oc-
curring in @ satisfying uy, ..., %m 00 Z1,...,Z.,. Since Cb{zl, vy Zm} € T(F1,V) and

the TRS (F,,R,) is seml-comp!ete it follows that Cb{zl, ,£m } Tewrites to its unique
(fl,'R,l) normal form C*{z;,,...,z;,). We set i = Cb(u,l,...,u,-,). 1t is easy to verify
that & € NF(F,R). Observe that 4 —% 4 and hence u —* 4.

Let uy — us be a step in the conversion #; *— 1 —* 3. We show that u; = u5. If
rank(u;) < k, then rank(us) < k as well. Hence @) = uy | = ug| = d2. If rank(uy) = k,
then u; is a top black or top transparent term, i.e, u; = Cf{{sl, .-, 5n }. Here we have
the following subcases.

{a) If uy -—rf;"i tz, then up can be written as ug = C¥{(s;i,, ..., s, ). It follows that &; =
CHs1l,...,sal} and fi = C3{s;, |, .. s.,l) We obtain & —x, iz (cf. Lemma
4.14). Every s;| has a representation s;} ((ul, -y Uy, J). Hence

CHCY uls -y um ) Callad - um D) =,
Cg((j'fl((ui‘, ...,u:';“)),...,c"g((u';', ...,u:',','.!))) = ia.
Choose fresh variables z},...,2", satisfying u},...,ul, oo x},..., 2}, and note
that this implies ui!, .. .,uﬁ," oo &l .. .,a:f;,l.l . Another application of Lemma 4.14
yields
Cb{cl(mlv "13“ ;) Cb( fr::,.)} Ry
CHCH (2l vz, ) ClleY, oz, ).
Since both tem}s are trivially joinable, they reduce to the same unique (F1,R1)
normal form C*yi,...,yp), where y1,...,5 € {z},...,2%_} Hence 4 =

G(C'b(yl, L Yp)) = da wherea"'{:r: r—ru’ l7e{1,...,n},i€{1,...,mj}}.

(b) ¥ uy =%, ua or uy —+' uy, then we have u; = Cf{{sl,...,Sj,...,sn]} —
CHs1,...,85,...,80} = ug, where s; — s}. If the rewrite step is not destruc-
tive, then we conclude from s;| = s’l that #; = to and thus ©; = d,. If the
rewrite step is destructive, then s} has a representation s} C'b{{vl,...,vp}}.
Clearly,~ T =t C}b{vll,...,vp}} Furthermore, CJ {v1l,-.. vpl} can be writ-
ten as C;-’{{u'l, .o,y }, where Cj{ .., } is a black context and u are top white
terms in NF(F,R). Now we know from the induction hypothesis that s; and s;-
must have the same normal form s;|. Hence C‘fﬂu’l, A :,_a’:h s;]. Choose
fresh variables y1,...y; such that v,..., 4 o0 4,...,y,. Repeated application
o_f Lemma 4.14 yields éb{yl, LYY —R, C_'jf'(y,'1 yo- o, ¥i,) for some black context
C}'(,. ., ) as well as s;] = Cb((uu, yuf, ). Every s;}, ¢ # j, has a representation
sil = Cl{ad, ... ul,.)). We obtain the following reduction sequence.

fig = Cf{(_}'f((u},...,u:m)),..‘,é';{{u’l,...,u;}},...,Cr'f,((u'l',...,ufnu))} —%,

CHCY ul, - up B Rt g ), CRlel, - up ) = .
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: 1 i+l safird
Choose fresh variables 1, ..., m,_ﬂyl:-- YU, &1 5. .., Ty, satisfying
I i-1 i+l n 1 j+1
Uty Wt LU T, Ul oo E, L ,:chJ_l,yl,...,grq,z:’l e T
Note that this implies
1 i—-1 J+1 n 1 i—1 . i+ n
Uipeons Ut Uy W, U] U 00T, iy i Wi B B

We derive from C}’{yl,...,yq} —R, C’;'(y,-,, ooy Ui, that
CHCHat, . zh ) Oty g )y, Coal, . 20 )} =R,
CI{CI(II, - ml) C (y‘li""yil) vea Cb(zn ...,m&n)}.

Since both terms are _]oma.ble, they reduce to the same unique (F,,R,) normal
from C*{z1,...,2) where zy,...,2 € {z},...,2i ll,yl, oyt e LT
follows as above that 4; = ‘Elg.

Allin all, { = #; = {3 is the unique normal form of ¢t w.r.t. (F,R).
Case (ii): t is top white. The assertion follows from similar arguments as in case (i).

Case (ii): t is top transparent, i.e. t = C*[s1,...,s,]. We proceed in a similar way
as above. Let u be any term iIn the conversion t; *«— { —+* t;. With u we associate terms
% and @ which are defined as follows. If rank(u) < k, then « has a unique normal form
u} according to the induction hypothesis and we set & = 4 = u|. If rank(u) = k£ and u
is top black or top white, then u has a unique normal form u] according to cases (i) and
(ii). Again, we set & = @ = uj. If rank(u) = k and u is top transparent, then it can be
written as u = C*[[s1, ..., s,]. It follows from the foregoing that every s;, j € {1,...,n},
has a unique normal form s;|. The result of replacing each s; with its unique normal
form is denoted by #, i.e. % = C*[s1],...,5,]]. Note that v —* #. Moreover, @ has a
representation @ = C*{u,, ..., um} in which the u;, i & {1,...,m}, are top black or top
white normal forms w.r.t. (¥, R). Choose variables z,...,Zm not occurring in i satis-
fying uy, ..., Um 00 21,...,Zm. Since C"{a:l, s Zm} € T(B,V) and the TRS (B,§) is
semi-complete, it follows that C‘{:m, ..+, &} rewrites to its unique (B, S) normal form
Czy,,...,24) E NF(B,8) = NF(F,R)NT(B,V). We set & = C*{u;,,...,u;). It is
easy to verify that i € NF(F,R). Observe that @ —" 4 and hence u —* 4.

Let 1 — u2 be a step in the conversion t; *«— ¢ —* ;. Again, we show that &) = 5.
If rank(us) < k, then rank(us) < k as well. Hence 4, = ;| = ug| = tip. f rank(y;) = &
and u; is top black or top white, then = u3} is the unique normal form of u; w.r.t.
{F,R). Since uy — uz =" iz € NF(F,R), it follows 1) = 3. If rank{u,) = k and u, is
top transparent, then u; = C}[[s1,...,8x]. Consider the following subcases.

(a) Tf uy —* ug, then the assertion follows as in case (i) (a).

(b) If uy —° ug, then the assertion follows as in case (i) (b).

(¢) If u; —* uq, then uy = C*[s1,...,8,...,8n] and ug = C*[51,...,7j,...,5,], where
8; —* t;. Hence @4 = uy] = ugl = 3.

Again, { = {; = t5 is the unique normal form of ¢t w.r.t. R. This concludes the proof. O

It has already been mentioned that given a semi-complete TRS (F,R), we also have
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to solve the problem how to find the unique normal form of a term ¢. If (7, R) is finitely
branching, then the normal form of £ can always be obtained by traversing the reduc-
tion graph of ¢ breadth first. This is well-known from logic programming. For efficiency
reasons, however, the searching strategy of almost all Prolog implementations is depth
first. Fortunately, in the aforementioned very important special case, we can use an in-
nermost reduction strategy. A reduction step s —x ¢ is innermost if no proper subterm
of the contracted redex is itself a redex. An innermost reduction sequence consists only of
innermost reduction steps. The TRS (F,R) is innermost normalizing if, for every term
s, there is an innermost reduction sequence s —% t so that t € NF(—x). It is inner-
most terminating if there is no infinite innermost reduction sequence. The notions are
related as follows: termination = innermost termination = innermost normalization =
normalization.

PROPOSITION 5.3. The following properties are modular for composable TRSs:

(1) Local confluence.

(2) Normalization.

(3) Innermost normalization.
(4) Innermost termination.

ProoF. (1) In essence, this follows from the Critical Pair Lemma since the set of all
critical pairs of R coincides with the union of the sets of all critical pairs of R, and
R2 (cf. Middeldorp, 1990, and Ohlebusch, 19948).

(2) Every term ¢t € T(F,V) can be rewritten to normal form reducing layer by layer in
a bottom up fashion. That is, first the bottom layer of ¢ is reduced to normal form,
then the same is done with the layer above the bottom layer and so on. Eventually
the top layer is reduced to normal form; the term obtained is a normal form of ¢
(cf. Ohlebusch, 19948, and Middeldorp, 1990). Note that even if the top layer is
transparent, it can be normalized by (B, S) according to Lemma 5.1.

(3) Analogous to (2).

{(4) It is not too difficult to prove this by structural induction (see Ohlebusch, 19948;

cf. also Gramlich, 19945, Krishna Rao, 1993).
0

CoroLLARY 5.4. The combined system R of two complete composable TRSs R, and
R is semi-complete and innermost terminating.

5.2. TERMINATION

As far as termination is concerned, the first modularity results were obtained by inves-
tigating the distribution of collapsing and duplicating rules among the TRSs. Rusinow-
itch (1987) showed that termination is modular for non-collapsing and non-duplicating
disjoint TRSs, respectively. Furthermore, Middeldorp (1989) proved that termination is
preserved under disjoint union if one of the systems contains neither collapsing nor dupli-
cating rules. A simple proof for all three results can be found in Ohlebusch (1993). These

results extend, mutatis mutandis, to constructor-sharing TRSs, see Ohlebusch (1995 a)T.

t A similar proof sketch was given independently in Dershowitz (1994).
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The basic underlying idea of Ohlebusch (1993, 1995a) can be used to establish the next
result, namely the generalization of the above-mentioned results to composable TRSs.
First, we need a few prerequisites.

DEFINITION 5.5. Let (F),R;) and (F2,R2) be composable TRSs. Let j € {1,2}. The
system (F;,R;) is called layer-preserving, if for all | — r € R; we have root(r) € A;
whenever root(l) € A;.

Disjoint TRSs are layer-preserving if and onty if they are non-collapsing. Constructor-
sharing TRSs are layer-preserving if and only if they contain neither collapsing nor
constructor-lifting rules (constructor-lifting rules are rewrite rules in which the right-
hand side has a shared constructor at its root position).

LEMMA 5.6. Let s, € T(F,V) such that s —* ¢ is a non-duplicating reduction step.
Then $1(t) C Si(s). In particular, SE(2) C SE(s) and Sh{t) C Sh(s).

PROOF. According to Lemma 4.14, s = C'[sy,...,8,] =% t = C'{si,,...,s:,.) by
some rule [ — r € §. Let | = Clay,...,z:] with all variables displayed. Then » has
a representation r = C’[z;,,..., 2;;]. The multiset inclusion [z;,,...,2;,] C [x1,..., %]
holds because the rule is non-duplicating. It is easy to verify that this implies Si(¢) C
S1(s). Consequently, we also have S¥{t) C S¥(s) and S}(t) C Si(:). Now we infer
S¥(t) C S¥(s) from St(t) C Si(s). All in all, it follows SB(t) = S¥(t) U S¥() C
S¥(s) U S¥(s) = S$(s). The remaining inclusion S%(t) C S%(s) is proved analogously.
O

LEMMA 5.7. Let s —>:‘1‘: t be a non-duplicating reduction step. Then SB(t) C SE(s).
ProoF. Similar to the proof of Lemma 5.6. O

ProPoSITION 5.8. Let R; and R2 be two terminating composable TRSs such that their
combined system R does not terminate. Then either statement (i) holds or, if (i} does
not hold, then statement (ii) must hold.

(i) There is an infinite R derivation D starting from a non-top-transparent, say top
black, term such that:

(1) There is no top white term in D.
(2) ‘There are infinitely many —!° reduction steps in D.
(3) There are infinitely many —%, reduction steps in D which are destructive at level
1 or level 2. :
0

(4) There are infinitely many duplicating — 4" reduction steps in D).
(it} There is an infinite R derivation I such that:

(1) D consists solely of top transparent terms.

(2) There are infinitely many —* reduction steps in D.

{3) There are infinitely many —° reduction steps in D destructive at level 1.
(4) There are infinitely many duplicating —* reduction steps in D.
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PROOF. (i) Suppose there is an infinite R derivation D starting from a top black term.
Let the rank of a derivation D : 53 — s3 — 83 — ... be defined by rank(D) = rank(s;).
W.l.o.g., we may assume that D is of minimal rank. In other words, if rank(D) = &,
then —x is terminating on 7<* = {t € T(F,V) | rank(t) < k}. Clearly, this implies
that every white principal subterm occurring in I has a rank less than k.

(1)
(2)

3

(4)

If there was a top white term in D, then there would be an infinite rewrite derivation
starting from a term with a rank less than k — a contradiction.

Suppose that there are only finitely many —»i{‘: reduction steps in D. W.lo.g.
we may assume that D contains no —f;l‘i reduction steps at all. Thus, if sy =
C?[t1,...,tu}, then there must be an infinite R derivation starting from some
L € (sl) But this contradiets the minimality assumption on rank(D) since
rank(t;) < rank(sy).

As above we suppose that there is no — g, reduction step in I which is destructive
at level 1 or level 2. In this case we have for any reduction step s; —>f4° sj411n D
that top (s_,) —xz, top® (s,+1) using the same rule from ’R1 and for every reduction
step 8; —3, §j+1 O §; —* 5541, we have top®(s;) = top®(sj4+1). Hence we conclude
by (2) that Rl is non-terminating — a contradiction.

Let > = (—x Ub)?T. Since —x is closed under contexts, it is not too difficult
to prove that (7<*,>) is a well-founded ordering. Let (M(7 <*), >”““) denote its
well-founded multiset extension. Note that every multiset S%(s;) is an element of
M(T“’-k) As above, we may suppose that there is no duplicating — AD reduction
step in D. We distinguish between two cases:

If 55 —»?A‘: $j+1, then by Lemma 5.7 SE(s;41) C Sp(s;) because the reduction
step is non-duplicating. Clearly, this implies S%(s;) >™* SE(sj4+1).

If s; =%, sj31 or 8; —* 841, then there exists a white principal subterm
u € S¥(s;) such that 4 — v for some v, ie. 55 = C*[,...,u,...,] —
C',...,v,..-,] = 5j41. Thus we have SB(s;41) = (SB(5;)\ [u])USE(v). It fol-
lows from % — v in conjunction with v = w or v b w for any principal subterm
w € S%(v) that u > w for any w € S%(v). Therefore SE(s;) >™* SE(sj41).

We conclude from the well-foundedness of (M(T <k), >mu1} that only finitely many
—4, and — steps can occur in the derivation D. This contradicts (3).

(i) Suppose that there are no infinite rewrite derivations starting from top black or top
white terms. Let D be an infinite R derivation. Clearly, this implies that every black or
white principal subterm occurring in D is terminating. W.l.0.g., we may assume that D
is of minimal rank &.

(1)
(2)

(3)

If there was a top black or top white term in D, then there would be an infinite R
derivation starting from a top black or top white term - a contradiction.

Suppose that there are only finitely many —* reduction steps in . W.l.0.g. we may
assume that D contains no —* reduction steps at all. Thus, if 5; = C'[t4,...,t,.],
then there must be an infinite rewrite derivation starting from some top black or
top white term ¢; € S1(s;)} which is a contradiction to (1).

Suppose that there is no —? reduction step in D which is destructive at level 1. In
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this case we have for any reduction step s; —* 5541 in D that top’(s;) —* top'(s; 1)
using the same rule from & and for every s; —° sj41 or s; — 841 step we
have top'(s;) = top'(sj+1). Hence we conclude that § is non-terminating which
contradicts the termination of R;.

(4) Let T = {t € T(F,V) | rank(t) = k and root(t) € A; W Ay or rank(t) < k}. It
follows from our assumptions that —x is terminating on T'. Let > = (~5 U)"t.
Again, (T, >) is a well-founded ordering. Let (M(T), >™*!} denote its well-founded
multiset extension. Note that 51(s;) € M(T). Again, we may suppose that there
is no duplicating —* reduction step in D at all. We distinguish between two cases:

If s5; —! s;41, then by Lemma 5.6 S1(sj4+1) C Si(s;) because the reduction
step is non-duplicating. Clearly, this implies S1(s;) >™* S1(sj41).

If s; —° sj41 or s; —' sj41, then there is a black or white principal sub-
term u € Si(s;) such that u — v for some v, ie. 5; = C¥[,...,u,...,] —
C',...,v,...,] = 8j4+1. Thus we have Si(s;41) = (S1(s;)} \ [u]) U S1(v). It fol-
lows from 4 — v in conjunction with v = w or v b w for any term w € S;(v)
that u > w for any w € §;(v). Therefore S;(s;) >™*! S1(s;41).

We conclude from the well-foundedness of (M(T),>™*') that only finitely many
—° and —* steps can occur in the derivation D. This contradicts (3).

|
The following example illustrates that case (ii) of Proposition 5.8 may occur.

EXAMPLE 5.9. Let Ry = {F(z,c1,C2,¥4,D01,D2) — F(z,2,2,9,4,4), A = ¢1,A — c2}
and R = {F(z,C1,C2,¥,D1,D2) — F(z,z,2,y,4,¥),b = p1,b — D3} We have the
cyclic derivation

t = F(A,c1,C3,b,D1,D2) = F(A, A A, b, bb) Su, F(A,C1,00,b,0,b) 3, L.

THEOREM 5.10. Let R and R» be two terminating composable TRSs. Their combined
gystem R = R; U R2 is terminating provided that one of the following conditions is
satisfied:

(1) Both R, and R4 are layer-preserving.
(2) Both R; and Ry are non-duplicating.
(3) One of the systems is both layer-preserving and non-duplicating.

ProoF. (1) If both systemns are layer-preserving, then there can be no rewrite step
which is destructive at level 1 or level 2; so neither case (i) (3) ncr case (ii) (3) is
posstble.

(2) If both systems are non-duplicating, then neither case (i) (4) nor case (ii) (4) is
possible.

(3) Let R, be layer-preserving and non-duplicating. The existence of an infinite deriva-
tion starting from a top black term is ruled out by (i) (4). Also, no infinite derivation
starting from a top white term is possible because of {the adjusted version of) case
(i) (3). Thus, if R were not terminating, then there would be an irfinite derivation
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starting from a top transparent term. However, this possibility is excluded by (ii)

(4).
a

An equivalent formulation of Theorem 5.10 reads as follows: If Ry and R4 are two ter-
minating composable TRSs such that their combined system R UR4 is non-terminating,
then R; is duplicating and R is not layer-preserving or vice versa.

5.3. COMPLETENESS

The next theorem is due to Gramlich (19944). His original proof was, however, rather
complicated. In the meantime, several authors have independently given simpler proofs
for this theorem (which resemble one another), see Dershowitz and Hoot (1994), Middel-
dorp (19945) and Ohlebusch (19943). Thereby, a TRS R is called an overlay system if
every critical pair between rules of R is obtained by overlapping left-hand sides of rules
at root positions.

THEOREM 5.11. An overlay system is complete if and only if it is locally confluent and
innermost terminating.

CoroLLARY 5.12. Completeness is modular for composable overlay systems.
Proor. Immediate consequence of Theorem 5.11 and Proposition 5.3. O

The main result of Middeldorp and Toyama (1993) stating that completeness is a
modular property of composable constructor systems follows from Corollary 5.12 because
a constructor system is an overlay system and the combined system of two composable
constructor systems is again a constructor system. Also, modularity of termination (or
equivalently completeness) for non-overlapping TRSs is a consequence of Corollary 5.12
because those systems are locally confluent overlay systems and the corbined system
of two non-overlapping composable systems is non-overlapping. The same is true for
orthogonal systems which are (left-linear and) non-overlapping.

5.4, THE SIMPLIFYING PROPERTY

A TRS is called simplifying if its rewrite relation is contained in some simplification
ordering. This property is important because every finite simplifying TRS is terminating
(cf. Dershowitz, 1982) and virtually all termination proofs are based on this fact. Kurihara
and Ohuchi (1992) have proved that the simplifying property is modular for constructor-
sharing TRSs (please note that they used the phrase “simply terminating” instead of
“simplifying” ). We will next generalize their result to composable systems by combining
the techniques of Kurihara and Ohuchi (1992) and Gramlich (1994a)!. Again we need
some preparatory lemmata.

t This generalization has been claimed independently by Krishna Rao (1994), it is stated there without
proof.
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DErFINITION 5.13. Let F be a signature. The TRS F°™7 consists of all rewite rules

f(El,...,ﬂ?n) '—>$j,

where f € F is a function symbol of arity n > 1 and j € {1,...,n}.
LEmMMA 5.14. A TRS (F,R) is simplifying if and only if -3 .., is irreflexive.
PRroOF. See Kurihara and Ohuchi (1992). O

LEMMaA 5.15. Let (F1,R1) and (F,R2) be composable TRSs. If one of them is simpli-
fying, then (B, §) is simplifying.

ProOOF. Let > be a simplification ordering on T(F;,V), j € {1,2}, such that —z, C >.
The restriction > |7 y) of > to T(B,V) is a simplification ordering and the inclusion
—s |7sv) € >|7(8,v) holds. This means that (B, 8} is simplifying. Cl

THEOREM 5.16. The simplifying property is a modular property of cormposable TRSs.

ProoF. Let (Fi,R1) and (F3,R;) be composable TRSs and let (F,R) be their com-
bined system. It has to be proved that (¥,R) is simplifying if and only if (F;,R1) and
(Fa,R2) are simplifying.

“only-if”: Let (7 (F,V),>) be a simplification ordering with —x C >. It is not too
difficult to prove that (7 (¥3,V), >|7(%,v}) is a simplification ordering and that further-
more —R; lT(};,v) c> |T(;;_,v). In other words, (F;,R;) is simplifying.

“if”: First of all, note that Ry U F;"? and R, U F,"Y are composable systems. Ac-
cording to Lemma 5.14, it must be shown that —} .., is irreflexive. Assuming that
— 2} UFers is not irreflexive, we will derive a contradiction. So suppose that there is a
cyclic derivation

D: t=t] sRuFers ... —RuFers By =1,
n> 1, of terms ¢; € T(F,V), j € {1,...,n}. W.Lo.g. we may assume that z is the only
variable occurring in D). We may further assume that rank(t) = k is minimal, i.e., there

is no cyclic derivation s = 81 —RyFers ... SRuFers Sm =8, m > 1, with rank(s) < k.
Consequently, —} .., is irreflexive on 7<*. Note that k¥ > 1 by Lemma 5.15.

Case (i): t is top black. Obviously, every term in [ must have rank k. Therefore, each
term in D is either top black or top transparent. Let
Ip = {s € T(F,{z}) | s is a subterm of a term occurring in D}.

Note that 7p is finite. Let Cons be a new binary function symbol not occurring in F and
let C¢ = {Cons(z,y) — 2, Cons(z,y) — y}. The proof idea is to define a transformation
function ®f : Tp — T(F; W {Cons}, {2}) such that

(D) : B7(1) = 87 (1) —fp,urernuee - “irawurernec, B () = 87 ()

is a non-empty cyclic derivation of terms from 7(F; W {Cons}, {z}). This contradicts

- . + + . - .
the irreflexivity of —RLUFIT because one can prove that —(RiuFTuee 18 irreflexive
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on 7(F; W {Cons}, {z}) if and only if —>7‘Elu_,_.:.-g is irreflexive on 7(Fy, {z}). In order

to define P we need the following definitions. The inner subterm occurrences of I} are
those terms which are subterms of a white principal subterm occurring in I}. The others
are called oufer subterm occurrences of D. Let OP denote the set of all cuter subterm
occurrences of D. Furthermore, let 5% (D) denote the set of all white principal subterms
appearing in D. Observe that both sets are finite and that every element of Sp(D) has a
rank less than k. Moreover, for s € S35 (D), we define AP(s) = {u € OP | s =% rars ul-
It is important to notice that AP (s) is finite for any s € S¥(D). Let > be a total ordering
on 7(F W {Cons}, {z}). Let

o CHdP(s1),...,90 (5m)} ifs=C"s1,...,5m}
Qb (s) =

Sort({®@P(u) | u € AP(s)}) if root(s) € Aa,

where Sort({t1,...,tn}) = {tz(1), - -, tx(n)) Such that t,;;y>tej41) for 1 < § < n. Here
{tx1),- - ,t,(,b)) stands for the term Cons(tr(1), Cons(tx(a), - - ., Cons(tr(n), 2) - - .)). Note
that Sort({®7 (u) | u € AP(s)}) = z if root(s) € Az and AP(s) = 0. It is easy to verify
that the transformation function &7 is well-defined.

We show next that t; —gryFers 141 implies ®P(¢;) _’Eﬂlu}'{‘")uce &L (t;41), using

— as a shorthand for —pyrers = —(g uFersy U =(r,urere). There are the following
cases.

(a) If ¢; _":i‘: tj41 by some rewrite rule | — r, then we have I — r € Ry UF"Y,

t; = CblIsl, . .,Sm]], and tiy1 = Cb((s,-l yeees S.‘,». Applying @?, we obtain ‘I’}?(tj) =
Ct@P(s1), ..., PP (sm)] and @2 (t;41) = CYH®P (i), ..., BD(si,)). It follows from
51,---,8m o ®P(s1),..., 8P (5m) that the rule { — r that reduced ¢; to ¢;41 also
reduces ®f (1;) to & (t;41) (cf. Lemma 4.14).

(b) K t; =% tig1 or t; —* tj11, then we have t; = C[s1,...,5,...,5n,] as well
a8 tj41 = C¥s1,...,8),...,5mn] for some [ € {1,...,m} and some term 81, where
st — s}. Clearly, ®2(t;) = C*(®P(s1),...,®P(sm)]. We consider the following
subcases.

(bl) If root(s]) € As, then ;1 has a representation t;47 = C®[s1,...,5},...,5m]
and ®P(t;11) = CP[OP(s1),...,®P(s),... 8P (sm)]. Therefore, it is sufficent
to show &P (s;) Ry UFT e ®P(s}). Now it follows from AP (s}) C AP (s1)
that

O (s1) = Sort({®7 (u) | v € AP(s1)})
= (u1,. .., tn}
—*EE (u,-,, ‘e .,U,’F)
= Sort({®7 (u) | u € AP (s)})
= &P (s),

where u;,,...,u;, is a subsequence of uy, ..., u,.
(b2) If root(s}) ¢ As, then s} = C%u;,...,u,} and we have ®P(t;41) =

C:"’{‘I)bp(sl), . .,@f(s;._l), P (w1),. .., 9P (up), ®P (5141)s- -, @2 (5m)}, where
C,....} =C,...,C%,...},...,]. Now it is a consequence of st € AP (s))
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that &P (s}) oceurs in the term @2 (s;) and hence

P (s1) = So "t({q’f(ﬂ) | u€ AP (s1)})
={... ‘I’b (81)s-- 9
+ q’b (s7)
= C" {®P (uy),.. fbf(up)}.

Allin all, ®P(t;) —5, ®P(t;41) which concludes case (b).

Since there must be at least one —* or —%, step in D, we obtain a non-empty cyclic
derivation @2 (D) of terms from T (F; & {Cons}, {z}). This is a contradiction to the fact
that R, is simplifying, so case (i) is proved.

Case (ii}): t is top white. Here the above proof applies with appropriate notational
changes.

Case (iii): t is top transparent. If one of the terms in
D  t= t]_ —FRUFsrg ... —FRYFarg t,’l —RUFary ... —FRUFary tﬂ = t,

is top black, say t;, then there exists a non-empty cyclic reduction derivation
tj —RuFere ... —tRuxers t; starting from the top black term ¢; and the assertion fol-
lows from case (i). So we may assume that every term in D is top transparent. We use
the same proof idea as in (i). Since the proofs are very much alike, we only sketch the
construction. Now the inner sublerm occurrences of D are those terms which are sub-
terms of a black or white principal subterm occurring in D. The others are called ouler
subterm occurrences of D. Let OF denote the set of all outer subterm occurrences of D.
Furthermore, let Sp(D) denote the set of all black or white principal subterms appearing
in D. Moreover, for s € Sp(D), define AP(s) = {u € OP | s =% rurs u}. Let

b CH®P(s1),...,2P(sm)} fs=C"s1,...,5m}
&, (s) =
Sort({®P(u) | u € AP(s)}) if root(s) € A1 ¥ Az

where Sort is defined as in case (i). Again, note that Sort({®F(u) | u € AP(s)}) = 2
if root(s) € A; W Az and AP(s) = 0. It follows from similar arguments as above that
tj —rurers tj41 implies @P(t;) =5 parayue, PF (tj+1)- We just have to consider the
following cases (using — as a shorthand for —xryrers )

a) If t; —' t;41, then show ®P(t;) —sugers ®P(¢;41) using arguments similar to
J 7+ . 1 \5 t \fi+
those given in case (i) (a).

(b) If t; — ;41 is not a transparent rewrite step, then t; = C'[s1,...,8,...,8m]
and ¢j41 = C*s1,...,8},...,8n]) for some [ € {1,...,m} and some term s}, where
s — 8). Now check whether root(s}) € A, W .4, holds. If so, then case (i) (bl)
applies, if not, then case (i) (b2) applies, making only notational changes. Thus

P (t;) =&, B (8j41)-

Since there must be at least one —* step in D), we obtain a non-empty cyclic derivation
&P (D) of terms from T(Bw {Cons}, {z}). This is a contradiction to the fact that (B, S)
is simplifying according to Lemma 5.15. O
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6. Conditional term rewriting systems1L

When dealing with the combination R of composable TRSs R; and R2, we have
tacitly used the fundamental property that s —x ¢ implies s —g, t or 8§ —x, t. It has
been stressed by Middeldorp (1990, 1993) that this basic property does not hold true
for CTRSs. Consequently, it is much more subtle to prove the modularity of a certain
property for CTRSs.

If (F1,R1) and (F3,Ry) are composable or constructor-sharing CTRSs, then (F, R;)
and (F,R;) are also CTRSs, where F = F; U F3. In order to avoid misunderstandings,
we write =g, for the rewrite relation associated with (5, R;} and —x, for the rewrite
relation associated with (F,R;), where i € {1,2}. I 5,t € T7(F;,V) and s =g, ¢, then
we clearly have s —g, {. A priori, it is not clear at all whether the converse is also
true. For, if s —g, t, then there exists a rewrite rule l — r < sy [ #1,...,8, | tn in Ry,
a substitution ¢ : V — T(F, V), and a context C[] such that s = C[ls],t = C[ro], and
50 |g, tje forall j € {1,...,n}. And ¢ : V — T(F,V) may substitute mixed terms for
extra~variables occurring in the conditions.

6.1. SEMI-COMPLETENESS

Our next goal is to show that semi-completeness is modular for constructor-sharing
CTRSs. So in this subsection we tacitly assume that (F;,R;) and (F,,R3) are given
constructor-sharing CTRSs. We use the structure and the ideas of the proof showing
that confluence is modular for disjoint CTRSs, see Middeldorp (1990, 1993). The basic
proof idea is to construct two rewrite relations —y and —3 on T(F,V) such that
their union is semi-complete, and reduction in the combined system (F,R) corresponds
to joinability with respect to —; 3 = —4 U —; . From these two properties and the
equality NF(F,R) = NF(—1,3), the modularity of semi-completeness for CTRSs with
shared constructors follows.

DEFINITION 6.1. The rewrite relation —; is defined by: s -+, t if there exists a rewrite
rulel = r <3 | t1,...,8, | tnin Ry, asubstitution o : V — 7(F, V), and a context C[]
such that s = C[lg],t = C[re], and s;0 |{ {;0 for j € {1,...,n}. Here the superscript
o in sjo |] tjo means that s;¢ and t;o are joinable using only oufer —; reduction
steps. The relation -+ is defined analogously. The union of —; and —s is denoted
by —*1,2 .

ExAMPLE 6.2. Let Ry = {F(z,¢} — G(z) < z | ¢} and R; = {a = ¢}. We have
F(a,c) = G(a) but neither F(a,c) —; G(a) nor F(a,c} —3 G(a). However, the terms
are joinable with respect to —1 3 : F(a,c) —3 F(c,¢) —1 G(¢) —2 G(a).

The simple proofs of the next two lemmata are omitted.

LEMMA 6.3. If 5§ — 9 t, then s —5 t.

LEMMA 6.4. Let s be a black term and let ¢ be a top white substitution such that
so —31 1. Then there is a black term u such that ¢t = uo.

t Parts of the material presented in this section originate from Ohlebusch (1994c).
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LEmMMA 6.5. Let s, be black terms and let o be a top white substituticn with s —¢ to.
If T is a substitution with & oc 7, then st —9¢ 7.

PrROOF. The lemma is proved by induction on the depth of so —§ to. The case of zero
depth is straightforward. Let the depth of s —9 10 equal d+1, d > 0. There is a context
C[], a substitution p: V — T(F,V), and arewriterule ] — r <51 | #),...,8, } tn in R,
such that so = C[lp], te = Clrp| and sjp | t;p is of depth < d for every j € {1,...,n}.
According to Proposition 4.18, p has a decomposition p = p3 o p; such that p; is black,
p2 is top white, and pa o« ¢. We define a substitution p’ by p'(z) = 7(y) for every
z € Dom(pz) and y € Dom(c) satisfying p2(z) = o(y). p' is well-defined because o o 7.
It follows from p; o € and € oc ¢’ that pp  p'. By Lemma 6.4, for any j € {1,...,n}, we
may write

p2(p1(s;)) = p2(u1) =1 ... =7 pa(ue} = pa(wr) T ... 1= pa(v1) = pa(p1(2;))

for some black terms uj,...,ug,v1,...,v. Now repeated application of the induction
hypothesis yields

Ppi(s5)) = pl(u1) =1 ... =1 p'(ue) = p'(w) = ... = p'(m) = p'(p1(;))

Thus p'(p1(1)) —% p'(p1(r)). Let C[] be the context obtained from C[] by replacing every
white principal subterm which must be of the form &(z) for some variable z € Dom(¢)
by the corresponding 7(z). (This is a slight abuse of notation because C[ ] contains in
general more that one occurrence of 0O.) It is fairly simple to verify that s7 = C[p'(p1(1))]
and tr = C[p'(p1(r))]. Hence st —¢ ¢r. O :

LEMMA 6.6. The restriction of — to 7(F1,V) x T(F1,V) and =, coincide.

ProoF. “2" Trivial.

“C” Let s,t € T(Fi,V) with s —,; t. In order to show that s =5, t, we proceed
by induction on the depth of s —¢ t. The case of zero depth is straightforward. So
suppose that the depth of s —{ ¢ equals d 4+ 1, d > 0. Then there exists a rewrite rule
l—r<silty,... 8, | ts in Ry, a substitution ¢ : V¥ — T(F,V), and a context C[ ]
such that s = C[lo],t = C[ro], and sjo |} tjo with depth < d for j € {1,...,n}.
According to Proposition 4.18, ¢ can be decomposed into o3 o o1 such that oy is black,
oy is top white, and o2 « ¢. Induction on the number of rewrite steps in s;o |7 tjo
in combination with Lemma 6.5 yields ¢1(s;) | o1(¢;) for j € {1,...,n}. Since every
term in the conversion ¢1(s;) 1] o1(1;) is black, we obtain ¢1(s;) Yr, 1(¢;) by repeated
application of the induction hypothesis. Consequently, we have ¢1(I) =g, o1(r). Now
s =g, t follows from s = C[lo] = Clle;] and ¢t = C[re] = C[re;] because s and ¢ are
black. O

ProprosITION 6.7. If (F1,R1) and (F3, R3) are semi-complete, then the relation — 2

is semi-complete as well.

ProoF. We define two unconditional TRSs (F,8;) and {(F3, 82) by
Si={u—v|uveT(F,V),root(u) € C,NC; and u —; v}.

First of all note that (F1, 81) and (Fz, 82) are constructor-sharing TRSs. By Lemma 6.6,
the restriction of —; to 7(%,V) x T(A,V) and =, coincide. It is easy to show that
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—s; and the restriction of —; to 7(%,V) x T(A,V) are also the same. Hence —g,
and =g, coincide on T (K, V) x T (%, V). In particular, the TRS (F;, &;) is semi-complete
because (F;,R;) is semi-complete. It follows from Thecrem 5.2 that (F, U Fy, S;U Sa) 1s
also semi-complete.

We next show that the relations —5, and —; are also the same on T (F, V)xT (F, V).
“C” Straightforward.
“D" Without loss of generality, let i = 1. If § —; ¢, then there exist a rewrite rule
I—r<s|t,...,8: | ta in Ry, a substitution o : V — T(F,V), and a context C[ ]
such that s = C[lo],t = C[ro], and s;o |] t;0 for j € {1,...,n}. Note that particularly
le — ro. According to Proposition 4.18, ¢ has a decomposition ¢ = o3 o oy such that
o1 18 black, a3 is top white, and ¢z o« €. Now we apply Lemma 6.5: #1({) and o1(r) are
black terms and o5 is a top white substitution with oa(a1(f)) —; o2(o1(r)) and € is a
substitution with o3 o €. Consequently, we obtain o1({) = (0, (1)) —1 €(o1(r)) = o1(r).
Since o4(!) and ay(r) are black terms and root(a: (1)) = root(l) € C; NCy, it follows that
o1(l) — o1(r) is a rewrite rule of S1. Thus s = Cloa(o1(1))] —s, Cloze1(r))] =1t.

With the above results, it further follows from

—5uS; = s, J =8, = — U —3 = —1.2

that —; 5 is semi-complete on T(F,V) x T(F, V). O

Note that the above approach fails for composable CTRSs because (the accordingly
defined) sets §; and S» are in general not composable.

DEFINITION 6.8. If — 3 is semi-complete, then every term t has a unique normal form
w.r.t. — 2. In the sequel, this normal form will be denoted by ¢—. Furthermore, for any
substitution ¢, 0~ denotes the substitution {z — o(z)™ | z € Dom(o)}.

LEMMA 6.9. Let —; 2 be semi-complete. If s and ¢ are black terms and o is a top white
—1,2 normalized substitution such that s |, ; to, then so |7 to.

Proor. We show that soc —i 9 u implies s¢ —§ u. Since v = wvo for some black
term v by Lemma 6.4, the lemma then follows by a straightforward induction on the
length of the valley. In order to prove the claim, we use induction on the depth of
s¢ —1,2 4. The case of zero depth is trivial. So suppose that the depth of so —; 5 u
equals d + 1, d > 0. Since o is a top white — ; normalized substitution, there exists
a rewrite rule I > r <=5 | t1,...,8, | {5 in Ry, a substitution p: V — T(F,V), and
a context C[] such that so = C[lp], v = C[rp], and s;p l1,2 tjp with depth < d for
j € {l1,...,n}. By Proposition 4.18, p can be decomposed into py o p; such that p;
18 black, p; is top white, and p; o €. Note that for every z € Dom(ps) N Var(ip:),
we have pa(z) € NF(—1,2). Nevertheless, we do not have ps(z) € NF(—13) in gen-
eral because of possible extra variables. Since - ; is semi-complete, p; —q,z fia
Thus p3*(p1(s;)) 12— sip lia tip —1 3 p7 (P1(t;)). The confluence of —, 5 guaran-
tees p3"(p1(s;)) 1,2 p2°(p1(t;)) for every j € {1,...,n}. By Proposition 4.18, p3* can be
decomposed into p4 o p3 such that p3 is black, p4 is top white, and py o e. Evidently,
p3(p1(s;)), pa(p1(2;)) are black terms and py is a top white —; » normalized substitution.
Hence the induction hypothesis yields ps(pa(p1(5;))) |7 pa(p3(pi(2;))). In other words,
p7 (p1(s;)) 11 #7°(p1(t;)), and we obtain as a consequence that p3* (p(1)) =% p3* (p1(r))
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and Clp3" (p1(1))] =1 Clpz (p1(r))]. Clearly, so = Clpz’ (p1(1))] and u = Clo7" (p1(r))]
because pz(z) € NF(—y,32) for every z € Dom(pa) N Var(lp,). This proves the claim.

LEMMA 6.10. Let —y o be semi-complete and let 81,...,8,,%1,...,1, be black terms. If
o is a substitution with s;0 |, 5 t;0 for every j € {1,...,n}, then ¢™(s;) |] 07 (2;) for
every j € {1,...,n}.

PROOF. We have 07 (s;) 12— 5;0 |1 2 tj0 =1 2 07 (¢;). The confluence of -+, 2 implies
07 (s;) 1,2 07 (t;). Proposition 4.18 yields a decomposition of ¢~ into 6301 such that
oy is black and o, is top white. Evidently, o1(s;), ¢1(t;) are black terms and o3 is a
top white — 5 normalized substitution. According to Lemma 6.9, we eventually derive

o7 (s5) = o2(01(s5)) 1] o2(01(#;)) = 0~ (t;). O

ProrosITION 6.11. If {F;,R;) and (F2,R:) are semi-complete and s —g ¢, then
shigt.

Proor. We proceed by induction on the depth of s — t. The case of zero depth is
trivial. So suppose that the depth of 8 — ¢ equals d+ 1, d > 0. Then there is a context
C[ ], a substitution ¢ : ¥ — T(F,V), and a rewrite rule ! — r < s; | £1,...,8, | I,
in R such that s = C[lo}, t = C[ro], and s;o | t;jo is of depth less than or equal to d
for every 7 € {1,...,n}. Figure 4 depicts how the induction hypothesis and confluence
of —1,2 yield 550 |, 5 tjo for every j € {1,...,n} (where (1) signals an application of
the induction hypothesis and (2) stands for an application of Proposition 6.7}). W.l.o.g.
we may assume that the applied rewrite rule stems from R;. By Lemma 6.10, we have
o (s5) 1] 07~ (t;) for j € {1,...,n} and thus ¢ ({) —1 67 (r). Finally, we obtain s |, , 1
from s = Cllg] -1 , Clo~ ()] =1 Cle™(r)] 1 o+ Clra] =¢. U

o (t;)

”/m A VA

@

———e e =

Figure 4 The proof idea of Proposition 6.11.

PROPOSITION 6.12. If (F1,R;) and (F3,R;) are semi-complete, then the relations <3
and |, coincide.
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Proor. This is a consequence of Lemma 6.3 and Propositions 6.11 and 6.7. O
LEMMaA 6.13. If (F1,R,) and (F2,R2) are semi-complete, then

(1) NF(F,R) = NF(F,R) N NF(F,Ry).
(2) NF(F,R) = NF(— ).

Proor. We will only prove the first statement, because the proof of the second statement
is essentially the same.

“C” Trivial,

“OPUNF(F,RI)NNF(F,Ry) € NF(F,R), then there is a term s with s ¢ NF(F, R)
and s € NF(F,R)NNF(F,R2). W.lo.g. we may assume that s is of minimal size (i.e.,
|s| is minimal). Hence s is a redex and every proper subterm of s is irreducible by —z.
Therefore, there exists a rewrite rule l = r < s; | t1,...,5, | t, in R and a substitution
o :V — T(F,V) such that s = lo,t = ro, and s;0 g tjo for all j € {1,...,n}.
Note that for every variable z € Dom(o) N Var(l), we have ¢(z) € NF(F,R) because
o{x) is a proper subterm of s. W.l.o.g. we may further assume that the applied rewrite
rule originates from R ;. By Proposition 6.12, s;0 |12 tjo which, in conjunction with
Lemma 6.10, yields 07 (s;) |] o7 (¢;). It follows s = a(l) = o™ (I) —{ 0™ (r) because
o(z) = 0™ (z) for every & € Var(l). This means that s € NF(F,R;), a contradiction. [J

THEOREM 6.14. Semi-completeness is modular for constructor-sharing CTRSs.

Proor. Let (F1,R1) and (Fz,R2) be CTRSs with shared constructors. We have to
show that their combined system (F,R) is semi-complete if and only if both (F,,R1)
and (Fa,R3) are semi-complete. In order to show the if case, we consider a conversion
i1 R+ s —p 2. According to Proposition 6.12 we have £, |4 5 t2. Since — o is semi-
complete, ¢; —1 ; £3 and ¢ —7 ; {3, where {3 is the unique normal form of s, t;, and
t2. Now Lemma 6.3 implies ¢; —% t3 R t2. Thus (F,R) is confluent. It remains to
show normalization of —x. Let s € T(F,V}. Since —13 is normalizing, s —] , ¢ for
some t € NF(—;32). By Lemma 6.3, s —% t. It follows from Lemma 6.13 (2) that
t € NF(F,R). Hence (F,R) is also normalizing. This all proves that (F,R) is semi-
complete. The only-if case follows straightforwardly from Lemma 6.15. O

LEMMaA 6.15. Let (F,R) be the combined system of two constructor-sharing CTRSs
(F1,R1) and (Fa, R2) such that (F,R) is semi-complete. If s is a black term and s —x ¢,
then s =g, t.

Proor. We show the following stronger claim, where the rewrite relation associated with
(F, U {0}, R,;) is also denoted by =%,.

Claim: If 5 is a black term and o is a top white —g normalized substitution such that
s¢ —g to, then so® =g, to¥, where 0% = {z — O | £ € Dom(a)}.

Since R is semi-complete, every term ¢ has a unique normal form ¢] w.r.t. ®. Further-
more, for any substitution ¢, let o] denote the substitution {z — o(2}] | z € Dom(e)}.
The claim is proved by induction on the depth of s¢ — ter. The case of zero depth is
straightforward. Let the depth of so — te equal d+1, d > 0. There is a context C[], asub-
stitution p: V — T(F,V), and arewriterulel —» r < sy | f1,...,5, | t, in R, such that
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so = C[lp],te = C[rp] and s;p | t;p is of depth < d for every j € {1,...,n}. According to
Proposition 4.18, p can be decomposed into ppop; such that p; is black and ps is top white.
Note that for every variable z € Dom(pz) N Var(lp,), we have pa(z) € NF(—). Never-
theless, we do not have pa(z) € NF(—) in general because of possible extra variables.
Since — is semi-complete, pa —* pg]. Thus pal(p1(s;)) *— sjp | tjp —=* pal(p1(t;)).
The confluence of — guarantees pa|(p1(s;)) | p2l(p1(t;)) for every j € {1,...,n}.
By Proposition 4.18, ps| can be decomposed into py o p3 such that pz is black and
pa is top white. Evidently, pa(p1(s;)) and pa(p1(¢;)) are black terms and p4 is a
top white — normalized substitution. Repeated application of the induction hypoth-
esis yields p§(pa(p1(s;))) Ur, p§F(pa{pi(t;))). We obtain as a consequence that
pa(pa(p1(D)) ==, p5(pa(pi(r))). Clearly, so = Clp2i(p1(D)] and toe = Clpal{p1(r))]
because po(z) € NF(—) for every z € Dom(pz) N Var(lpt). Let C[ ] be the context
obtained from C[ ] by replacing every white principal subterm which must be of the
form o(x) for some variable * € Dom(c) with O. It is fairly simple to verify that
5% = C[pS(pa{p1(1)))] and te® = C[p2(pal(p1(r)))]. Thus 562 =g, tc” and we are
done. O

6.2. TERMINATION AND COMPLETENESS

Middeldorp (1990, 1993) conjectured that the disjoint union of two terminating join
CTRSs is terminating if one of them contains neither collapsing nor duplicating rules and
the other is confluent. The next example disproves this conjecture. The function symbols
have been chosen in resemblance to other known counterexamples.

EXAMPLE 6.16. Let

0 1
R1={¢\ e F(z)—> F(z)«z | A,z | B
A 2 B

and

g(z,v9,9)—=
Ro =
2 {y(y,y,r)—w-

Clearly, R4 is non-collapsing, non-duplicating, and terminating (there is no t € T(F1,V)
which rewrites to both A and B). Note that R, is not confluent. Moreover, the CTRS
R2 is evidently terminating and confluent. However, their disjoint union R = R1 W R,
is not terminating. Since

B gp— 1+~ ¢(0,0,1) -z ¢(0,2,1) =z ¢(0,2,2) -z 0 —+x A,
there is the cyclic reduction "sequence” F(g(0,0,1)) —= F(g(0,0,1)).

Note that the above example also shows (the known fact) that termination is not
modular for non-duplicating disjoint CTRSs. Middeldorp (1990, 1993) has given sufficient
conditions for the modularity of termination. It will next be shown that his results also
hold, mutatis mutandis, in the presence of shared constructors. We emphasize that our
proof is considerably simpler than that of Middeldorp (1990, 1993).

As in the previous subsection, let (F;,R1) and (Fa,R2) be constructor-sharing join
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CTRSs. It is not difficult to verify that the CTRS (F U {O},R;) is terminating if and
only if (F;, R;) is terminating. Again, we also denote the rewrite relation associated with
(F: u{O},R:) by =, (by abuse of notation).

ProPosSITION 6.17. Let (F2,R2) be layer-preserving.

(1) If s »° ¢ by some rule from R, then f.opb(s) >R, top"(t)
(2) H s —° ¢ by some rule from R» or s —' ¢, then topt(s) = top'(#).

Proor. We proceed by induction on the depth of s — ¢. The case of zero depth is
straightforward. So suppose that the depth of s — ¢ equals d+ 1, d > 0. The induction
hypothesis covers the statement that w — v implies top®(u) =% top’(v) whenever u — v
is of depth less than or equal to d.

(1) If s —° t by some rule from Ry, then s = C*{ui,...,up} and t = C*{{u;,,. . ., ui ),
where i1,...,4; € {1,...,p}. Moreover, there is a context C[ ], a substitution
o and a rewrite rule I — r <« 5, | 41,...,8, | tn € Ry such that s = C[lo],
t = C[ro] and s;0 | tj0 is of depth less than or equal to d for every j € {1,...,n}.
We first show that fop®(sjo) Yg, top’(tjo) for every j € {1,...,n}. Fix j.
Let w be the common reduct of s;o and ¢;o. Clearly, it suffices to show that
topb(s;0) =%, top®(w) and top®(t;¢) =%, top’(w). W.lo.g. we consider only the
former claim. The claim is proved by induction on the length of s;0 —* w. The
case of zero length is trivial, so let s;0 — v —' w with | > 0. The induction
hypothesis (on {) yields top®(v) =% top’(w). Furthermore, the induction hypoth-
esis (on d) yields top®(s; o) >R, top*(v). This proves the claim. Thus top®(w) is a
common reduct of top®(s;0) and top*(t;0) w.r.t. =g,. According to Proposition
4.18, o = o3 0 01, where o is a black substitution and a5 i1s top white. Recall that

% denotes the substitution {:c —0O|zc€ ’Dom(a'g)} It is clear that top®(s;o) =
02 2 (01(s;)) and top*(t;0) = 05 (01(t;)). Hence 05 (01(s;)) Ur, 05 (o1(2;)) and thus
o2(a1(I)) =r, 09(z1(r)). Let C ] be the context obtained from C[] by replacing
all white principal subterms with 0. Now (1) follows from top*(s) = Cle? (e1()]
and top(1) = Clo9(e1(r)]. ,

(2) Let s —° { by some rule from Ry or s —* £. Since Rz is layer-preserving, we may
write 5 = C*((uy, ..., 45, .., up) and t = C¥{uy, ..., v}, ..., up)), where uj — uj.
Hence top*(s) = top'(t).

a

In the preceding proposition, the assumption that (F;, R4) has to be layer-preserving
cannot be dropped, as is witnessed by the next example (¢f. Middeldorp, 1990, 1993).

EXAMPLE 6.18. Let Ry = {F(2) — G(¢) « z | A} and Ry = {h{z) — z}. Then
F(h(A)) —° G(h(A)) by the only rule of R; but top’(F(h(a)))) = F(Q) is a normal
form w.r.t. =x,.

Our next goal is to show an analogous statement to Proposition 6.17 (1) without the
layer-preservingness requirement on (F,Ra) but under the additional assumption that
—1,2 18 semi-complete.
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DEFINITION 6.19. Let the rewrite relation — 7 be semi-complete. For every term ¢ =
C{t1,...,tm)), we define top?, (t) by:

top?, (t) = top® (CH{t7, ..., t))

In other words, first the white principal subterms in ¢ are replaced with their unique
— 1,2 normal form, and then the topmost black homogeneous part of the term obtained
is taken.

LEMMA 6.20. Let — o be semi-complete. If s,{ are black terms and ¢ is a top white
substitution such that so —° to by some rule from Ry, then ¢ (s) —§ ™ (2).

Proo¥r. There is a context C[ ], a substitution p : V — T(F,V) and a rewrite
rule I — r & s | t1,...,8n | t, € Ry such that so¢ = Clip], te = C[rp)
and s;p | tjp for j € {l,...,n}. Fix j. From Proposition 6.12 we know that
5jp ly2 tjp. According to Proposition 4.18, p can be decomposed iato p2 o p1 such
that p; is black and py is top white. Since —; 2 is semi-complete, it follows as in
the proof of Lemma 6.9 that p7"(p1(s;)) 1y 2 £3 (p1(t;)). Applying Lemma 6.10 to
the black terms pi(s1),...,21(8n),p1(81),-..,;1{tsn) and the substitution p;" yields
o7 (01(53)) 13 97 (pr (). Therefore, 5~ (m (D) —3 p3 (s1(r)). Let CT ] be the con-
text obtained from C[ ] by replacing all white principal subterms with their respective
—1,2 normal form. It is clear that o™ (s) = Clp3" (p1(1))] and o~ (t) = Clp3" (p1(r))]-
Thus 6~ (s) =¢ ¢ (t). O

PrROPOSITION 6.21. Let —; » be semi-complete. If s —° ¢ by some rule from R;, then
topt. (s) =, top. ).

ProoF. We may write s = C*{s1,...,s,} and t = Ct{si,,...,8i, ) for some black
contexts C*{,...,}, C(,...,), and i1,...,im € {,...,n}. Let z1,...,2, be distinct
fresh variables and define ¢ = {z; — s; | 1 < j < n}, 8 = C{zy,...,2,}, and
t' = C%z;,,...,2;.). Since ¢ is top white, we obtain ¢~ (s') —¢ o~ (t') by Lemma

6.20. According to Proposition 4.18, ¢~ has a decomposition ¢~ = ¢3 o ¢y, Where o,
is black and o3 is top white. It follows from Lemma 6.5 that o2 (o1(s')) —¢ o5 (o1(t))
because o2 o« o5 . To verify that o5 (e)(s")) ==, 05 (01(t')) is relatively simple. Now
top®, (s) =x, top®, (1) is a consequence of

topl,(s) = top™(C*{s7",..., 53°}) = top* (67 (5)) = top’(¢2(01(s")) = 03 (e1(s"))
and topl (t) = 63 (01 (t)). O

With the above preparatory considerations, we are now able to prove one of the major
results of this subsection. In Theorem 6.22, statement (3) is the interesting new part.
For disjoint unions, statements (1) and (2} were already proved in Gramlich (1993). In
the context of Theorem 6.22 — but only for finite disjoint unions — Gramlich (1993)
showed furthermore that the system R4 cannot be Cg-terminating, i.e. the system Ra @
{Cons(z,y) — =, Cons(x,y) — y} must be non-terminating. The finiteness requirement
results from the special transformation proof technique used in Gramlich (1993).

THEOREM 6.22. Let R; and Ra be terminating constructor-sharing CTRSs such that
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their combined system R = Rq UR; is not terminating. Then the following statements
hold (where d,d € {1,2} with d # d):

(1) There exists an infinite R rewrite derivation D : s; — s3 — 83 — ... of minimal
rank such that D contains infinitely many s; —° s;41 reduction steps where s;
reduces to s;4; by some rule from R.4.

(2) R; s not layer-preserving.

(3) If both systems are confluent, then [ contains infinitely many duplicating s; —°
8j41 reduction steps such that s; reduces to s;41 by some rule from Rg4.

ProoOF. Let D be an infinite R rewrite derivation of minimal rank, say rank(D) = k.
Then rank(s;) = rank(D) for all indices j. Moreover, —x is terminating on T<* H
sy is top transparent, say sy = C'[t1,...,,], then there must be an infinite rewrite
derivation starting from some ¢;, { € {1,...,n} with rank(t;) = k. Therefore, we may
assume without loss of generality that s; is top black or top white, say top black. It follows
for every j € N and for each white principal subterm u € S§(s;) that rank{u) < k.

(1) Suppose that there are only finitely many —° reduction steps using a rule from R,
in D. Then we find an index j € M such that the rewrite derivation

D’:Sj—>3j+1—->8j+2—>...

contains no such reduction steps at all. Thus, if s; = C®[t1,...,ta], then there
must be an infinite rewrite derivation starting from some t; € S¥E(s;). But this
contradicts the minimality assumption on rank(D) since rank(t;) < rank(s;).

(2} Suppose that R, is layer-preserving, i.e. it contains neither collapsing nor
constructor-lifting rules. By Proposition 6.17, we have:

If s; —° s;41 by some rule from Ry, then top b(s;) ==, top® (s_.,_,,l)
If s; —° s;41 by some rule from R or s; —* 5;41, then top®(s;) = top®(s;+1).

From (1) we know that infinitely many reduction steps of the former kind occur in
D. This yields a contradiction to the termination of =5, .

(3) Let > = (—r Up)*. Then (T<*,>) is a well-founded ordering. Let
(M(T <¥), >™) denote its multiset extension. Note that S%(s;) € M(T<F). As
in the proof of (1), we may suppose that there is no outer reduction step using a
duplicating rule from R4 in D). We distinguish between three cases:

If 5; —° s;41 by some rule from Ry, then, by Lemma 5.7, Sp(sj+1) C Sp(s;)
because the reduction step is non-duplicating. Clearly, this implies S%(s;) >™¥!

SE(5341)-
If s; —*' s;41 by some rule from R4, then there exists a white principal subterm
u of s; such that © = C¥[u1,...,up. . un] = C¥[ur, .. v, ug] = v

Evidently, v € SE(sj41). It follows from SE(s;41) = (SB(s;) \ [¢]) U [¢] that
Sp(s5) >m! SP(SJ+1)

If s;; — sj41 by some rule from Ry, then there is a white principal sub-
term u 6 S%(s;) such that u — v for some v, ie. 5; = C*[,...,u,...,] —
co,.. .--,] = 8;41. Thus we have S8 (s;41) (Sg(sj)\[u])USg(v). It fol-
lows from 1 — v in conjunction with v = w or » > w for any principal subterm
w € SE(v) that u > w for any w € S%(v). Therefore SE(s;) >™* SE(s541).



12 E. Ohlebusch

We conclude from the well-foundedness of (M(7 <¥), >™4!) that only a finite num-
ber of inner reduction steps as well as reduction steps using a rule from R3 occur
in D. W.lo.g. we may suppose that there are no reduction steps of that kind in
D. Consequently, for all j € N, we have s; —¢ 8;41 by some rule from Ry. Now
-»1,2 is semi-complete because (Fi,Ry) and (F2,R2) are complete. Proposition
6.21 yields top?,(s;) ==, top®,(sj41) for every j € N. This is a contradiction to
the termination of =5,

0

CoROLLARY 6.23. If Ry and Rs are terminating CTRSs with shared constructors, then
their combined system R is terminating provided that one of the following conditions is
satisfied:

(1) Neither R; nor R, contain either collapsing or constructor-lifting rules.

(2) Both systems are confluent and non-duplicating,.

(3) Both systems are confluent and one of the systems contains neither collapsing,
constructor-lifting, nor duplicating rules.

ProoF. This is an immediate consequence of Theorem 6.22, [J
COROLLARY 6.24.

(1) Termination is modular for layer-preserving constructor-sharing CTRSs.
(2) Completeness is modular for layer-preserving constructor-sharing CTRSs.
(3) Completeness is modular for non-duplicating constructor-sharing CTRSs.

PRroOF. (1) is an immediate consequence of Corollary 6.23. (2) and (3) follow from
Theorem 6.14 in conjunction with Corollary 6.23. O

Clearly, it also follows from the aforementioned that Cz-termination is a modular prop-
erty of finite disjoint CTRSs; see Gramlich (1993).

6.3. COMBINING DECREASING SYSTEMS

Simple counterexamples show that innermost termination is not modular for disjoint
CTRSs. So in contrast to the unconditional case (see Corollary 5.4), it is not clear
how the unique normal form of a term w.r.t. the combined system of complete pair-
wise constructor-sharing CTRSs can be obtained. We will show next how this unique
normal form can be computed for finite, decreasing CTRSs. Note that decreasingness is
not modular, even for disjoint CTRSs. The counterexample of Toyama (1987b) to the
modularity of termination for disjoint TRSs applies because every terminating TRS can
be regarded as a decreasing CTRS.

DEFINITION 6.25. A CTRS R is decreasing if there exists a well-founded partial ordering
> possessing the subterm property such that > contains —g and for every rewrite rule
s r<s |t,...,8, | t, € R and every substitution o we have ler > s;0 as well as
lo >t;0, where 1 <i<n.
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Note that decreasing systems do not allow extra variables in the conditions. Decreasing
(finite) CTRSs have been investigated by many researchers because all basie properties
(like reducibility for instance) are decidable and a critical pair lemma holds for those
systems (cf. Dershowitz et al. 1988). In order to show how (unique) normal forms w.r.t.
the combined system of » finite, decreasing, confluent, and pairwise constructor-sharing
CTRSs can be obtained, we recall the modular reduction relation introduced by Kurihara
and Ohuchi {1991).

DEFINITION 6.26. Let (F1,R1),-..,(Fn,Rn) be pairwise constructor-sharing CTRSs.
Let F = U;_, F;. For 5,¢t € T(F,V) define 5 ~x; ¢ if and only if s —»;’zj t and
t € NF(F,R;), where j € {1,...,n}. Moreover, define s ~+ ¢t if and only if s ~+ t for
some j € {1,...,n}. ~ is called modular reduction relation.

Roughly speaking, reduction steps (including the evaluation of the conditions) have to
be performed using the same constituent CTRS R; for as long as possible.

THEOREM 6.27. If (F1,R1),...,(Fn, Ry) are pairwise constructor-sharing CTRSs, then
the modular reduction relation ~» is terminating on T (F, V).

Proor. The same as for unconditional TRSs; see Kurihara and Ohuchi (1991). O

The proofs of the following results heavily depend on the fact that we are dealing with
constructor-sharing systers instead of disjoint unions. This is probably the reason why
no such results had been achieved in the investigation of disjoint unions of CTRSs.

LeMMaA 6.28. Let (F1,R1),...,(Fa,Rn), n > 2, be semi-complete pairwise constructor-
sharing CTRSs. Then NF(F,R) = [;_, NF(F,R;).

Proor. “C” Trivial.

“>” We use induction on the number n of CTRSs. The case n = 2 is covered by Lemma
6.13 (1). So suppose n > 2, First of all, by repeated application of Theorem 6.14, we infer
that the CTRS (U?;ll F, U;.:ll R;) is semi-complete. It is immediately obvious that the
systems (U;';ll .'F_,,U;’;: R;) and (Fn,R,) are constructor-sharing; thus, using Lemma

6.13 (1), we derive NF(F,R) = NF(F,J;Z{ R;) N\ NF(F,R,.). The equality
ne] n-1

NF(}'!URJ'): ﬂNF(f:RJ)

i=1 i=1

remains to be shown. Set F' = F\ (J}Z} 7). It is not difficult to verify that the CTRSs
(FreF ,R1),...,(Fac1WF' , Rq-1) are semi-complete and pairwise constructor-sharing
because (F1,R1),-..,(Faz1,Rn-1) are semi-complete and pairwise constructor-sharing.
An application of the induction hypothesis yields

n

n=1 n—1 n—1 n-—-1 n-1
NF(F, | R) = NF (7w, U R) = [ NF(J(FwF),R)) =
i=1 i=1 F=1 i= i=1

(I}

-1
NF(F,R;)
j=1
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ProposITION 6.29. If (F1,R1),...,(Fa,Rn) are semi-complete pairwise constructor-
sharing CTRSs, then NF(F,R) = NF(~).

ProoOF. “C” Trivial.

“2” Let t € NF(~) and suppose t ¢ NF(F,R;) for some j € {1,...,n}. According to
Theorem 6.14, (F,R;) is normalizing. Hence there is a term ¢ € NF(F,R;) such that
t —%J_ t'. It follows t ~+g; ¢’ which contradicts the assumption t € N F(~+). We conclude
t € NF(F,R;) for all j € {1,...,n}. Finally, it is a consequence of Lemma 6.28 that
te NF(F,R). O

THEOREM 6.30. If (F1,R1),...,(Fs,Rs) are semi-complete pairwise constructor-
sharing CTRSs, then ~+ is complete.

ProoF. According to Theorem 6.27, ~» 1s terminating. Thus it suffices to show that ~
has unique normal forms w.r.t. reduction. Consider t; *«~t ~+* t3, where 11,13 € NF(~).
By the preceding proposition, ¢;,t2 € NF(F,R). Now since ~» C —%, we obtain a
conversion {3 R+ ¢ —% {3 between the two normal forms ; and #o. It follows t; = ¢
because (F, R} is confluent (indeed semi-complete) by Theorem 6.14. O

CoROLLARY 6.31. Let (F1,R1),...,{Fn,Rs) be semi-complete pairwise constructor-
sharing CTRSs and let ¢t € T(F,V). The unique normal form ¢| of £ wr.t. (F,R)
coincides with the unique normal form t{ of ¢ w.r.t. ~».

Proor. Clearly, { ~* t{ implies t —% t{ Furthermore, t{ € NF(F,R) by Proposition
6.29. It follows from the semi-completeness of (F,R) that the normal form | of ¢ w.r.t.
(F,R) is unique. Thus ¢t| = ¢{. O

In order to prove the principal theorem of this subsection, we have to show that decreas-
ingness is conserved under signature extensions. This is by no means trivial. Gramlich
(1994¢) showed that several properties (like normalization, for instance) are not preserved
under signature extensions.

From now on, we assume that the CTRS (Fi,R1) is decreasing w.r.t. the partial
ordering >; € T(F1, V) x T(F1, V). It will be shown that the CTRS (¥1¢F', R,) is also
decreasing for any signature 7' with F1NF' = {. First we show that > can be extended
to a partial ordering >z on 7(F; W F',V) which has almost all the properties necessary
for showing that (FyWF', R,) is decreasing. Hereby, (F1WF', R1) is ccnsidered to be the
disjoint union of the CTRSs (F1,R1) and (F',8). In particular, funcsion symbols from
Fi are black and those from F' are white. In the disjoint union case, it is convenient to
use the following notation. Let ¢ € T(F, V).

_ | Sp(t) iftis top black.
5 = { Shit) ift is top white.

DEFINITION 6.32. We define >2 on 7(F; ¥ F',V) by: s >3 t if either

(1) rank(s) > rank(t), or '
(2) rank(s) = rank(t) and either

(a) top®(s) >, top®(t), or



Modular Properties of Composable Term Rewriting Systems 35

(b) topb(s) = top'(t) and Sa(s) >P¥' Sa(t).
LEMMA 6.33. The relation >; is well-founded on 7(F, W F', V).

Proor. We show by induction on rank(s;) the impossibility of an infinite sequence
D: sy >p50>283>5...

If rank(s;} = 0, then s; is a variable and there is nothing to show. If rank(s;) = 1, then
rank(s;) = 1 for any j € N, and either s; € T(F1,V) or 5; € T(F',V). In the former
case, we derive

topb(sl) >1 topb(.s‘g) > topb(sg) >1 e,

which contradicts the well-foundedness of >1, and the latter case is obviously impossible.
Therefore, let rank(s;) = k > 1. The induction hypothesis states that > is well-founded
on T<*¥(F; w F',V). Hence we have rank(s;) = k and further that root(s;) has the
same color as root(s1) for each j € N. Furthermore, the multiset extension >J'*' of >3 is
well-founded on M(7 <¥(F1 W F',V)). If sy is top black, then there can only be a finite
number of top®(s;) >1 top®(s;41) steps in D (due to the well-foundedness of >;). If s,
is top white, then it follows that top®(s;) = O = top®(s;41) for every j € N. Hence there
must be an index m € N such that

S2(sm) > Sa(sm1) > Sa(6mez) > ...

is infinite. This contradicts the well-foundedness of >*! on M(T <*(F;WF’,V)) because
Sa(s;) € M(T<¥(F1wF' V) forall j > m. O

LEMMA 6.34. Let 5,1 € T(FLWF',V). If s =g, t, then s >, ¢.

ProoF. The lemma will be established by induction on rank(s). If rank(s) = 0, then
s €V and the lemma holds vacuously. So let rank(s) =k > 1. If rank(t) < k, then there
is nothing to show. Thus assume rank(t) = k. We distinguish the cases:

Case (i): s is top black.

It follows from Proposition 6.17 that s —% t implies top’(s) =g, top®(t). Therefore,
top®(s) >1 top®(t) and further s >; t. If on the other hand s —% 1, then we may
write s = C?[s1,...,$j,...,8.]) ==, C*[s51,- .+>8},...,8n] = t. The induction hypothe-
sis yields s; >; s} from which we immediately get Sa(s) >3 S5(t). Now s >3 ¢ follows
because top®(s) = top?(t).

Case (ii): s is top white.

Here s = C¥[s1,...,585,...,80] —r, C¥[51,...,8},...,8,] = t. If the rewrite step is
non-destructive, then ¢ is indeed equal to C¥fs1,...,s},...,s,] and the assertion fol-
lows as above. Otherwise s; = C¥{t1,...,tm}. Since rank(s;) > rank(t;) for every

i € {1,...,m}, we infer that [s;] >T% [t;,...,%m]. Again, we conclude Sa(s) > Sy(t).
Now s >3 t follows from top®(s) = O = top®(t). O

LemMMA 6.35. Bl —r<s lt),.. . 85 [ taisatulefromRyand o V — T(FuF', V)
is a substitution, then lo >3 sjo and lo >3 tjo forall j € {1,...,n}.
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Proor. According to Proposition 4.18, & can be decomposed into o3 o 1, where ¢y is
black and ¢ is top white. Since (Fy,R1) is decreasing w.r.t. >1, we have lo; > 5;01
and lg; >; t;01 for all § € {1,...,n}. Since Var(s;) C Var(l) and Var(t;) C Var(l)
for any j € {1,...,n}, it follows rank(lo) > rank(s;o) and rank(le) > rank(t;e). Now
it follows from top®(ls) = loy >) s;jo1 = top*(sjo) and topb(ic) >1 topb(t;0) that also
lo >y s;0 and lo >3 tjo forall je {1,...,n}. O

The preceding lemmata show that >3 has three out of the four properties required for
showing that the CTRS (F, W F',R;) is decreasing. Unfortunately, it lacks the subterm
property. If, for example, g,a € F', then g{a) ¥ a. However, we can extend >» with the
subterm property. To be exact, we define >3 = (> U )*. >3 is a relation which has the
subterm property and obviously Lemmata 6.34 and 6.35 also hold when >; is replaced
with >3. But it is not obvious that >3 is a well-founded partial ordering since >o is
not closed under contexts. In order to prove this, it suffices to prove its well-foundedness
because >3 is transitive by definition.

LEMMA 6.36. The relation >3 = (>2 Up)7 is well-founded on 7(F, W F', V).
PROOF. Let s, € T(Fy W F', V). We first show:

(1) If s is top black and s 1> ¢, then s >5 .
(2) If s is top white and s [> ¢, then s >4 2.

(1) If rank(s) > rank(t), then the claim is true. Otherwise rank(s) = rank(t) and it is
clear that s = C*{s1,...,5,} and t = C‘b{s,-,s,-H,...,sm_l,sm}}, where C*{,...,} b
C*{,...,} and 1 < i < m < n. Therefore, top?(s) = C*{,...,} b C*{,...,} = top*(2).
Since > has the subterm property, it follows top*(s) >; top®(t). Thus s >3 t.

{(2) As in case (1), we may assume rank(s) = rank(t) and s = C¥{s1,...,sn} as well
ast = CU{s;,8i41,...,6m-1,5m}, where C¥{,...,} b C¥{,....}and 1 <i<m < n.
Clearly, top®(s) = O = top*(t) and Sy(1) C Sa(s). Now s >3 ¢ is a direct consequence.

Now suppose that there is an infinite sequence

D: s >389 >353>3...
It follows immediately from the above claim that
D: 5 2>y8 228323 ...

If there were only finitely many s; >3 s;41 steps in D, then there would be an infinite
subsequence
. §i sy P s B

in contrast to the well-foundedness of t>. Hence there are infinitely many s; >2 s541
steps in DD which contradicts the well-foundedness of >;. O

PROPOSITION 6.37. If the CTRS (1, R1) is decreasing, then (F;WF', R,) is decreasing
for any F' with 1N F' =40.

PROOF. Let (F1,R1) be decreasing w.r.t. the partial ordering > C T(F1, V)x T (F1,V).
Define >3 on T(F, & F', V) as above. Then (F1 W F',R;) is decreasing w.r.t. >3. O
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ProprosITION 6.38. Let (F1,R4),...,(Fn,Rn) be pairwise constructor-sharing CTRSs

such that every R; is finite. If the systems are decreasing, then the function nf defined
by

nf(s) = {t€T(F,V) |s~"t, te NF(~)}

is computable.

Proor. By Theorem 6.27, ~+ is terminating. The computability of the function nf is
shown by induction on the well-founded partial ordering (7 (F, V),~+*). Let s € T(F, V),
and let

nfi(s) = {t e T(F,V) | s =}, 1, t e NF(F,R;)} = {t € T(F,V) | s ~g, t}.

Note that the CTRSs (F,R1), ..., (F,R,) are decreasing by Proposition 6.37. Thus, for
any j € {1,...,n}, the finite set nf;(s) is computable, see Dershowitz ef al. (1988). If
nf;(s) is empty for all j € {1,...,n}, then s € NF(F,R;) for all j € {1,...,n} and
thus s € NF(~»). In this case nf(s) = {s} and we are done. Otherwise, the finite set
R(s) = U?=1 nf;i(s) of all one step reducts of s w.r.t. ~ is not empty. Let ¢ € R(s). Since
8 ~ t, it follows from the induction hypothesis that the finite set nf(t) is computable.
Hence the finite set nf(s) = UtER(,) nf(t) is computable. O

THEOREM 6.39. Let (F1,Ri1),...,(Fn,Rn) be pairwise constructor-sharing CTRSs
such that every R; is finite. If the systems are decreasing and confluent, then their
combined system (F,R) is semi-complete and the unique normal form s| of a term
s € T(F,V) with respect to (F,R) is computable by computing the normal form of s
with respect to ~».

Proor. Since the CTRSs (F1,R1),...,(Fn,Ra) are decreasing, they are particularly
terminating. Hence they are complete. Semi-completeness of {F,R) is a consequence of
Theorem 6.14. It remains to prove the computability of the function which calculates the
unique normal form sf € NF(F,R) of a given term s € 7 (F, V). According to Theorem
6.30, ~+ is complete. Moreover, by Proposition 6.38, the unique normal form s§ of s with
respect to ~+ is computable. By Corollary 6.31, s| = s¢{ which concludes the proof. O

6.4. THE SIMPLIFYING PROPERTY

In the preceding subsection, we have seen that decreasing CTRSs behave quite “nicely”
w.r.t. combinations with shared constructors. The objective of this subsection is to prove
that the related simplifying property behaves even nicer. That is to say, it is modular even
for composable CTRSs. This will be proven by a straightforward reduction to Theorem
5.16.

DeFINITION 6.40. A CTRS R is simplifying (Kaplan, 1987) if there exists a simpli-
fication ordering > with I > r,I > s;, and { > ¢;, for each rewrite rule { — r <«
s1 ) 11,...,8q | ty of R and every index j € {1,...,n}.

If a finite C'TRS is simplifying, then it is also decreasing. 'The converse is not true; see
Dershowitz et al. (1988).
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DEFINITION 6.41. Let (F,R) be a CTRS without extra variables. With (F,R) we as-
sociate the unconditional TRS (F,R"), where

RY = flor|lor<es |t,...,5n 1 th ER}
U {i-sili=reslt,. . saltaeR;je{l,...,n}}
U {l=tjlior<sslt,...,emlth€R; 5€{1,...,n}}.

We omit the simple proofs of the following two lemmata.

LEMMA 6.42. Let (F,R) be a CTRS without extra variables and let (F,R*) be its
associated TRS. Then (F,R) is simplifying if and only if (F, R") is simplifying.

LEMMA 6.43. Let (F1,R1) and (F2, R2) be composable CTRSs withous extra variables.
Then their associated unconditional TRSs (F1,R}) and (Fg, R%) are composable.

THEOREM 6.44. The simplifying property is modular for composable CTRSs.

Proor. Let (F;,R;) and (F2, R2) be composable CTRSs. We have to show that their
combined system (F,R) is simplifying if and only if both (Fy,R1) and (F2, R3) are sim-
plifying. The only-if case is straightforward. So let (¥, R1) and (F2, R3) be simplifying.
We have to show that (F, R) is simplifying, or equivalently by Lemma 6.42, that the TRS
{F,R") associated with (F,R) is simplifying. By Lemma 6.43, the TRSs (F,,R}) and
(F2,R3) are composable. Hence their combined TRS (F; UF,, R} URY) is simplifying
according to Theorem 5.16. Now the equality (F,R"*) = (F1 U F», R} 'URY) concludes
the proof. O

7. Related work and open problems

Another extension of combinations with shared constructors are hierarchical combi-
nations. In a hierarchical combination one of the systems may use defined symbols of
the other in the right-hand sides of its rewrite rules without importing the rules defin-
ing those symbols (a precise definition can be found in Ghlebusch, 19948, for instance).
The standard example of a hierarchical combination is the following one, where the base

system
Ry = 04z — oz
TS +y — S(z+y)

is extended with

R = Oxz — 0
2= S(z)+y — (z*y)+y.

Here the defined symbol + occurs as a constructor in the right-hand side of the second
rule of Rz and # does not appear in R;. Clearly, Ry and R, are complete constructor
systems. Using standard techniques, their hierarchical combination R = R1UR» can also
easily be shown to be a complete constructor system. But with our former results, we
cannot infer completeness of R from the completeness of its constituents. On the other
hand, the combination of R} = {a — b} and RY, = {F(b) — F(a)} shows that almost
all interesting properties are destroyed under hierarchical combinations. So what is the
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difference between the two examples, that is, why is the former so benign and the latter
so malignant? In essence, this is due to the fact that in the right-hand side (z *y) + ¥
the function symbol + from D, occurs above the function symbo! * from Dy, whereas
in the right-hand side F(a) the function symbol a from D] occurs below the function
symbol F from D5. This fact has been observed independently and contemporaneously
by Dershowitz (1994) and Krishna Rao (1993). Other hierarchical combinations for which
termination is modular are described in Fernandez and Jouannaud (1994) (their results
are based on the new notion of “alien-decreasingness”). We will not go into details here
but just relate other known results to ours.

We have shown that semi-completeness is modular for composable TRSs and for
constructor-sharing CTRSs. Very recently, Krishna Rao (1995) provided a sufficient cri-
terion for the modularity of semi-completeness for hierarchical combinations of TRSs.
His proof technique is different from ours. Moreover, we point out that there are closely
related results obtained by Middeldorp (19944). He proved that semi-completeness and
completeness are modular for composable conditional constructor systems without extra
variables. It is yet unknown if the same is true when extra variables in conditions are
allowed. As a matter of fact, Middeldorp (19944a) conjectured that this is the case. As far
as modularity of semi-completeness of CTRSs 1s concerned, 1t is definitely worthwhile to
try to extend the aforementioned result to the whole class of composable CTRSs, Note,
however, that the proof presented in this paper does not carry over to composable sys-
tems. By the way, the last two statements also apply to the modularity of completeness
for non-duplicating CTRSs.

Several recent papers deal with the modularity of completeness for constructor systems
and the more general class of overlay systems, respectively. The investigation of construc-
tor systems started with the work of Middeldorp and Toyama (1993). Their main result
has been extended to certain classes of hierarchical combinations by Krishna Rao (1993)
and Dershowitz (1994). Using the strong Theorem 5.11, Gramlich (19945) proved that
completeness is modular for constructor-sharing overlay systems. Corollary 5.12 shows
that this is true even for composable TRSs, so the result of Middeldorp and Toyama
(1993) is actually a special case thereof. Lately, Gramlich (1994c) showed that complete-
ness is modular for the class of disjoint conditional overlay systems with joinable critical
pairs. The question whether this result extends to more general combinations has very
recently also been answered affirmatively by Gramlich (1995). Using our Theorem 6.14,
he was able to extend the result to constructor-sharing CTRSs.

Finally, generalizing a result of Kurihara and Ohuchi (1992), we have shown that
the simplifying property is modular for composable CTRSs. Their result has also been
extended by Krishna Rao (1994) to a certain class of hierarchical TRSs. In this context,
the reader is also referred to Gramlich (1994¢), Ohlebusch (1995¢) and Kurihara and
Ohuchi (1995) for related results.

Up until now, nobody has studied hierarchical combinations of CTRSs. It goes without
saying that it should also be investigated which of the known modularity results for
hierarchical combinations of unconditional! systems can in some way be extended to
conditional systems.

In a different context, Raoult and Vuillernin (1980) showed that confluence is modular
for left-linear TRSs which are orthogonal to each other. Two TRSs Ry and R4 are called
orthogonal to each other, if there is no overlap between a rule from R, and one of R»
(cf. Klop, 1992). Note that this definition does not exclude the existence of critical pairs.
There may be critical pairs due to overlaps between rules of R; or rules of Ro. It is
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easy to see that two constructor-sharing TRSs R, and R are orthogonal to each other.
Two composable systems R, and Rz are, however, in general not orthogonal to each
other. Overlaps between rules from R and rules from R may occur, notwithstanding
the fact that these overlaps do only create critical pairs already contained in the set
CP(R1) UCP(R;) of all critical pairs between rules from R, and between rules from
R2. The reader is invited to check that in consequence of this subtle difference the proof
of Raoult and Vuillemin (1980) does not extend to composable systems. Thus it is still
open Whether confluence is a modular property of left-linear composable TRSs.

A somewhat different approach to moedularity of TRSs has been presented in Prehofer
(1994). This paper deals with a property called "modular normalization”, meaning that
every R = R1 U R, normal form of some term s can be obtained by first reducing s
to an Ry normal form s|g, and then reducing s|z, to an Ry normal form. Prehofer
developed sufficient criteria for this property which also cover non-complete TRSs (the
main restriction being that the system R, is required to be left-linear and complete).
One of the given interesting applications of modular normalization is a new modular
narrowing strategy.
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