never drove (ND), non-drivers who gave up driving because of eyesight (GDE), and non-drivers who gave up driving because of other reasons (GDO). We performed analysis of variance to estimate differences among different driving statuses for the HU and all QOL scores. Least squares means adjusted on bilateral VA, age, gender, and education were calculated. RESULTS: ND reported significantly lower HU than D group (p = 0.0006). Seven out of 10 vision functioning scores, general health score, and composite score of ND group were also lower than D group (p < 0.05). GDE showed lower mean scores for all the QOL dimensions when compared to D group while GDO had no difference. Patients with better WEVA (BEVA < 20/40; WEVA < 20/200) reported higher scores on the NEI-VFQ 25 dimensions of dependency, near vision, and driving as well as the composite scores than patients with worse WEVA (BEVA > 20/40; WEVA > 20/200) (p < 0.05). CONCLUSIONS: The results of bilateral visual acuity show different impacts on vision functioning. When BEVA falls below 20/40, WEVA severity resulted in higher burdens on overall vision related QOL as well as dependency and near vision functioning. Driving status is shown to be significantly associated with QOL. Physicians should be aware of driving status when evaluating QOL in patients with NV-ARMD.

Linguistic Validation of the Attention and Performance Self-Assessment Scale, APSA, for Use in International Studies

Montgoy C, Görtelmeyer FR, Korbel US

Map Research Institute, Lyon, France, MERZ Pharmaceuticals GmbH, Frankfurt am Main, Germany

OBJECTIVES: To assess the patient-reported ability to concentrate of people with tinnitus in an international context, the 30-item APSA originally developed in German had to be translated into 5 languages. A rigorous methodology was employed to ensure consistency and high inter- and cross-cultural relevance of the translations. METHODOLOGY: To facilitate the translation process, the original German version was first translated into US English and then into the 5 target languages following the internationally accepted process: 1) forward translation; 2) back translation; 3) clinician review; 4) cognitive debriefing on 5 patients with tinnitus; and 5) international harmonization. Each step was conducted in close collaboration with the developer. RESULTS: Two challenges were inherent in this process: 1) For reasons of timing, the translations into languages other than English started prior to finalizing the US version. This introduction to the US English text as a non-final version of the German original required a constant update of the list of concepts (the document defining the meaning of each item and accepted alternative formulations for translations) as well as a constant modification of the US English translation and consequently the other language versions. The “two wave” translation process revealed issues in the German original requiring the integration of updates at all levels as well as the reformulation of 2 items in the German version. CONCLUSIONS: The translation of the APSA was performed following a rigorous methodology to facilitate international comparison and pooling of data. The project demonstrates the difficulty of using non-English measures in an international context. It also reveals the essential role the “list of concepts” plays in the translation process and suggests the advantage of integrating international input into the design of measures when these are used in an international context.