NOTE

ON A QUESTIION OF S. EILENBERG

Christophe REUTENAUER
Institut de Programmation, Université Pierre et Marie Curie, Paris VI, France

Communicated by M. Nivat
Received April 1977
In [1], Eilenberg quotes the following open problem: is every \mathbb{R}_{+}-rational sequence with rational coefficients \mathbf{Q}_{+}-rational?

This question is positively answered in a paper by Soittola [4], which appeared in this journal.

We show that it is not possible to generalize this result to the case of more than one variaule.
Define an \mathbf{R}_{+}-rational series S on the alphabet $X=\{x, v\}$ by:

$$
S=\sum_{w \in X}\left(\alpha^{2\left(\left|w_{x}-\right| w_{y}\right)}+\alpha^{2\left(\left|w_{y}-\right| w_{x}\right)}\right) w
$$

where $\alpha=\frac{1}{2}(\sqrt{5}+1)$ denotes the golden ratio and $|w|_{z}$ denotes the number of occurrences of the letter $z \in X$ in w.
(1) Since $S=\left(\alpha^{2} x+\alpha^{-2} y\right)^{*}+\left(\alpha^{-2} x+\alpha^{2} y\right)^{*}$ and $\alpha, \alpha^{-1} \in \mathbf{R}_{+}, S$ is an $\mathbf{R}_{+}-$ rational series.
(2) For even $n \in \mathbb{N}, \alpha^{n}+(1 / \alpha)^{n}=\alpha^{n}+\beta^{n}$, where $\beta=\frac{1}{2}(1-\sqrt{5})=-1 / \alpha$, is the nth term of the Lucas sequence [3], and hence a positive integer. Thus, the coefficients of S are in N .
(3) Suppose now that S is a \mathbf{Q}_{+}-rational series: then, according to Fliess [2], S is a \mathbf{N}-rational series, and, according to Eilenberg [1], for any $k \in \mathbb{N}, \mathbf{L}_{k}=$ $\left\{w \in X^{*}:(S, w)=k\right\}$ is a rational subset of X^{*}.
(4) Since, for any $a>0, a \neq 1: a+1 / a>2$, one has: $L_{2}=\left\{w \in X^{*}:|w|_{x}=\right.$ $\left.|w|_{y}\right\}$ which is not a rational language.

References

[1] S. Eilenberg, Automata, Langt:ages and Machines, Vol. A (Academic Press, New York, 1974).
[2] M. Fliess, Séries rationneiles positives et processus stochastiques, Ann. Inst. H. Poincaré, Sect. B 11 (2) (1975).
[3] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers 'Clarendon Press, Oxford, 19XX).
[4] M. Soittola, Positive rational sequences, Theoret. Comp. Sci. 2 (3) (1976) 317-322.

