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a b s t r a c t

This paper deals with the stochastic comparison of order statistics and their mixtures.
For a random sample of size n from an exponential distribution with hazard rate λ, and
for 1 ≤ k ≤ n, let us denote by F (λ)

k:n the distribution function of the corresponding
kth order statistic. Let us consider m random samples of same size n from exponential
distributions having respective hazard rates λ1, . . . , λm. Assume that p1, . . . , pm > 0, such
that

∑m
i=1 pi = 1, and let U and V be two random variables with the distribution functions

F (λ)
k:n and

∑m
i=1 piF

(λi)
k:n , respectively. Then, V is greater in the hazard rate order (or the usual

stochastic order) than U if and only if λ ≥
k
∑m

i=1 piλ
k
i , and V is smaller in the hazard

rate order (or the usual stochastic order) than U if and only if λ ≤ min1≤i≤m λi, for all
k = 1, . . . , n.

These properties are used to find the best bounds for the survival functions of order
statistics from independent heterogeneous exponential random variables. For the proof,
wewill use amixture type representation for the distribution functions of order statistics.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The paper ismotivated by the importance of the stochastic comparison of some basicMarkovmodels in reliability theory.
Recall that a k-out-of -n system is a structure composed of n independent components which works if and only if at least k of
the n components work. This model and its extensions find various applications in industrial, economic or biological fields.
In particular, the Markov models in reliability deals with exponential distribution, which enjoys the phenomenon of loss of
memory. A detailed description of coherent systems in reliability and basic properties of the exponential distribution can be
found in the books [1–3,26]. Recall that the lifetime of a (n+1−k)-out-of -n system is the kth order statistic from the lifetimes
of their n independent components. A rich literature treats the stochastic comparisons of order statistics, especially in the
exponential case. We mention here the papers [2,7,8,24,29,31]. A series of recent papers, such as [9,16–18,25,33,34,36],
deals with the characterization of the stochastic comparison between a k-out-of -n Markov system having non-identical
components with a similar system having identical components. For further results in this direction, we will point out
some fine ordering properties for the mixtures of some distributions of order statistics. Mixture representation for order
statistics, monotony properties of the mixtures and related characteristics have been studied in many works, among which
we mention the papers [3–6,12,13,15,17,18,20–23,27,28,32,35]. In particular, the paper [21] includes bounds for mixtures
of order statistics on the type

∑n
i=1 piFi:n.

Let X (λ)
k:n be the kth order statistic of a random sample X1, . . . , Xn from an exponential distribution with hazard rate λ. The

distribution function of X (λ)
k:n will be denoted by F (λ)

k:n (t), t ≥ 0.
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Consider now a random variable U with the distribution function F (λ)
k:n and a random variable V whose distribution

function FV is a mixture of distribution functions of kth order statistics from exponentials:

FV (t) =

m−
i=1

piF
(λi)
k:n (t), t ≥ 0,

where λ1, . . . , λm and p1, . . . , pm are 2m arbitrary positive numbers, such that
∑m

i=1 pi = 1.
We show that

V ≥hr U ⇔ V ≥st U ⇔ λ ≥


m−
i=1

piλk
i

 1
k

, (1)

and

V ≤hr U ⇔ V ≤st U ⇔ λ ≤ min
i=1,...,m

λi, (2)

where ≥st designates the usual stochastic order and ≥hr designates the hazard rate order. Notice that, for k = 1, these
relations can be derived from Lemma 2.1 in [25].

Further, we establish that, for k > 1, the distribution of the random variable Xk:n is the convolution between the
distribution of the first order statisticX1:n and amixture involving the distributions of (k−1)th order statistics corresponding
to all subsets with n − 1 elements of the set {X1, . . . , Xn}. We will apply these results to find the best bounds for the
survival functions of order statistics from independent heterogeneous exponential random variables. Thus, let X1, . . . , Xn
and Y1, . . . , Yn be two sets of independent exponential random variables with hazard rates λ1, . . . , λn, and common hazard
rate λ, respectively. Firstly, we find an alternative proof for the following equivalence given in [9]:

Xk:n ≥st Yk:n ⇔ λ ≥


n
k

−1 −
1≤i1<···<ik≤n

λi1 · · · λik

 1
k

, k = 1, 2, . . . , n. (3)

Secondly, we obtain the following extension:

Xk:n ≤st Yk:n ⇔ λ ≤

n+1−k∑
i=1

λ(i)

n + 1 − k
, k = 1, 2, . . . , n, (4)

where λ(1) ≤ λ(2) ≤ · · · ≤ λ(n) is the increasing arrangement of λ1, . . . , λn. The relations are evident for k = 1. For
k = 2, the equivalences (3) and (4) also hold in the case of the hazard rate order (see [25]). In the same case k = 2, similar
characterizations have been recently formulated for the likelihood ratio order (see [36]), for the mean residual life order
(see [33]), and for the dispersive ordering (see [34]). For k = n, relation (3) is valid for the hazard rate order (see [16]).

2. Preliminaries

Let us recall some notions and elementary results which are useful in what follows. The comparison of positive random
variables (lifetimes) is a developed concern of applied probabilities, particularly of reliability theory. The most important
ordering for lifetimes is the usual stochastic order. On the other hand, the hazard rate order lies in a central position among
the strong stochastic orders.

Definition 2.1. Let X and Y be two positive absolute continuous random variables with the distribution functions FX (t) =

P (X ≤ t) and FY (t) = P (Y ≤ t), survival functions FX (t) = P (X > t) and F Y (t) = P (Y > t), density functions fX (t) and
fY (t), and hazard rate functions rX (t) = fX (t)/FX (t) and rY (t) = fY (t)/F Y (t), respectively.

1. X is said to be greater than Y in the usual stochastic order, denoted by X ≥st Y , if FX (t) ≥ F Y (t), for all t ≥ 0.
2. X is said to be greater than Y in the hazard rate order, denoted by X ≥hr Y , if the function FX (t)/F Y (t) is monotone

non-decreasing in t ≥ 0 (an equivalent definition: rX (t) ≤ rY (t), for all t ≥ 0).

The following implication holds: X ≥hr Y ⇒ X ≥st Y . A comprehensive treatment of the properties of the stochastic
orders can be found in [30].

Let us now present some elementary properties of order statistics. In what follows, the set {1, . . . , n} will be denoted by
Nn and the cardinality of some finite set I will be denoted by |I|. Let X1, . . . , Xn be independent positive random variables.
Denote by X1:n ≤ · · · ≤ Xn:n the associated order statistics. For all k ∈ Nn, the random variable Xk:n has the following survival
function:

FXk:n(t) =

k−1−
s=0

−
I⊂Nn;

|I|=s

∏
i∈I

FXi(t)
∏

j∈Nn\I

FXj(t)


, t ≥ 0.
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In what follows our attention will be focused on the particular case of exponential distributions. For n independent
exponential random variables Xi, with respective hazard rates λi, we have:

FXk:n(t) =

k−1−
s=0

−
I⊂Nn;

|I|=s


e
−(

∑
j∈Nn\I

λj)t ∏
i∈I

(1 − e−λit)


, t ≥ 0. (5)

The density function of Xk:n is:

fXk:n(t) = −F
′

Xk:n(t) =

−
I⊂Nn;

|I|=k−1

−
j∈Nn\I

λj


e
−(

∑
j∈Nn\I

λj)t ∏
i∈I

(1 − e−λit)


, t ≥ 0. (6)

Consider now the particular case of identical parameters. Assume that λi = λ, for all i ∈ Nn, and denote by X (λ)
k:n the kth order

statistics from Xi. Also use the following notations F (λ)
k:n , F

(λ)

k:n, f
(λ)
k:n and r (λ)

k:n for the distribution function, the survival function,
the density function and the hazard rate function of X (λ)

k:n , respectively. From (5) and (6) we get

F
(λ)

k:n(t) =

k−1−
s=0


n
s


e−λt(n−s)(1 − e−λt)s, t ≥ 0; (7)

f (λ)
k:n (t) = λ(n + 1 − k)


n

k − 1


e−λt(n+1−k)(1 − e−λt)k−1, t ≥ 0; (8)

r (λ)
k:n (t) =

λ(n + 1 − k)


n
k − 1


e−λt(n+1−k)(1 − e−λt)k−1

k−1∑
s=0


n
s


e−λt(n−s)(1 − e−λt)s

=

λ(n + 1 − k)


n
k − 1


(eλt

− 1)k−1

k−1∑
s=0


n
s


(eλt − 1)s

, t ≥ 0. (9)

Relation (9) can be rewritten in a well-known integral form:

r (λ)
k:n (t) =

λ(eλt
− 1)k−1 1

0 yn−k(eλt − y)k−1dy
, t ≥ 0. (10)

Note that this integral formula can be obtained by using the properties of Euler’s function Beta. A consequence of this formula
is the fact that

r (λ)
k:n (t) =

λ 1
0 yn−k


1 +

1−y
eλt−1

k−1
dy

,

increases in λ, for all t > 0 and all k ∈ Nn. Then:

λ ≤ λ′
⇒ r (λ)

k:n (t) ≤ r (λ′)
k:n (t), ∀t ≥ 0. (11)

Actually, this conclusion can be directly derived by using Theorem 1.B.34 of [30].

3. Mixtures of distributions of order statistics

Our purpose is to compare a mixture of distributions of kth order statistics from exponential samples of size n with
a single distribution of the same type. More precisely, we will describe sharp bounds on the survival and hazard rate
functions of order statistics from randomly chosen i.i.d. exponential populations with various scale parameters by means
of respective functions of order statistics from fixed i.i.d. exponential populations. The interest in considering this kind of
problem is revealed in the last section. Thus, these results will be used to obtain (by induction) precise lower and upper
uniform evaluations of survival functions of arbitrarily fixed order statistics from independent non-identically distributed
exponential samples by means of survival functions of the order statistics for the i.i.d. exponential samples.
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We need some technical lemmas.

Lemma 3.1. Let n and k be two positive integers with k ≤ n. The function gk:n : [0, ∞) → [0, ∞), defined by

gk:n(x) =
x1/k(ex

1/k
− 1)k−1 1

0 yn−k(ex1/k − y)k−1dy
, x ≥ 0,

is monotone increasing and concave on [0, ∞).

Proof. Assume two fixed positive integers k and n, such that k ≤ n. For k = 1, g1:n(x) = nx, x ≥ 0, which is a concave
increasing function. For k ≥ 2, let us consider the auxiliary functions z, h : [0, ∞) → [0, ∞), defined by z(x) = x1/k,
for all x ≥ 0, and h(z) =

(ez−1)k−1 1
0 yn−k(ez−y)k−1dy

, for all z ≥ 0. We have gk:n(x) = z(x)h(z(x)), for all x ≥ 0. Since

g ′

k:n(x) =
1
k z

1−k(x)[h(z(x)) + z(x)h′(z(x))], x > 0 and

h′(z) =
(k − 1)ez(ez − 1)k−2

 1
0 yn−k(1 − y)(ez − y)k−2dy 1

0 yn−k(ez − y)k−1dy
2 > 0, ∀z > 0, (12)

we find g ′

k:n(x) > 0, ∀x > 0. Therefore gk:n is monotone increasing on [0, ∞).

Then g ′′

k:n(x) = −
z1−2k(x)∆(z(x))

k2
, x > 0, where the function ∆ : (0, ∞) → R is defined by

∆(z) = (k − 1)h(z) + (k − 3)zh′(z) − z2h′′(z), z > 0. (13)

To prove the concavity of the function gk:n it is enough to show that ∆(z) > 0, ∀z > 0. Observe that, from the elementary
inequalities ez − 1 > z and ez − y ≥ ez(1− y), for all z > 0 and y ∈ [0, 1], we find (k− 1)h(z) > zh′(z), ∀z > 0. Therefore,
∆(z) > z∆1(z), where ∆1(z) = (k − 2)h′(z) − zh′′(z), for z ∈ (0, ∞).

For k = 2 we have ∆1(z) = −zh′′(z) =
n(n−1)zez (nez+n−1)

(nez−n+1)3
> 0, ∀z > 0, so ∆ is positive.

For k ≥ 3, from (12) and the well-known inequality ez − 1 > z, ∀z > 0, we obtain:

∆1(z) >
z

ez − 1
(k − 2)h′(z) − zh′′(z) =

(k − 1)zez(ez − 1)k−3A(z) 1
0 yn−k(ez − y)k−1dy

3 , ∀z > 0, (14)

where

A(z) = (k − 2)
∫ 1

0
yn−k(1 − y)(ez − y)k−2dy

∫ 1

0
yn−k(ez − y)k−1dy

− (ez − 1)
∫ 1

0
yn−k(1 − y)(ez − y)k−2dy

∫ 1

0
yn−k(ez − y)k−1dy

− (k − 2)ez
∫ 1

0
yn−k(1 − y)(ez − y)k−2dy

∫ 1

0
yn−k(ez − y)k−1dy

− (k − 2)ez(ez − 1)
∫ 1

0
yn−k(1 − y)(ez − y)k−3dy

∫ 1

0
yn−k(ez − y)k−1dy

+ 2(k − 1)ez(ez − 1)
∫ 1

0
yn−k(1 − y)(ez − y)k−2dy

∫ 1

0
yn−k(ez − y)k−2dy.

By grouping and reducing the terms of A(z), we find

A(z) = (ez − 1)
∫ 1

0
yn−k(1 − y)(ez − y)k−2dy

∫ 1

0
yn−k(ez − y)k−2

[ez + (k − 1)y]dy + (k − 2)ez∆2(z)


,

where

∆2(z) =

∫ 1

0
yn−k(1 − y)(ez − y)k−2dy

∫ 1

0
yn−k(ez − y)k−2dy

−

∫ 1

0
yn−k(1 − y)(ez − y)k−3dy

∫ 1

0
yn−k(ez − y)k−1dy.
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Fig. 1. Graphs of the functions gk:5 for k = 2, 3, 4, 5.

Let us denote

Ui(z) =

∫ 1

0
yn−k(1 − y)i(ez − y)k−3dy, i = 0, 1, 2.

We have∫ 1

0
yn−k(1 − y)(ez − y)k−2dy = (ez − 1)U1(z) + U2(z);∫ 1

0
yn−k(ez − y)k−2dy = (ez − 1)U0(z) + U1(z);∫ 1

0
yn−k(1 − y)(ez − y)k−3dy = U1(z);∫ 1

0
yn−k(ez − y)k−1dy = (ez − 1)2U0(z) + 2(ez − 1)U1(z) + U2(z).

Then we get the following useful relation

∆2(z) = (ez − 1)[U0(z)U2(z) − U2
1 (z)].

Assume that z > 0. Based on the Cauchy–Bunyakovsky–Schwarz inequality, we have U2
1 (z) ≤ U0(z)U2(z). So, ∆2(z) > 0.

Therefore A(z) > 0. Then, from inequality (14), we obtain ∆1(z) > 0. As follows, ∆ is a positive function on the interval
(0, ∞). This ends the proof. �

The increasing monotony and the concavity of the functions gk:n are illustrated by Fig. 1, for n = 5.
Note that

r (λ)
k:n (t) =

1
t
gk:n(λktk), ∀t > 0.

In what follows we need a ‘‘weighted’’ version of Chebyshev’s sum inequality (see e.g. [19]), which is an immediate
consequence of the Binet–Cauchy identity.

Lemma 3.2. Let pi, i = 1, . . . ,m be m positive numbers, such that
∑m

i=1 pi = 1. If

x1 ≤ x2 ≤ · · · ≤ xm and y1 ≥ y2 ≥ · · · ≥ ym,

then
m−
i=1

pixiyi ≤


m−
i=1

pixi


m−
i=1

piyi


.
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The next lemma establishes sufficient conditions to ensure a concavity property for a ratio of positive functions.

Lemma 3.3. Let u and v be two positive functions defined on a real interval I. Assume that g = u/v is concave and monotone
increasing on I, and v is monotone decreasing on I. Then, for all x1, . . . , xm ∈ I and for all p1, . . . , pm > 0, such that

∑m
i=1 pi = 1,

m∑
i=1

piu(xi)

m∑
i=1

piv(xi)
≤ g


m−
i=1

pixi


. (15)

Proof. Assume that p1, . . . , pm ∈ (0, 1), with
∑m

i=1 pi = 1, and x1, . . . , xm ∈ I . Without loss of generality, we can suppose
that x1 ≤ x2 ≤ · · · ≤ xm. Denote yi = v(xi), i = 1, . . . ,m. Since v is positive decreasing, we have y1 ≥ · · · ≥ ym > 0. From
the assumption that g = u/v is concave, we obtain

m∑
i=1

piu(xi)

m∑
i=1

piv(xi)
=

m−
i=1

piyi
m∑
j=1

pjyj
g(xi) ≤ g

 m−
i=1

pixiyi
m∑
j=1

pjyj

 . (16)

Then, Lemma 3.2 and the increasing monotony of g assure the inequality

g

 m−
i=1

pixiyi
m∑
j=1

pjyj

 ≤ g


m−
i=1

pixi


. (17)

Thus, the conclusion follows from relations (16) and (17). �

We now present the main result of this section.

Theorem 3.1. Denote by F (a)
k:n the distribution function of kth order statistic of a random sample of size n from an exponential

distribution with common hazard rate a. Let U be a random variable with the distribution function FU = F (λ)
k:n and let V be another

random variable with the distribution function FV =
∑m

i=1 piF
(λi)
k:n , where λ, λi, pi > 0 and

∑m
i=1 pi = 1. Then

V ≥hr U ⇔ V ≥st U ⇔ λ ≥


m−
i=1

piλk
i

 1
k

, (18)

and

V ≤hr U ⇔ V ≤st U ⇔ λ ≤ min
i=1,...,m

λi. (19)

Proof. Denoteλ = (
∑m

i=1 piλ
k
i )

1
k . Consider the functions uk:n, vk:n, gk:n : [0, ∞) → [0, ∞), defined by

uk:n(x) = (n + 1 − k)


n
k − 1


x1/ke−nx1/k(ex

1/k
− 1)k−1

;

vk:n(x) = e−nx1/k
k−1−
s=0


n
s


(ex

1/k
− 1)s = (n + 1 − k)


n

k − 1


e−nx1/k

∫ 1

0
yn−k(ex

1/k
− y)k−1dy;

gk:n(x) =
uk:n

vk:n
(x) =

x1/k(ex
1/k

− 1)k−1 1
0 yn−k(ex1/k − y)k−1dy

.

From relations (7)–(10), we find that V has the following hazard rate function

rV (t) =

m∑
i=1

pif
(λi)
k:n (t)

m∑
i=1

piF
(λi)
k:n (t)

=
1
t

m∑
i=1

piuk:n(λ
k
i t

k)

m∑
i=1

pivk:n(λ
k
i tk)

, ∀t > 0. (20)
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Note that vk:n(x) = F
(1)
k:n(x

1/k), x ≥ 0. Then vk:n is decreasing on [0, ∞). Also, from Lemma 3.1, gk:n is concave andmonotone
increasing on [0, ∞). Therefore, applying Lemma 3.3, we obtain

1
t

m∑
i=1

piuk:n(λ
k
i t

k)

m∑
i=1

pivk:n(λ
k
i tk)

≤
1
t
gk:n


m−
i=1

piλk
i t

k


= r (λ)

k:n (t), ∀t > 0. (21)

On the other hand (see (11)) the hazard rate function r (λ)
k:n (t) is monotone increasing in λ, for all positive t . Then, from

inequalities (20) and (21), we obtain λ ≥ λ ⇒ rV (t) ≤ rU(t), ∀t > 0. Thus, we have proved the statement λ ≥λ ⇒ V ≥hr U . Further, V ≥hr U ⇒ V ≥st U . Finally, assume that V ≥st U , or FV (t) ≤ FU(t), for all t ≥ 0. Therefore
lim supt↓0

FV (t)
FU (t) ≤ 1. But, from (8), we obtain limt↓0(t1−kf (λ)

k:n (t)) = (n + 1 − k)


n
n − k


λk. Then, using l’Hôpital’s rule,

we find

lim
t↓0

FV (t)
FU(t)

= lim
t↓0

fV (t)
fU(t)

= lim
t↓0

t1−kfV (t)
t1−kfU(t)

=

m∑
i=1

piλk
i

λk
.

Hence λ ≥λ. Thus, (18) is proved.
Now, let us prove the second relation (19). Without loss of generality, we can assume that λ1 ≤ · · · ≤ λm. It is well

known that the hazard rate function of a mixture at a fixed point t is always between the minimum and the maximum of
the hazard rate functions of the members of the mixture at this point t . Hence, as X (λi)

k:n are hr-ordered, r (λ1)
k:n and r (λm)

k:n are
bounds for the hazard rate function of the mixture rV for all p1, . . . , pm. Moreover, it is well known that the hazard rate
function of a mixture goes to the hazard rate of the stronger member of the mixture when t → ∞ (see e.g. [6], or [22]).
Hence, r (λ1)

k:n is the best lower bound for rV , that is V ≤hr U ⇔ λ ≤ λ1. Obviously, λ ≤ λ1 ⇒ V ≤st U . Now assume that

V ≤st U , i.e., FV (t) ≤ FU(t), for all t ≥ 0. From (7) and the definition of U , we get etλ(n+1−k)FU(t) =


n

k − 1


+ o(1), for

t → ∞. Also, from (7) and the definition of V , we obtain without difficulty the following asymptotic property:

etλ1(n+1−k)FV (t) =


n

k − 1

 −
i:λi=λ1

pi


+ o(1), for t → ∞.

So, if λ > λ1, then limt→∞
FV (t)
FU (t)

= ∞, in contradiction with the hypothesis. Thus, V ≤st U ⇒ λ ≤ λ1. This completes the
proof of the theorem. �

We illustrate Theorem 3.1 for n = 5, k = 3 and m = 4. Consider the vectors λ = (1, 5, 7, 10) and p = (0.29, 0.23,

0.42, 0.06). We have a = min λi = 1 and b =
3
∑4

i=1 piλ
3
i ≈ 6.187. In Fig. 2 we plot the hazard rate functions of the

random variable V and the random variable U , with the parameters λ = a and λ = b, respectively.
Note that, from Navarro and Shaked [22], we know that rV/r (a)

→ 1 as t → ∞ (see Fig. 2). Actually, this a general
property, that is, rV and r (a) are asymptotically equivalent as t → ∞.
Comments.

1. Let us define the function l(t) = log(fU(t)/fV (t)), t ∈ (0, ∞). We easily establish the equivalence λ ≥ (
∑m

i=1 piλ
k
i )

1
k ⇔

limt↓0 l(t) ≥ 1. Then, from Theorem 1 in the recent paper Yu [32], for the proof of the equivalence (18) it suffices to check
whether l is a concave function on (0, ∞). However, this theoretical version of the proof can be rather difficult.

2. The characterization given by (18) is not valid for the likelihood ratio order (lr). Suppose k = 1. Then U is an exponential
random variable with hazard rate nλ, and V is a mixture of exponential random variables with respective hazard rates
nλi, i = 1, . . . ,m. From Lemma 3.1 in [36] we find

V ≥lr U ⇔ λ ≥

m∑
i=1

piλ2
i

m∑
i=1

piλi

.

The inequality of Cauchy–Bunyakovsky–Schwarz provides
m∑
i=1

piλ2
i

m∑
i=1

piλi

≥

m−
i=1

piλi.
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Fig. 2. The best hazard rate bounds for a mixture of distributions of third order statistics from exponential samples of size 5.

This inequality is strict for heterogeneous parameters λi. Therefore, if

m−
i=1

piλi ≤ λ <

m∑
i=1

piλ2
i

m∑
i=1

piλi

,

then V is not greater than U in the likelihood ratio order.

4. Bounds for the survival functions of order statistics from heterogeneous exponentials

Our goal is to indicate the best bounds for the survival function of kth order statistic from a set of heterogeneous
independent exponential random variables in terms of survival functions of same kth order statistic from a set (of same size)
of i.i.d. exponential random variables. Note that this problem has been partially solved in [9]. The corresponding problem for
hazard rate order, has been solved in [25], but only for the second order statistic. Also, the subject was treated in [16] for the
last order statistic, which corresponds to the lifetime of a parallel system in reliability. Necessary and sufficient conditions
for the comparison in likelihood ratio order, mean residual life order and dispersive order of the second order statistics from
independent exponential random variables were recently obtained in [36,33,34], respectively.

Essentially, to achieve the desired results, we need a convenient representation for the distributions of the order statistics
from a set of independent exponential random variables.

Theorem 4.1. Let S = {X1, . . . , Xn} be a set of n > 1 independent exponential random variables with respective hazard rates
λ1, . . . , λn. For i = 1, . . . , n, let us denote S[i]

= S \ {Xi} and let X [i]
j:n−1 be the jth order statistic from S[i], with the distribution

function denoted by F [i]
j:n−1, where j ∈ {1, . . . , n− 1}. Then, for all k = 1, . . . , n− 1, the (k+ 1)th order statistic Xk+1:n from S is

the sum of the following two independent random variables: the first order statistic X1:n, having an exponential distribution with
the hazard rate Λ :=

∑n
j=1 λj, and a mixture Zk of order statistics, whose distribution function is given by

FZk(t) = P{Zk ≤ t} =

n−
i=1

λi

Λ
F [i]
k:n−1(t), t ≥ 0. (22)

Proof. We first mention that the arguments presented below are based on some well-known properties of order statistics
from exponential random variables (see e.g. [3], or [2], as general reference). Let Fj:n be the distribution function of Xj:n, j =

1, . . . , n. Assume that k ∈ {1, . . . , n − 1}. By conditioning on the events {X1:n = Xi}, we have:

Fk+1:n(t) =

n−
i=1

P{Xk+1:n ≤ t|X1:n = Xi}P{X1:n = Xi}, t ≥ 0, (23)

with

P{X1:n = Xi} = P{Xi ≤ Xj, j = 1, . . . , n} =
λi

Λ
, i = 1, . . . , n. (24)
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It is well known in the literature that X1:n has an exponential distribution with the hazard rate Λ and is independent of
other spacings (see [17], for the proof). Thus we find that the distribution of the random variable Xk+1:n, conditioned by
X1:n = Xi, is the convolution between the exponential distribution with parameter Λ and the distribution of the random
variable Z [i]

:= [Xk+1:n − X1:n|X1:n = Xi], i.e., [Xk+1:n|X1:n = Xi] is the sum of the independent random variables X1:n and Z [i].
On the other hand, we can easily see that the random variable Z [i] is the kth order statistic from the independent random
variables Z [i]

j := [Xj − Xi|Xj > Xi], where j ≠ i. But, from the memoryless property of the exponential distribution, we
observe that Z [i]

j has the same distribution as Xj. As follows, Z [i] has the distribution function F [i]
k:n−1. Denote by G ∗ H the

convolution of two distribution functions G and H . Then, from (23) and (24), we obtain

Fk+1:n =

n−
i=1

λi

Λ
(F1:n ∗ F [i]

k:n−1) = F1:n ∗


n−

i=1

λi

Λ
F [i]
k:n−1


.

So we get the conclusion. �

Corollary 4.1. In the particular case λi = λ, i = 1, . . . , n, we have,

F (λ)
k+1:n = F (λ)

1:n ∗ F (λ)
k:n−1.

Notice that the statement of Theorem 4.1 complements the results of Theorem 2.1 in [17]. More exactly, from the cited
theorem, we can directly derive our conclusion in the case k = 1. In fact, the representation given by Theorem 4.1 is
a consequence of the property of Markov which governs the corresponding stochastic process in continuous time, with
transition rates, defined on a state space with 2n elements. It is well known that there is a sequential formula for the
distribution function of the time to entry in a given subset of this space. Thus, the proof of Theorem 4.1 can be transcribed
in this language.

Now, we will apply the above results to indicate the best bounds for the survival function of some order statistic from
heterogeneous independent exponential random variables in terms of the survival functions, of the same order statistic,
from i.i.d. exponential random variables. In this sense, the best lower bound has been earlier obtained in [9] by using a
different method.

Theorem 4.2. Let X1, . . . , Xn be a set of heterogeneous independent exponential random variables, with respective hazard rates
λ1, . . . , λn. Let Y1, . . . , Yn be i.i.d. exponential random variables, with common hazard rate λ. Then, for all k = 1, . . . , n,:

Xk:n ≥st Yk:n ⇔ λ ≥


n
k

−1 −
1≤i1<···<ik≤n

λi1 · · · λik

 1
k

, (25)

Xk:n ≤st Yk:n ⇔ λ ≤

n+1−k∑
i=1

λ(i)

n + 1 − k
, (26)

where λ(1) ≤ · · · ≤ λ(n) is the increasing arrangement of the parameters λi, i = 1, . . . , n.
Proof. The proof of the implication

λ ≥


n
k

−1 −
1≤i1<···<ik≤n

λi1 · · · λik

1/k

⇒ Xk:n ≥st Yk:n (27)

of relation (25) is given by induction on the integers k. The assertion is evident for k = 1 and for all integers n ≥ 1.
Assume that (27) holds for some positive integer k and for all integers n ≥ k. Let us consider n ≥ k + 1 and

λ ≥


n

k + 1

−1∑
1≤i1<···<ik+1≤n λi1 · · · λik+1

 1
k+1

. We will use the notations from Theorem 4.1. The induction assumption

leads to

F
[i]
k:n−1(t) ≥ F

(λi)
k:n−1(t), for all t ≥ 0, (28)

where

λi =

n − 1
k

−1 −
I⊂Nn\{i}

|I|=k

∏
j∈I

λj


1/k

, i = 1, . . . , n.

Let V be a positive random variable, independent of X1:n, with the survival function FV =
∑n

i=1
λi
Λ
F

(λi)
k:n−1. The inequality (28)

and the definition of the random variable Zk (given in the proof of Theorem 4.1) ensures Zk ≥st V . The closure property of the



E. Păltănea / Journal of Multivariate Analysis 102 (2011) 896–907 905

usual stochastic order under convolutions leads toX1:n+Zk ≥st X1:n+V . Then, fromTheorem4.1,we obtainXk+1:n ≥st X1:n+V .
Denote

λ∗
=


n−

i=1

λi

Λ
λk

 1
k

.

Let consider now a positive random variable U , independent on X1:n, with the distribution function FU(t) = F (λ∗)
k:n−1(t), t ≥ 0.

From Theorem 3.1 we have V ≥st U . Hence, X1:n + V ≥st X1:n + U . So Xk+1:n ≥ X1:n + U .
From the definition ofλi, using the properties of the elementary symmetrical functions, we get

λ∗
=

Λ−1

n − 1

k

−1 n−
i=1

λi

−
I⊂Nn\{i}

|I|=k

∏
j∈I

λj


1
k

=

nΛ−1


n
k + 1

−1 −
I⊂Nn

|I|=k+1

∏
j∈I

λj


1
k

.

Thus, we conclude that

λ∗
= (mk+1)

k+1
k (m1)

−
1
k ,

where mj = mj(λ) is the jth mean of the vector with positive components λ = (λ1, . . . , λn), defined by:

mj =

n
j

−1 −
1≤i1<···<ij≤n

λi1 · · · λij

 1
j

, for j = 1, . . . , n.

Recall Maclaurin’s inequalities (see [14], or [19], for details):

m1 ≥ m2 ≥ · · · ≥ mn, (29)

where m1 = (
∑n

i=1 λi)/n andmn =
n
∏n

i=1 λi. Therefore, we obtain λ∗
≤ mk+1.

We have assumed thatλ ≥ mk+1. Then clearly Yk+1:n ≤st W , whereW is the (k+1)th order statistic of a random sample of
size n from an exponential distributionwith hazard ratemk+1. It is well known (see e.g. [3]) thatW can be represented as the
sumof k+1 independent exponential randomvariablesW1, . . . ,Wk,Wk+1 with thehazard rates b1 = (n−k)mk+1, . . . , bk =

(n−1)mk+1, bk+1 = nmk+1, respectively. Similarly, since U has the distribution of the kth order statistic of a random sample
of size n−1 from an exponential distributionwith hazard rate λ∗, we can representU as a sum of k independent exponential
random variables U1,U2 · · · ,Uk with the hazard rates a1 = (n−k)λ∗, a2 = (n−k+1)λ∗, . . . , ak = (n−1)λ∗, respectively.
For uniformity, let us denote Uk+1 = X1:n, which is an exponential random variable with the hazard rate ak+1 = Λ = nm1,
independent of U1, . . . ,Uk. Thus, to prove (under the assumption: λ ≥ mk+1) the desired inequality Xk+1:n ≥st Yk+1:n, it
suffices to show that:

k+1−
i=1

Ui ≥st

k+1−
i=1

Wi. (30)

Clearly, a1 < a2 < · · · < ak and b1 < b2 < · · · < bk < bk+1. From (29), mk+1 ≤ m1. It results ak < ak+1. Also,
j∏

i=1
ai

j∏
i=1

bi

=


λ∗

mk+1

j

=


mk+1

m1

 j
k

≤ 1, for j = 1, . . . , k,

and
k+1∏
i=1

ai

k+1∏
i=1

bi

=
mk+1

m1
·

nm1

nmk+1
= 1.

Then from Theorem 1 in [10] we obtain (30).
Now, we will prove in a similar way the implication

λ ≤

n+1−k∑
i=1

λ(i)

n + 1 − k
⇒ Xk:n ≤st Yk:n, (31)
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Fig. 3. The best bounds for the survival function of the order statistic 3:5 from heterogeneous independent exponentials.

where λ(1) ≤ · · · λ(n) is the increasing arrangement of the parameters λi, i = 1, . . . , n. Assertion (31) is clear for k = 1 and
n ≥ k.
Assume that (31) holds for some positive integer k and for all integers n ≥ k. For a fixed n ≥ k + 1, suppose λ ≤ λ,

where λ =

∑n−k
i=1 λ(i)
n−k . Let W ′ be the (k + 1)th order statistics of a random sample of size n from an exponential distribution

with hazard rate λ. We have Yk+1:n ≥st W ′ and W ′
= W ′

1 + W ′

2, where W ′

1 and W ′

2 are independent random variables with
respective distribution functions F (λ)

1:n and F (λ)

k:n−1 (see Corollary 4.1). Let λ[i]
(1) ≤ · · · ≤ λ

[i]
(n−1) be the increasing arrangement of

the elements of the set {λj : j ∈ Nn \{i}} and denote λi =

∑n−k
j=1 λ

[i]
j

n−k , i = 1, . . . , n. From the hypothesis, keeping the notations
of Theorem 4.1, we have

F
[i]
k:n−1(t) ≤ F

(λi)
k:n−1(t), t ≥ 0, i = 1, . . . , n. (32)

Let V ′ be a positive random variable, independent of X1:n, with the survival function FV ′ =
∑n

i=1
λi
Λ
F

(λi)
k:n−1. From relation

(32) we obtain Zk ≤st V ′. Therefore, X1:n + Zk ≤st X1:n + V ′ and, from Theorem 4.1, we get Xk+1:n ≤st X1:n + V ′. We easily
see that min1≤i≤n λi = λ. Let U ′ be a positive random variable, independent of X1:n, with the distribution function FU ′(t) =

F (λ)

k:n−1(t), t ≥ 0. Since Theorem3.1 providesV ′
≤st U ′, we find thatX1:n+V ′

≤st X1:n+U ′. ThusXk+1:n ≤st X1:n+U ′. The random
variables W ′

1 and X1:n are exponential with hazard rates nλ and Λ, respectively. Clearly, nλ ≤ Λ. Then W ′

1 ≥st X1:n. On the
other hand, the randomvariablesW ′

2 andU ′ are identically distributed. Therefore,W ′

1+W ′

2 ≥st X1:n+U ′. So, Yk+1:n ≥st Xk+1:n.
Thus, implication (31) is proved by induction.

We now refer to the reverse implications. The proof of the implication

Xk:n ≥st Yk:n ⇒ λ ≥


n
k

−1 −
1≤i1<···<ik≤n

λi1 · · · λik

 1
k

can be found in [9].
Assume that Xk:n ≤st Yk:n. Then

lim sup
t→∞

FXk:n(t)

F Yk:n(t)
≤ 1.

If λ > λ then, from (5) and (7),

FXk:n(t)

F Yk:n(t)
= et(n+1−k)(λ−λ) FXk:n(t) · e(n+1−k)λt

F Yk:n(t) · e(n+1−k)λt
→ ∞, when t → ∞.

A contradiction. So λ ≤ λ. �

Let us illustrate a numerical example for Theorem 4.2. Assume that n = 5 and k = 3. For λ = (1, 5, 7, 10, 12), we

have 3

∑
1≤i1<i2<i3≤5 λi1λi2λi3/


5
3


≈ 6.406and

∑3
i=1 λi/3 ≈ 4.333. In Fig. 3, we plot the graph of the survival function
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R of the random variable X3:5 in the following situations: for heterogeneous parameters (1, 5, 7, 10, 12) and for common
parameters 6.406 and 4.333, respectively.

We assume that the characterization given by Theorem4.2 is also valid for the hazard rate order. In this regard, a previous
conjecture was formulated in [25]. The key point of a proof by induction seems to be a certain closure property of the hazard
rate order. Note that the preservation of the hazard rate order under mixtures of exponentials has been treated in [5]. But
here we deal with mixtures of order statistics from exponential random variables.

The method outlined by this paper can serve to find similar equivalences for other stochastic orderings. Moreover,
the mixture representation given by Theorem 4.1 can be considered for general coherent systems. However, the Parrondo
paradox (see [11]) shows us that we should always be cautious on the preservation of the stochastic orders under mixtures.
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