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The high energy and luminosity of the LHC makes it possible to observe the pair charmonium production processes and to measure the
corresponding cross sections with sufficiently high accuracy. The result of the measurement of the pair /¢ meson production by the LHCb
Collaboration was published in [1] and discussed many times on different workshops [2]. This process together with the charmonium and
associated open charm production can be considered as a probe of the quarkonium production mechanism. According to non-relativistic
QCD (NRQCD) [3] and collinear parton model [4-6] the predictions of observed cross section in the leading order in o can be obtained
by the use of parton distribution functions and a set of local non-perturbative charmonium production color singlet and color octet matrix
elements [7-11]. In the proton-proton collisions, additional contributions from other mechanisms, such as the double parton scattering
(DPS) or the intrinsic charm content of the proton to the total cross section are possible [12-14]. The processes of quarkonium production
in proton-proton interaction are generally described using the scale-dependent parton density functions. They are calculated as functions
of the Bjorken variable x at some factorization scale within the approach of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equations. However, the double charmonium production in pp collisions at high energies can be sensitive to the details of the
parton kinematics. Therefore, it is more appropriate to use the parton distributions unintegrated over the transverse momentum k; in the
framework of the k;-factorization [12]. There exists another source of theoretical uncertainty related with the pair charmonium production
which gives essential modification of the cross sections. It is connected with the account of relative motion of heavy quarks forming the
bound states. As was shown in [15] these relativistic corrections significantly change the cross section of the pair charmonium production
in pp interaction obtained in non-relativistic approximation. The detailed investigation of this relativistic mechanism for exclusive double
charmonium production in ete~ annihilation [16-18] evidently shows that it is impossible to obtain the reliable theoretical predictions
for observed quantities without an account of relativistic corrections. Finally, the next to leading order QCD corrections to the production
amplitudes also should be taken into account.

The strategy of experimental investigations can be directed on the study of such physical reactions in pp collisions in which one of
the described mechanisms of quarkonium production is dominant. Unfortunately, as we know at present time all enumerated mechanisms
have important effect in the pair charmonium production and their contributions to the total cross section should be taken into account
to obtain high accuracy theoretical result.

In this work we continue the study of relativistic effects in the inclusive pair charmonium production by considering the process
p+p — ne+nc+ X. Our calculation of the production cross section is performed on the basis of relativistic quark model used previously
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for the investigation of relativistic corrections to the other reaction p +p — J/¢ + J/¥ + X in [15]. We work within the single-parton
scattering (SPS) mechanism in which the basic contribution to the charmonium production is determined by the gluon-gluon fusion. The
aim of the present study consists also in the analysis of some uncertainties regarding the choice of parton distribution functions (PDF). In
spite of existing difficulties in the detecting of 7. meson pairs it is thought that in new run of the LHC this process will be studied more
successfully.

The differential cross section do for the inclusive double charmonium production in proton-proton interaction can be presented in the
form of the convolution of partonic cross section do[gg — n.n.] with the parton distribution functions of the initial protons [7,6,4,5]:

do[p+p—>nc+nc+Xl= /dx1 dxy ferp(x1, 1) fg/p(x2, ) do (g€ — Nencl, (1)

where fg/p(x, 1) is the partonic distribution function for the gluon in the proton, x1 » are the longitudinal momentum fractions of gluons.
The cross section formula (1) contains the factorization of the long distance PDFs and the short distance gluon fusion cross section
do[gg — ncnc] with the factorization scale ©. Neglecting the proton mass and taking the c.m. reference frame of initial protons with the
beam along the z-axis we can present the gluon on mass-shell momenta kq; = xlyzg(l, 0,0, £1). +/S is the center-of-mass energy in
proton-proton collision.

In the quasipotential approach the double charmonium production amplitude for the basic parton subprocess g + g — 1. + 1. can
be expressed as a convolution of a perturbative production amplitude of two c-quark and c-antiquark pairs 7 (p1, p2;q1,q2) and the
quasipotential wave functions of the final mesons ¥, [17,18]:

dp dq
@r)3 ) @n)?

Mlgg — nencl(ka, ka2, P, Q) = ¥ (p, P)¥(q, Q) ® T(p1, p2; 41, q2), 2)
where pj and p; are four-momenta of c-quark and c-antiquark in the pair forming the first n. particle, and g, and q; are the appropriate
four-momenta for quark and antiquark in the second meson 7.. They are defined in subsequent transformations in terms of total momenta
P(Q) and relative momenta p(q) as follows:

1 1
pia=oPEp, P)=0.  q2=5Q+q (@Q)=0. 3)
This expression describes the symmetrical escape of the c-quark and c-antiquark from the mass shell. In Eq. (2) we integrate over the
relative three-momenta of quarks and antiquarks in the final state. The systematic account of all terms depending on the relative quark
momenta p and q in (1) is important for increasing the accuracy of the calculation. p = Lp(0,p) and q = Lq (0, q) are the relative four-
momenta obtained by the Lorentz transformation of four-vectors (0, p) and (0, q) to the reference frames moving with the four-momenta
P and Q.

The relativistic wave functions of the bound quarks, accounting for the transformation from the rest frame to the moving one with
four-momenta P and Q, are the following [17,18]:
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where the hat symbol means a contraction of the four-vector with the Dirac gamma matrices; vi = P/M, v, = Q /M; €(p) = /m?2 + p?,
m is c-quark mass, and M is n. charmonium mass, M # 2m.

The amplitude (2) is projected onto a color singlet state by replacing v;(0)u(0) with a projection operator of the form v;(0)i(0) =
v5(1 4 10)8ik/2+/6. The relativistic wave functions in Eq. (4) are equal to the product of the wave functions in the rest frame lI/OrIC and the
spin projection operators that are accurate at all orders in |p|/m [17,18]. Our derivation of relation (4) accounts for the transformation law
of the bound state wave functions from the rest frame to the moving one with four-momenta P and Q, which was obtained in [19,20].
The physical interpretation of the double charmonium production amplitude is the following: we have a complicated transition of two
heavy c-quark and c-antiquark produced in gg-fusion outside the mass shell and their subsequent evolution firstly on the mass shell (free
Dirac bispinors) and then to the quark bound states. In the spin projectors (4) we have p?, q* % M?/4 —m? so that we can consider these
structures as a transition form factors for the heavy quarks from the free states to the bound states.

In the leading order in the strong coupling constant o, there are 39 Feynman diagrams contributing to the pair production of 7
mesons. They can be divided into two sets shown in Figs. 1 and 2, respectively. Their total contribution to the production amplitude (2)
can be presented in the following form:

1. 55 dp dq
M[gg — nenclky, k2, P, Q) = §M71 ag PISE / PI3E [Tr 90t + 3AM], (5)

where we explicitly extracted the relativistic normalization factors ~/2M of quasipotential wave functions. The construction and transfor-
mation of the production amplitudes is performed by means of the package FeynArts [21] for the system Mathematica and Form [22].

The integrand term in (5) containing the trace of the amplitude 9t represents the contribution of 31 diagrams in Fig. 1 and equals up
to the wave functions definitions (4) the analogous expression in the case of pair J/¢ production, which can be found in Ref. [15]. The
second integrand term in (5), coming from additional 8 diagrams in Fig. 2 for 7. production amplitude, has the form
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Fig. 1. The typical diagrams (the set of 31 Feynman diagrams) of the leading order for g+ g — nc(J/¥) + nc(J/¥). The others can be obtained by reversing the quark lines

or interchanging the initial gluons.

Fig. 2. The additional typical diagrams (the set of 8 Feynamn diagrams) of the leading order for g + g — n¢ + 1. only.
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where the Mandelstam variables for the gluonic subprocess gg — n¢n. are
s= (ki +k2)* = (P + Q)* =x1x:5, (7)
t=(P —k1)? =(Q —k2)? = M? — x1+/S(Po — |P|cos ¢) = M? — X1%,S + X2+/S(Po + |P| cos ¢), (8)
u=(P—k2)?=(Q —k1)?> = M® — x2v/S(Pg + |P| cos $) = M? — x1x2S + x1v/S(Po — |P| cos §), (9)
¢ is the angle between P and the z-axis. The transverse momentum Pt of 7. and its energy Py can be written as
) (M? —1)? X1x27/S
PZ = |Psinp=—t— — ", Py = P 10
T =1|P|”sin” ¢ P = itx T x + | |cos¢. (10)

In order to calculate relativistic corrections contained in the production amplitude (6) we expand the inverse denominators of gluon
and quark propagators as series in relative quark momenta p and q:
1 _ 4
(P1+q1)? s
1 2
(ka —q2)2—m?  t—M? (t—M?)?
There are 16 different propagators in the amplitude (5), which have to be expanded in the manner of Egs. (11). Then, preserving in the

expanded amplitude terms up to the second order in relative quark momenta p and q, we can perform angular integration using the
following relations for S-wave charmonium:

16 2
- 2P +0*+pQ+aP]+

2 M2 2
q ~|—2qkz+T—m b EERE (11)
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/ v dp 1 fszs(p)
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where Rs(p) is the radial charmonium wave function.
As a result of described transformations, we obtain the following general structure of pair 1. production amplitude (5):

Mgg = nencl = Ai(e162) + A2(e1P)(e2P) + A3(61Q)(e2P) + As(e1P)(e2Q) + As(61Q)(62Q), (13)

where A; are the functions of variables s and t. Due to the bulkiness of corresponding expressions for coefficient functions .4; we do not
present them here in exact form.
In order to find the differential cross section for the gluonic subprocess we should calculate the squared modulus of the amplitude (13)
summed over polarizations of the initial gluons by means of the following relation:
Hv VM
ki ky +kik,

Hoxv 1 Hy i =
gl et = — , i=1,2. 14
> el ok g (14)

Then we obtain the general form of the gg — n.n. cross section corresponding to the production amplitude (13):

1
10247 54 (SZA% + [sA1 + (A2 — A3 — Ag + As) (st + (M2 - t)z)]z). (15)

Making necessary substitutions for the functions .4;, we find it useful to transform the result (15) as follows:

do
E[gg — NeNel =

\R(O)\ Za)lF(')(s ). (16)

i=0

— t
[gg—>ncnc](s )= 92162

The auxiliary functions F® entering the cross section (16) are written explicitly in Appendix A. Note that the function F(® describes
non-relativistic result which coincides in the limit M, = 2m with the corresponding function obtained in Ref. [11] in the approach of
NRQCD. Relativistic corrections in (16) are determined by a number of relativistic parameters w;:

I I 2
wo=1, wl=—, wy=—, w3 = w7,
Iy Iy
Fm+e(p) [ m+e(p) ®\"
m+e(p ) m4e(p) (m—e(p)\ " )
Io=/—R<p>p dp. 11.22/ ( ) R(p)p?dp,
J 2e) J 26 \m+ep)

R(0) = \/7/ 2—1;(()17) R(p)p? dp. (17)

In the non-relativistic limit, the parameter R(0) coincides with the definition of radial wave function at the origin, so it can be considered
in some way as its relativistic generalization.

All parameters, which contain the meson wave functions and describe the transition of the pairs (cc) to the bound state, are calculated
in the framework of relativistic quark model [17,18]. This model is based on the Schrdédinger equation with the Breit Hamiltonian in
QCD and the non-perturbative confinement terms. Using the program of numerical solution of the Schrédinger equation [23, 15] we
obtain relativistic wave functions and bound state energies of S-wave charmonia. Numerical values of charmonium masses M T =

3.072 GeV and M} = 2.988 GeV obtained in our numerical calculation lie close to the experimental results M7/, =3.097 GeV and

Mf;ﬁp = 2.981 GeV [24]. The additional details on our relativistic quark model can be found in Refs. [15,18]. So, we consider that our
treatment of relativistic corrections of order (p/m)? to the bound state wave function at the rest frame leads to sufficiently accurate
results up to typical relativistic momenta of order of c-quark mass m.

The numerical results of our calculation of the pair S-wave charmonium production cross sections in the case of non-relativistic ap-
proximation as well as with the account of relativistic corrections of order v2 are presented in Table 1. Along with total cross section
values, we have also included there the cross section predictions corresponding to the rapidity interval 2 < yp o < 4.5 of the LHCb
experiment [1] calculated with two different sets of linear PDFs: CTEQ5L [25] and CTEQG6L1 [26]. As shown in Table 1, the cross sec-
tion o'[pp — 21 + X] at /S = 7(14) TeV is equal to 1.3 (2.4) nb for CTEQ5L and 1.0 (1.7) nb for CTEQ6L1. The most important production
rates lie in the region of small Pr (see Fig. 3), where the color singlet contribution is dominant. Performing the numerical integration of
differential cross section (16), we use the LO expression for the running coupling constant o (w) with the initial value os(Mz) =0.118 and

the renormalization scale p =mr =,/M?2 + P2, where M is the meson mass. In our numerical calculations of the cross sections we set

My, =2.981 GeV and m = 1.55 GeV. Therefore, we take into account non-zero bound state energy of 7. charmonium state leading to the
bound state corrections to the production cross section (16). Numerical results in Table 1 are determined by a number of parameters and
functions: the c-quark mass, the factorization scale w, parameters of the quark interaction operator, the bound state wave functions, the
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Table 1
The comparison of relativistic and non-relativistic cross sections of a pair S-wave charmonium production in pp collisions obtained for different sets of partonic distribution
functions. Two results corresponding to the cutoff parameters m and m/2 (in round brackets) are included.

Energy v/S Meson pair, cross section type o (total), nb 0(2<ypq <4.5),nb
CTEQ5L CTEQ6L1 CTEQ5L CTEQ6L1
VS=7Tev J /¥ ]/, relativistic 9.6 (7.1) 74 (5.4) 1.6 (1.2) 1.2 (0.9)
J/¥ ] /¥, non-relativistic 23.0 17.7 3.8 29
NeNe, relativistic 23.7 (25.8) 19.9 (21.6) 1.3 (0.8) 1.0 (0.6)
NcNe, Non-relativistic 56.3 48.1 15 12
JS=14Tev J/ ¥ ]/, relativistic 171 (12.6) 13.2 (9.7) 3.0(2.2) 21 (1.6)
J/¥ ] /¥, non-relativistic 41.0 31.6 71 5.1
NeNe, relativistic 47.8 (53.2) 39.3 (43.5) 24 (15) 1.7 (1.1)
NcNe, Non-relativistic 116.5 94.7 2.8 2.0

PT7 GeV

Fig. 3. The cross section do /dPt at /S =7 TeV for gluon distribution functions CTEQ5L (dashed curve) and CTEQ6L1 (solid curve).

parton distribution functions and the strong coupling constant. Some of them (the c-quark mass, the quark-antiquark potential) are fixed
in the relativistic quark model in the mass spectrum calculation. The factorization scale w is taken in a commonly used form [8,10,11].
Other quantities lead to basic uncertainties of our numerical results.

It is evident from Table 1, that relativistic corrections of order v2 decrease the cross section values more than two times in both
cases connected with the pair production of J/¢¥ or n. mesons. The only exception is the case of a pair 1. production cross section
in the rapidity region 2 < yp o < 4.5, where the relativistic effects decrease the cross section only by approximately 20 percents. The
change of PDF from CTEQ5L to CTEQG6L1 brings the additional 20-30 percent decreasing to the value of cross section. Along with the
possibility of different PDF choices, there also exists the uncertainty dealt with the determination of every particular partonic distribution
function. The sets CTEQ5L and CTEQ6L1 contain no means to estimate the uncertainties of such sort, however the set CTEQ6M [26] has all
necessary functionality. Using 40 uncertainty eigenvectors from CTEQ6M we can roughly estimate the error of every cross section value
in Table 1 dealt with the PDF uncertainty as 15 %. The only known calculation of the 7.-pair production in proton-proton collision was
performed in Ref. [11]. Their Table II contains the obtained numerical results for different PDFs CTEQ5L and CTEQ6L1 with Pt > 3 GeV,
which are of order of 4 nb. They used almost the same values of the c-quark mass, the factorization scale p as in our calculation
but a different numerical value for the parameter R(0). Our value of the radial wave function at the origin in non-relativistic limit
is equal to R(0) ~ 0.8 GeV3/2, whereas in Ref. [11] the authors took the long distance matrix element (0)s = 1.4 GeV>, which gave
R(0) = 1.7 GeV3/2_ In the region of large transverse momentum P (Pt > 3 GeV) the cross section falls considerably, so that the basic
contribution to our result in Table 1 is determined by the region of small momenta Pr. Therefore, our non-relativistic results 1.5 nb and
1.2 nb differ significantly from the values of cross sections obtained in non-relativistic SPS approximation in [11]. This difference is related
with a choice of the parameter R(0) in [11] which exceeds our value more than two times.

Another possible source of uncertainties is connected with the determination of relativistic wave function in the momentum region
p 2 m. The obtained charmonium wave function is strongly decreasing in this region. Its numerical value at p = m is more than 50
times smaller the maximum value. Nevertheless, relativistic factors p2 and p?, entering in the integrals I1,» change this relation and
increase the inaccuracy in the wave function determination at p > m. In spite of the fact that momentum integrals appear to be fully
convergent, our relativistic model cannot provide a reliable calculation of the wave functions in the region of relativistic momenta p 2> m.
Our definitions (17) of the parameters [;, contain the cutoff at relativistic momentum of order m. Using indirect arguments related
with the mass spectrum calculation accuracy we estimate in 10% the uncertainty of the wave function determination. Larger value of the
error would lead to the essential discrepancy between the experiment and theory in the calculation of the charmonium mass spectrum.
Accounting for that the production amplitude contains two momentum integrals with the bound state wave functions we conclude then
that the corresponding error in the cross section (16) is not exceeding 40%. We do not consider a part of theoretical error related with
radiative corrections of order os because these corrections are omitted in our analysis. We also assume that relativistic corrections of order
0(v*) to the cross section (16) coming from the production amplitude should not exceed 30% of the obtained relativistic result. So, our
total theoretical error is not exceeding 52%. To obtain this estimate we add the above mentioned uncertainties in quadrature. There exists
another approach to the estimate of theoretical uncertainty coming from the region of relativistic momenta p near m. It is based on the
comparison of numerical results obtained for a cutoff parameter m and for a cutoff parameter m/2. The used Breit-like Hamiltonian and
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obtained c-quark bound state wave functions can contain theoretical errors because the expansion in powers of p/m is not acceptable at
the p =m. Of course, we do not know what part of the obtained contribution from the region m/2 < p < m enters into the final result.
The worst case consists in the inclusion to theoretical error the total numerical result obtained in the region m/2 < p < m. We carry out
corresponding calculations at two different cutoff parameters m and m/2 and present them in Table 1. The difference between them could
be considered as an estimate of theoretical error which amounts in this case 20%-40%.
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Appendix A. The coefficients F ! entering the differential cross section (16)

In this appendix, we present analytical results for the parton differential cross section (16). Firstly, we introduce the following auxiliary
functions of the Mandelstam variables s, t, u, and k =m/M:

32
ky = ,
T 3M23tu(2s + M2(1 — 4k2)) (2t — M2(1 + 4k2))22u — M2(1 + 4k2))2
o — —512
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256(s —t 2(s 4t —u)?
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+26081t%u? + 83 1126%u® + 260812 — 34040tu” + 3u®) + s°(t — wy* (¢ + u)(57¢t* — 70124c3u — 72 506t%u?
— 70124003 4 57u®) + 5> (£ — )*(9t° — 23506%u — 63 273¢*u? + 2204633 — 63273t2u* — 2350tu° + 9u®)
+24s*t(t — w)®(t + u) (1163t — 1906tu + 1163u?)u + 325>t(t — u)®(562t* — 577t>u — 18t%u? — 577tu® + 562u*)u
+40s%t(t — u)®(t +u)(133t% — 34tu + 133u?)u + 144st(t — u)'©(19t? + 46tu + 19u®)u + 864t(t — w) 2 (t + wu), (A4)
Ab = —4s%tu(1061s"" + 18595 (¢ + u) — 65°(433t% — 1502tu + 433u?) — 2% (t + u) (2827t — 6134tu + 2827u?)
+24s”(t — u)*(72t* — 647tu + 72u?) + 40s°(t — w)*(t + u) (161> — 398tu + 161u?)
+25°(t — u)*(313¢% + 5986tu + 313u?) — 25 (¢ — w)* (¢ + u)(1525¢% — 4586tu + 1525u%) — s° (¢ — u)®
x (1189¢% +3502tu + 1189u?) + s%(t — u)5(t + u)(261t% — 1514tu + 261u?) + 12s(t — w)® (3162 + 14tu + 31u?)
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+144(t — w0t + u)) — 4stu(c — 1/2)(14421s'? + 342485 (t +u) — s'°(8511¢% — 129586tu + 8511u?)
— 859(t +u)(9129¢% — 23 527¢tu + 9129u?) — 258(16065t* + 59372¢%u — 167 130t%u* + 59372tu> + 16 065u*?)
+4s”(t — u)?(t + u) (108272 — 45008tu + 10827u?) + 2s°(t — u)? (18 891¢* + 28403 u — 77 062t%u? + 2840tu>
+18891u?) + 525 (t — u)* (¢ + u) (97t + 920tu + 97u?) — s*(t — u)*(6659t* — 2087667 u — 3822t%u?
—20876tu> +6659u?) — 45> (¢t — u)®(t + u) (18692 — 2300tu + 1869u?) — s (¢ — u)®(3191¢* + 13443u — 9454¢%u?
+ 134410 + 3191u?) — 4s(t — w)B(t + u) (2032 + 334tu + 203u?) — 432(t — w) (¢ + u)?), (A5)
c1=3s"(t +u) + 12792453 tu — 45" (t + u) (3t2 — 99607¢u + 3u?) — 165''£(6327¢* — 119 146¢u + 6327u?)u
+25"0(t + u) (9t* — 8204403u + 1900 702t%u? — 820440tu> + 9u?) — 3259t (42 787t* + 958283u
— 266062t%u? + 95828tu> + 42 787u*)u — 4s® (t — w)?(t + u) (3t — 476 4926%u + 1778 482t%u* — 476 492tu> + 3u?)
+8s”t(t — u)?(395023¢* + 173 924¢%u — 1092 582¢%u? + 173 924tu> + 395 023u?)u + s°(t — w)*(t + )
x (3t — 458926%u + 6221826t%u? — 45892tu> + 3u?) — 4s°¢(t — u)* (587629t — 1290766 u — 999 794¢%u?
—129076tu + 587 629u*)u — 4s*t(t — u)®(t + u) (258 537¢% + 588 302tu + 258 537u?)u + 85>t (t — u)®
x (56911t* — 557967 u — 45238t*u? — 55796tu> + 56 911u*)u + 14405 (t — u)u(t + u) (287t + 166tu + 287u?)
+288st(t — u)"%u(255¢% + 538tu + 255u?) — 864t(t — u)'*(t + u)u, (A.6)
Ac = —8tu(26215s" +720295" (t + u) — s (46 586t — 347 812tu + 46 586u?) — 4s'°(t + u)
x (78089t* — 168 598tu + 78 089u?) — 4s°(37679t* + 168 700t>u — 401 590t*u” + 168 700tu> + 37 679u*?)
+2s3(t — u)(t +u)(223529t* — 615866tu + 223 529u) + 257 (t — u)*(227477t* + 195492t u — 823 282t%u*
+195492¢tu® + 227477u®) — 4s5(t — u)* (t +u)(50509¢t* — 265 278tu + 50509u?) — s° (¢t — u)* (402 183¢* — 13 884¢°u
— 817942t%u? — 13884tu> + 402 183u”) — 7s* (¢t — u)®(t + u) (6701t + 56 246tu + 6701u?) + 245> (t — u)®
x (4913t* — 274063u — 6138t%u? — 2740tu> + 4913u*) + 48s%(t — w)®(t + u) (817¢* + 812tu + 817u?)

—324s(t — w0 (1162 + 2tu + 11u?) — 972(t — )2 (t + u)), (A7)

a; =a1 + Aa, by =bq + Ab, cy=cC1+ Ac. (A.8)
Then, the coefficients F® entering the differential cross section (16) have the following form:
FO =k2(a} +a3),
F = kekp(a1b1 + azby) + 8k2 (a2 + ),
F@ = —4k2(a? +dd),
1

F® = 6kakp(aib + azby) + kekc(arct + azcz) + 24k2(a? +a3) + Zk,ﬁ (b3 +b3). (A.9)

Note that we expand functions a; > and by in the mass difference (2m — M) up to the term linear in (x — 1/2) and set the value
k =1/2 in c1 3. Such simplifications allow us to significantly reduce the length of analytical expressions (A.2)-(A.7), while the numerical
results of the cross sections change on 1-5 percents. In Table 1 we present numerical results corresponding to exact functions a;, bj,
and c;.
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