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Abstract 

The performance of repaired concrete structures continues to be a major global concern. Regardless of improvements in repairing 

materials and methods, several repaired concrete structures still fail prematurely, leading to costly and time consuming repairs of repairs. 

Studies in the field of concrete repairs showed that almost 50% of repaired concrete structures had failed in Europe and USA. 

Simultaneously, numerous existing concrete structures needs to be repaired as they do not meet today’s safety standard. As a result, 

annually billions of EUR will continue to be spent in order to repair deteriorated concrete structures. The need to mitigate premature 

failure of repaired concrete structures has to inspire many researchers to develop service life prediction model for repaired concrete 

structures. However, till today, service life of repaired concrete structures is just an estimate which relies on individual’s experience. 

Scientifically developed service life prediction model for repaired concrete structures is highly desired for optimizing selection of 

repairing materials and techniques in turn diminishing economic loss due to premature repaired concrete failure. The aims of this paper is 

generally to review the performance of repaired concrete structures and the current status in the development of service life prediction 

models for repaired concrete structures specially exposed to exposure class XD (chlorides excluding seawater). Future research and 

development of service life prediction model for repaired concrete structures is discussed based on today’s research and practice on the 

area. 
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1. Introduction  

The durability of repaired concrete structures continues to be a major global concern. Regardless of improvements in 

repairing materials and methods, several repaired concrete structures still fail prematurely, leading to costly and time 

consuming repairs of repairs. In addition, it is well known that numerous existing concrete structures do not meet today’s 

safety standard anymore, in turn such structures needs to be repaired as total replacement of the structure which is not 

economically feasible. Accordingly, billions of EUR will continue to be spent in order to repair deteriorated concrete 

structures each year in many industrialized countries. For instance, more than 50% of Europe’s annual construction budget 

is spent on repair of deteriorated concrete structures including rehabilitating and refurbishing of existing structures [1]. 
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Fig. 1. Distribution of the structures by type, after ref. 4 Fig. 2. Age of the structures at repair, after ref. 4 

The performance of repaired concrete structures was considered to be unsatisfactory in all part of the world. Just to 

mention some case studies: the US Army Corps of Engineers conducted inventories of concrete structures and concluded 

that only a little more than 50% of the repairs are performing satisfactorily [2]. Likewise, more recently European 

Commission sponsored thematic network, called CON REP NET in which it has been examined about 230 case-histories on 

repaired concrete structures. The case-histories were located in different countries across Europe in which about 70% are 

located in North Europe. CON REP NET confirmed that 50% of the repaired concrete structures were failed in which 25% 

deteriorated in the first 5 years, 75% deteriorated within 10 years, and 95% within 25 years [3]. 

Degradation process of repaired concrete structure is a more complex theme compared with normal concrete structure 

since it requires essential understanding of several additional interacting factors. The factors include the condition of the 

structure before repaired, the suitability of the methods of repair and quality of the workmanship. Thus, unlike normal 

(unrepaired) concrete structure, service life of repaired concrete structure depends on the quality of the composite system 

formed by the repair material and the existing concrete substrate as well as on the proficiency with which the repair works 

were carried out. Currently, practical application of service life prediction model for real repaired concrete structures is yet 

limited. Service life of repaired concrete structure is partly based on individual’s experience, and partly on condition 

surveys and laboratory studies made in this research sector. Lack of existing scientific models adversely contributes on 

today’s premature failure of concrete repairs since it complicates the selection of well compatible repairing materials and 

techniques.   

The main aims of this paper are to review the performance of repaired concrete structures and the current status in the 

development of service life prediction model for repaired concrete structure. The paper also discuss about the state-of-the-

art on service life prediction of concrete structures exposed to exposure class XD (chlorides excluding seawater). 

2. Performance of Repaired Concrete Structures 

2.1. Case-histories  

CON REP NET examined performance of various types of repaired concrete structures which includes buildings, 

bridges, parks, dams, power stations and other structures. The distribution of the case-histories by structure and age of the 

structures at repair is illustrated in Fig. 1 and Fig. 2, respectively. As it can be seen from Fig. 2 the distributions of the ages 

are very wide ranged with approximately three-fourth being 0–40 years old.  Structures of the case-histories were located in 

different environments in urban, rural, highway, coastal and industrial areas. The majority of the structures were situated in 

urban followed by highway, rural and coastal [4]. 

Corrosion of reinforcement steel is the leading cause of deterioration of reinforced concrete structures [5-7]. It is usually 

accompanied by a loss of reinforcement cross-section and a build-up of corrosion products. The corrosion products occupy a 

larger volume than the original reinforcement steel from which they were produced, in turn, exert substantial tensile stresses 

on the surrounding concrete causing cracking and spalling of the concrete cover. Moreover, through time, structural distress 

may occur either because of loss of bond between the reinforcing steel and concrete as a result of cracking and spalling or 

because of the reduced steel cross-sectional area [5-7]. 
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Corrosion of reinforcement steel is recognized as a major limitation upon durability of many existing concrete structures 

in Europe. Other forms of deterioration due to chemical processes such as alkali-silica reaction and ettringite are less 

widespread in their occurrence, but can be no less significant in their effects upon some structures. CON REP NET were 

confirmed that the primary causes of the original deterioration of the case-histories were corrosion of reinforcement steel, 

frost, cracks, alkali-aggregate reaction (AAR), deteriorated concrete, imperfect construction and others. Corrosion of 

reinforcement steel was the leading causes of deterioration with 54% and AAR was the least cause of deterioration which 

accounts for 4% [4]. 

2.2. Mode and cause of concrete repairs failure 

Various deterioration mechanisms affect the durability of repaired concrete structures. CON REP NET confirmed that 

almost 50% of the repaired concrete structures from the case-histories were failed. After 5 years, 25% of the repairs were 

unsatisfactory, after 10 years 75% were continued to be unsatisfactory and after 25 year 95% had failed [3]. Modes of 

failure of the concrete repairs were associated with continued corrosion, cracking, deboning or spalling of concrete. The 

percentile distribution of each failure mode of the concrete repairs in the case-histories is illustrated in Fig. 3. As it is clearly 

seen, continued corrosion and cracking are the major modes of failure of the concrete repairs which accounts for 37% and 

36% of the failure modes, respectively.  

According to the opinion of the CON REP NET thematic network reviewer’s, the cause of failure mainly related with 

[8]:  

• Wrong diagnosis of the cause of the initial damage or deterioration of the structure (16%). 

• Inappropriate design of intervention works (38%). 

• Inappropriate specification or choice of the materials used (15%). 

• Poor workmanship (19%). 

• Other factors (12%). 

Fig. 3. Failure mode of the concrete repairs, after ref. [4] 

Premature failure of repaired concrete structure as well as performance of the majority of repaired concrete structures 
affects many European and other industrialized countries. Selection of repairing materials and techniques has to be based on 

scientifically developed service life prediction model in order to mitigate the premature failure of repaired concrete 

structures.  
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Fig. 4. Schematic of conceptual model of corrosion of reinforcement steel in concrete, adopted from [9] 

3. Service life prediction model: research and practice 

3.1. Unrepaired concrete structures  

In many cases, corrosion of reinforcement steel in concrete structure induced by carbonation and chloride contamination 

is the foremost cause of premature degradation, loss of serviceability and safety of reinforced concrete structures [10-17]. 

Consequently, in the past few decades, great efforts have been made in developing service life prediction models for 

reinforced concrete structure exposed to chloride contaminated and/or carbonated environment. As a result, today, there are 

several conceptual frameworks as well as practically applicable prediction models for concrete structures exposed to such 

contaminations [18-26].  

Development of service life prediction model for reinforced concrete structure exposed to chloride contaminated or 

carbonated environment is a complicated process, because corrosion of reinforcement steel requires a quantitative 

understanding of the environment, transport mechanisms through concrete, the corrosion phenomenon, cracking, and 

physical deterioration processes. The service life of reinforced concrete structures can be divided in two distinct phases as 

schematically illustrated in Fig. 4. The first phase is the initiation of corrosion, in which the reinforcement steel is passive 

but phenomena that can lead to loss of passivity, e. g. chloride or carbonation penetration in the concrete cover, take place. 

The second phase is propagation of corrosion that begins when the reinforcement steel is depassivated and finishes when a 

limiting state is reached beyond which consequences of corrosion cannot be further tolerated [5], [9], [27]. 

Chloride attack is the most typical deterioration factor for many reinforced concrete structures [27-28]. Thus, this section 

mainly discuss about chloride related deterioration and service life prediction model for concrete exposed to chloride ions 

(exposure class XD). Corrosion by chlorides is localized (pitting), with penetrating attacks of limited area surrounded by 

non-corroded areas. Service life prediction of a reinforced concrete structure exposed to chlorides requires understanding of 

the chloride ingress rate and the chloride concentration at which reinforcement steel corrosion is initiated. Normally, a 

certain time is required from the breakdown of the passive film and the formation of the first corrosion pit. The initiation 

time can be considered as the time when the reinforcement steel in concrete that contains substantial moisture and oxygen is 

characterized by an averaged sustained corrosion rate higher than 2mA/m
2 [27].  

There is general agreement in the literature that corrosion initiation is generally deemed to occur once chloride 

concentration exceeds a given value or threshold. The amount of chloride at the reinforcement steel of a specific structure 

that is necessary to sustain local passive film breakdown, and initiate the corrosion process is called chloride threshold or 

critical chloride content [7], [27], [29-30]. It is still one of the crucial parameters required for many service life prediction of 

reinforced concrete structure. However, there is not reliable value of chloride threshold as a review conducted by [31] has 

shown that they are significantly scattered over a wide range of values.  

Moreover, recent studies revealed that concentration of chloride ions is not the only major factor, the potential of the 

reinforcement steel and the presence of voids at the reinforcement steel/concrete interface are also among the most 

dominant influencing factors which governs initiation of corrosion of reinforcement steel in a given concrete structure. 

Interface of reinforcement steel/concrete are highly dependent on conditions during casting, compaction and the 
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transformation from fresh concrete to a solid material. Corrosion of reinforcement steel in concrete is almost always 

exclusively initiated on the back side of the steel (with respect to casting direction and chloride ingress) regardless of binder 

type and water/binding ratio [31-33].  

Type of binders and water/binding (w/b) ratio are another factors which affects the corrosion process as they affect the 

rate of chloride ingress into the concrete structure. Cement replaced with fly ash, has beneficial effects regarding chloride 

penetration resistance as well as electrical resistivity of the concrete. Lower w/b ratio results in longer corrosion initiation 

times for reinforcement steel in concrete since the diffusion time of aggressive ions to the steel surface is prolonged [33].  
In general, chloride ingress into concrete structure and the subsequent corrosion initiation of reinforcement steel is a 

complex processes, which are influenced by numerous factors which many of them are interrelated. The factors may include  

reinforcement steel - concrete interface, concentration of hydroxide ions in the pore solution (pH), electrochemical potential 

of the steel, binder type, surface condition of the reinforcement steel, moisture content in the concrete, oxygen availability at 

the reinforcement steel surface, water to binding ratio, electrical resistivity of the concrete, degree of hydration, chemical 
composition of the reinforcement steel, temperature, chloride source (mixed-in initially or penetrated into hardened 

concrete), type of cation accompanying the chloride ion and presence of other species (e.g. inhibiting substances) [31], [34-

35].  

Fig. 5. Major interaction of factors that affects service life of repaired concrete structures 

3.2. Repaired concrete structures  

Corrosion induced by chloride ions would be more complex in case of repaired concrete structure because of continuing 

corrosion and a number of additional influential factors which do not exist in unrepaired construction. Fig. 5 illustrates the 

main interaction of influential factors that affect the service life of repaired concrete structures. Fundamental understanding 

of the repaired concrete structure including the interaction of the repair systems with the existing concrete substrate is highly 

required. The impact of some parameters in repaired concrete structure may result in opposite effects what supposed to be in 

unrepaired structure. For instance, chloride ions concentration in the concrete structure before repair is nonlinearly space-

dependent. However, right after repair, the chloride distribution property will become time and space dependent because of 

the difference between the age and diffusion coefficients between the old and repair concrete [36]. In another perspective, 

the existence of the interfacial transition zone between repair concrete and the substrate concrete increases the risk for 

corrosion of reinforcement steel in and near the interfacial transition zone [37]. These show that a thorough understanding 

of the effect of chloride ingress in repaired concrete structure is most important.  



1143 Woubishet Zewdu et al.  /  Procedia Engineering   57  ( 2013 )  1138 – 1144 

Regardless of improvements in repairing materials and methods, performance of concrete repairs are still poor all over 

the world. The need to mitigate premature failure of repaired concrete structure had motivated some researchers to develop 

service life prediction model for repaired concrete structure, however, to the author’s knowledge, yet there are very few 

service life prediction models for repaired concrete structure, e.g. [36], [38]. The models are based on numerical methods 

that simulate the corrosion processes of reinforcement steel in concrete which is induced by ingress of chloride ions. The 

beginning of development of such kinds of models is highly valued. Yet, needs improvements and should encompass 

various influential factors for practical application.   

In the model, the effect of continuing corrosion is not taken into consideration and it rely on the concept of chloride 

threshold to define the corrosion resistance of the reinforcement steel in the repaired concrete structure. Nevertheless, it is 

well addressed that chloride threshold value in published literature are scattered over a wide range of values and more recent 

literature confirmed that chloride threshold cannot be a unique value as it is a function of various variables. It also assumes 

that the bond between the original concrete and repair material is to be perfect and the effect of the interfacial transition 

zone between the repair and substrate concrete are neglected. In this regard, an advanced study that considers most 

influential factors in the deterioration model of repaired concrete structure to service life prediction model is vital. 

4. Conclusions  

Regardless of improvements in repairing materials and methods, several repaired concrete structures still fail 

prematurely, leading to costly and time consuming repairs of repairs. Efficient mechanisms that can predict the service life 

of repaired concrete structure is highly desired for optimizing selection of repairing materials and techniques in turn 

diminishing economic loss due to premature repaired concrete failure. In recent years, very few service life prediction 

models were developed for repaired concrete structures. The models are based on numerical methods that simulate the 

corrosion processes of reinforcement steel in concrete which is induced by ingress of chloride ions.  

The existing models contain simplifications and approximations. For instance, the effect of continuing corrosion is not 

taken into consideration and it relies on the concept of chloride threshold to define the corrosion resistance of the 

reinforcement steel. It also assumes that the bond between the original concrete and repair material is to be perfect as well as 

neglect the effect of the interfacial transition zone. The combination of such assumptions, simplifications and 

generalizations compounded with the complex behaviour of repaired concrete structure leads to a considerable uncertainty 

in the output of the service life prediction model.  

Thus, more efficient model which considers combined effect of various deterioration factors as the real-world and able to 

predict the service life of repaired concrete structures accurately is highly desired for optimizing selection of repairing 

materials and techniques. Indeed, developing service life prediction model for repaired concrete structure would not be an 

easy task since its service life is highly dependent on various factors that differ from those associated with existing 

unrepaired concrete structure. Therefore conducting more research on service life prediction of repaired concrete structure 

using advanced modelling techniques is necessary in order to obtain more accurate results. The modelling techniques should 

be able to deal with the nonlinear behaviour of several complex interacting factors. The research need to be supported by 

laboratory and field data of long term exposed structure in order to address the effect of repair position in the existing 

structure, its geometry, and other limitations.  

References 

[1] Matthews, S., Holton, I., Morlidge, J. & Pool, R., 2003. CON REP NET A Thematic Network on Performance Based Rehabilitation of Reinforced 

Concrete Structures. London, ecs publications. 

[2] Vision 2020, 2006. A Vision for the Concrete Repair, Protection and Strengthening Industry, s.l.: American Concrete Institute - ACI. 

[3] CON REP NET, 2004. Future performance - discussion on industry response to owners' aspirations, s.l.: Building Research Establishment (BRE). 

[4] Tilly, G., Gifford & Partners, 2005. Performances of concrete repairs in practice. [Online] Available at: 

http://projects.bre.co.uk/conrepnet/members/mw5/mw5p3.pdf [Accessed 12 11 2012]. 

[5] ACI Committee 222, 2001. Protection of Metals in Concrete Against Corrosion (ACI 222R-01)., s.l.: ACI. 

[6] Pan, T. & Wang, L., 2011. Finite-Element Analysis of Chemical Transport and Reinforcement Corrosion-Induced Cracking in Variably Saturated 

Heterogeneous Concrete. Journal of Engineering Mechanics, 137(5), pp. 334-345. 

[7] Glass, G. H., 2003. Reinforcement corrosion. In: Advanced Concrete Technology 2: Concrete Properties. Oxford: Elsevier Ltd, pp. 8/1-9/27. 

[8] Matthews, S. L. & Morlidge, J. R., 2009. Performance based rehabilitation of reinforced concrete structures. London, Taylor & Francis Group. 

[9] Cusson, D., Lounis, Z. & Daigle, L., 2010. Benefits of internal curing on service life and life-cycle cost of high-performance concrete bridge decks – A 

case study. Cement & Concrete Composites, 32(5), p. 339–350. 

[10] Lizarazo-Marriaga, J. & Claisse, P., 2009. "Determination of the concrete chloride diffusion coefficient based on an electrochemical test and an 

optimization model. Materials Chemistry and Physics, 117(2-3), pp. 536-543. 

[11] Zivica, V., 2003. Corrosion of reinforcement induced by environment containing chloride and carbon dioxide. Bulletin of Materials Science, 26(6), 

pp. 605-608 



1144   Woubishet Zewdu et al.  /  Procedia Engineering   57  ( 2013 )  1138 – 1144 

[12] Ferreira, R. M., 2004. Probability based durability analysis of concrete structures in marine environment. Guimarães: PhD Thesis, University of 

Minho . 

[13] Walraven, J. C., 2009. Design for service life: How should it be implemented in future codes. London, Taylor & Francis Group, pp. 3-11. 

[14] Beck, M., Goebbels, J., Meinel, D. & Burkert, A., 2009. DFG Research Group 537: Modelling reinforcement corrosion – Observation and monitoring 

of self-corrosion processes in chloride contaminated mortar by X-ray tomography. Cape Town, Taylor & Francis Group, pp. 433-437. 

[15] Marques, P. F. & Costa, A., 2010. Service life of RC structures: Carbonation induced corrosion. Prescriptive vs. performance-based methodologies. 

Construction and Building Materials, 24(3), p. 258–265. 

[16] Elsener, B., Addari, D., Coray, S. & Rossi, A., 2011. Stainless steel reinforcing bars – reason for their high pitting corrosion resistance. Materials and 

Corrosion, 62(2), pp. 111-119. 

[17] Shi, X., Xie, N., Fortune, K. & Gong, J., 2012. Durability of steel reinforced concrete in chloride environments: An overview. Construction and 

Building Materials, Volume 30, p. 125–138. 

[18] Duracrete , 2000. DuraCrete Final Technical Report: Probabilistic performance based durability design of concrete structures, s.l.: Duracrete. 

[19] Kamaitis, Z., 2008. Modelling of corrosion protection for reinforced concrete structures with surface coatings. Journal of Civil Engineering and 

Management, 14(4), pp. 241-249.  

[20] Life-365, 2012. Life-365 Software Overview. [Online] Available at: http://www.life-365.org/overview.html [Accessed 04 01 2013]. 

[21] Kwon, S. J., Na, J. U., Park, S. S. & Jung, H. S., 2009. Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for 

chloride diffusion. Structural Safety, 31(1), p. 75–83. 

[22] Lay, S., Schießl, P. & Cairns, J., 2003. Service Life Models: Instructions on methodology and application of models for the prediction of the residual 

service life for classified environmental loads and types of structures in Europe, s.l.: LIFECON project. 

[23] NIST, 2011. 4sight: Concrete Service Life Prediction. [Online] Available at: http://concrete.nist.gov/4sight/ [Accessed 02 01 2013]. 

[24] Boutz , M., van der Wegen, G., Roelfstra , P. & Haverkort, R., 2008. Service life design of concrete structures by numerical modelling of chloride 

ingress. London, Taylor & Francis Group. 

[25] STADIUM®, 2011. STADIUM® A SIMCO SOLUTION. [Online] Available at: http://www.stadium-software.com/ [Accessed 12 01 2013]. 

[26] Koenders, E., Ottelé, M. & Obladen, B., 2009. A spreadsheet model for service-life predictions. London, Taylor & Francis Group. 

[27] Bertolini, L., Elsener, B., Pedeferri, P. & Polder, R., 2004. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Weinheim: WILEY-VCH 

Verlag GmbH & Co. KGaA. 

[28] Pan, T. & Lu, Y., 2012. Stochastic Modeling of Reinforced Concrete Cracking due to Nonuniform Corrosion: FEM-Based Cross-Scale Analysis. 

Journal of Materials in Civil Engineering, 24(6), pp. 698-706. 

[29] Sohanghpurwala, A. A., 2006. Manual on Service Life of Corrosion-Damaged Reinforced Concrete Bridge Superstructure Elements, Washington DC: 

Transportation Research Board . 

[30] Ann, K. Y. & Song, H.-W., 2007. Chloride threshold level for corrosion of steel in concrete. Corrosion Science, 49(11), p. 4113–4133. 

[31] Angst, U., Elsener, B., Larsen, C. K. & Vennesland, Ø., 2009. Critical chloride content in reinforced concrete - A review. Cement and Concrete 

Research, 39(12), p. 1122–1138. 

[32] Angst , U., Larsen , C. K., Vennesland , Ø. & Elsener , B., 2010. Influence of casting direction on chloride-induced rebar corrosion. Merida, CRC 

Press, pp. 359-366. 

[33] Angst, U. M., Elsener, B., Larsen, C. K. & Vennesland, Ø., 2011. Chloride induced reinforcement corrosion: Electrochemical monitoring of initiation 

stage and chloride threshold values. Corrosion Science, 53(4), p. 1451–1464. 

[34] Saassouh, B. & Lounis, Z., 2012. Probabilistic modeling of chloride-induced corrosion in concrete structures using first- and second-order reliability 

methods. Cement & Concrete Composites, 34(9), p. 1082–1093. 

[35] Shi, X., Nguyen, T. A., Kumar, P. & Liu, Y., 2011. A phenomenological model for the chloride threshold of pitting corrosion of steel in simulated 

concrete pore solutions. Anti-Corrosion Methods and Materials, 58(4), pp. 179-189. 

[36] Song, H.-W., Shim, H.-B., Petcherdchoo, A. & Park, S.-K., 2009. Service life prediction of repaired concrete structures under chloride environment 

using finite difference method. Cement & Concrete Composites, 31(2), p. 120–127. 

[37] Skoglund, P., 2006. Chloride Transport and Reinforcement Corrosion in the Vicinity of the Transition Zone between Substrate and Repair Concrete. 

Stockholm: Licentiate Thesis, Royal Institute of Technology - KTH. 

[38] Dao, L. T., Kim, S.-H., Ann, K. Y. & Dao, V. T., 2010. Finite element modelling for service life prediction of repaired concrete in marine 

environment. Australian Journal of Structural Engineering, 10(3), pp. 227-236. 


