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Abstract

Avalanches threaten mountainous regions, and probabilistic long term hazard evaluation is a useful tool for land use 
planning and the definition of appropriate mitigation measures. This communication focuses on avalanches counts in 
the French Alps, and investigates their fluctuations in space and time within a Bayesian hierarchical modeling 
framework.
We have at our disposal a 60 year data set covering the whole French Alps. The considered time scale is the winter. 
The elementary spatial scale is the township. It is small enough to allow information transfer between neighboring 
paths and large enough to avoid errors in paths localization. Data are standardized with a variable integrating the 
number of surveyed paths.
A hierarchical Poisson-lognormal model appears well-adapted to depict the observation process with such discrete 
data. The spatial and temporal effects are assumed independent, and they are considered in the latent layer of the 
model. The temporal trend is modeled with a cubic spline whereas different spatial dependence sub-models are 
tested. The latter ones work on different types of supports (continuous field and discrete grid), and at different 
embedded spatial scales. Model inference and predictive sampling are carried out using Markov Chain Monte Carlo 
simulation methods. 
The spatial structure explains the larger part of the relative risks. The spatial dependence is visible at the scale of 
townships, but with a short range. At the larger scale of the massifs, the spatial dependence is weaker.
The regional coherence of the results with the number of avalanche releases suggests that we may also 
search for other spatially structured variables implicated in the magnitude of avalanches that could help 
transfer information from one path to another.
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1. Introduction

In mountainous regions, serious damages are caused by snow avalanches releases. In order to protect 
populations and facilities, land use planning and the definition of appropriate mitigation measures have to 
be introduced. When local information is poor, probabilistic long term hazard must be evaluated at the 
regional scale.

Few authors have studied avalanche frequencies at the path scale (Keylock et al. 1999 [1]). In France, 
the EPA database (Enquète Permanente sur les Avalanches), managed by the Cemagref, is a chronicle of 
events beginning in the early XXth, century and concerning roughly 3900 sites in Alps and Pyrenees. 
However, every path is not surveyed in the Alps, and extrapolation is a necessary step for undocumented 
or poorly documented paths.

With this database Eckert et al. (2007) [2] have shown a spatial dependence of avalanche occurrences 
in Savoie. We carry on this work by generalizing it to the whole Alps. We are particularly interested in 
large structures such as massifs. Could they help bringing more information into the analysis?

Eckert et al. (2009) [3] worked on fluctuations of avalanche occurrences, and showed that the annual 
effect represents 17% of the avalanche occurrence variability. This suggests that it is important to model 
the temporal structure, in order to study the avalanches spatial repartition for a standard winter.

In this work, we model avalanche occurrences by winter and by township, with a hierarchical spatio-
temporal model, under the Bayesian paradigm. By comparison to previous work, our approach introduces, 
full symmetry between space and time effects using spline smoothing. 

2. Model

We call Yct, c=1,ý ,N, and t=1,ý ,T the variables representing the number of recorded avalanches 
during the winter t in the township c.

We assume that Yct follows a Poisson law with parameter � ct, and that conditionally to the knowledge 
of  � ct the variables Yct are independent.

As in epidemiological models (Mollié et al. 1991 [4]), we model E(Yct )=Ec.RRct where Ec is the 
expected occurrence number in the township c during a mean winter and RRct is the relative risk of the 
township c the year t. The variable Ec is computed from the number of paths in the township c, whereas 
RRct is unknown.

We model the relative risk, through the link function log with a spatial effect S and a temporal effect 
T under the assumption of separability. For identifiability and symmetry purposes, we sum the vectors S

and T to 0, adding a constant � .

log(RRct)= �  + � T
t + � S

c (1)

We consider the following temporal model:

� T
t = gt + � t     t=1,..,T (2)

where � t follow a Gaussian centred independent distribution with variance � 0. Eckert et al (2009) [3] 
have used several time series models for the g parameter. The two best models selected  using the DIC 
criterion are the most flexible ones. They are models with jumps at different levels. We suggest to 
generalize this approach by modeling g with a smooth non parametric curve, hence even more flexible, 
and we choose the second order random walk with variance � 1. This process can be seen as an 
approximation of the Wahba's prior (Wahba, 1978 [5]), whom the Bayesian estimate E(g|� T) is a cubic 
spline.
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The spatial structure is composed with a spatially structured variable u=(u1ý ,uN), and a residual 
v=(v1ý ,vN) modeled by a Gaussian white noise with variance � v

2.

� S
c = uc + vc     c=1,ý ,N (3)

We model the u variable with three different competing models. The first one uses the townships 
spatial repartition, and the second one uses the massifs and the spatial repartition of the townships inside 
each massif. The last model borrows tools from geostatistics, it supposes that uc is the realization of a 
continuous field at the centroid of the c township.

 Model 1
We use the intrinsic CAR model defined by Mollié et al. (1991) [4] with variance � 2. It is adapted to 
irregular grids because the conditional variance of each component depends on the number of its 
neighbors. Two townships are neighbors if they share a common boundary. 

 Model 2 
We split up u into a massifs relative part uM=(u1ý ,uM) with M the massif number, and embed the relative 
contribution of the townships inside each massif m uC|m=(u1|mý ,unm|m), with nm the number of townships 
inside the massif m.

ucm =um+uc|m                 m=1,ý ,M, et c=1,ý ,nm (4)

As in the model 1, we use the intrinsic CAR model on the massifs network uM with variance � 2
M and 

on the networks composed by the townships inside each massif uC|m with a common variance � 2
C.

 Model 3
In order to describe the township dependence according to their distance instead of their neighbors, we 
define the covariance between c and c' as a function of the distance hcc' between their centroids such as 
cov(uc,uc')=C(hcc'). We choose the exponential variogram to describe the covariance structure between 
sites. This covariance model relies on parameters easy to interpret. Particularly, the effective range is 
defined as the minimal distance between two points, so that their correlation is less than 0.05.

Priors on the variance parameters � 0, � 1, � v
2, � 2

, �
2

M and � 2
C are gamma inverses with parameters 0.1 and 

0.1. These priors guarantee that the posteriori joint distribution is proper. The prior on the range is 
uniform in [0,50000], and the prior on �  is constant.

3. Results

The full conditional distributions are obtained in closed form for most unknows, so we use Gibbs 
sampling for these nodes with Metropolis Hastings or rejection sampling step for the other ones. 40,000 
iterations are simulated on two chains with different seeds, and the 10,000 first ones are deleted. 
Convergence is checked comparing the two chains distributions.

To compare models, the DIC criterion (Deviance Information Criterion) is computed. It balances 
model fit and complexity through the effective degree of freedom pD (Spiegelhalter et al., 2002 [6]).

The variability of the temporal structure represents only a small part of the relative risk variability, 
12% for model 1, and 17% for models 2 and 3. The annual frequency average increases from 1946 
to1980, and then decreases, see Fig 1. However, there are strong variations from one winter to another, 
and the trend E(g|Y) only accounts for 12% of the temporal variability.
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The fraction of variability explained by the spatially structured term u is large for the three models; 
this confirms that avalanche occurrence frequencies are spatially dependent.

Model 1 is more flexible than model 2, its effective degree of freedom is actually larger. Therefore, 
data are better fitted by model 1. Model 1Ñs DIC criterion is smaller, which means that its complexity is 
justified by the fitness gain.

Model 2 brings massifs into the analysis, but badly fits the data. We note a spatial dependence between 
massifs, but the variability between massifs is smaller than the variability within massifs.

Model 3 is more flexible than model 1, however the gain in complexity is not justified by the fit. The 
model 3Ñs DIC criterion is slightly greater than the model 1Ñs one. Yet, this model provides a posterior 
distribution of the effective range, whose mean is estimated to 33 km, but the standard deviation is 
relatively large (10 km).

The map of mean estimates of avalanche occurrence counts by path for model 1, see Fig 2(a), shows 
regions with a risk excess, in the north, the middle, and the south-east, and regions with a risk deficit in 
the west, and the south-west of the studied zone. These regions rarely match the massifs boundaries, and 
we understand therefore why the massifÑs structure is not really informative.

The map of the unstructured term, see Fig 2(b), does not show any trend: as expected with regard to 
the model hypotheses, we are facing a residual term, with nothing left to explain. Moreover we note that 
the range of the v values is small, especially much smaller than the range of the u values.

Fig. 1. Mean avalanche number per winter and path, annual estimate and trend from model 1

Table 1. Posterior mean (and standard error) of variance parameters. Deviance Information Criterion DIC, and effective degree of 
freedom pD
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Table 1. Posterior mean (and standard error) of variance parameters. Deviance Information Criterion DIC, and effective degree of 
freedom pD

Fig. 2. (a) Mean avalanche occurrence counts by winter and by path: exp( � +u), model 1; (b) Posterior mean of the v variable, model 
1

4. Discussion

We attempted to predict the last year (not taken into account in the data) with the three models. In all 
cases, 15% of the observations are outside the 95% confidence interval for predictions. It means that data 
are somewhat overdispersed. Considering the hypothesis of separability between time and space, this

Parameters Model1 Model 2 Model 3

� -1.03 (0.06) -0.15 (0.06) -1.02 (0.08)

� 0 0.16 (0.04) 0.18 (0.04) 0.17 (0.04)

� 1 9.85 10-4 (9.52 10-4) 9.96 10-4 (9.43 10-4) 9.88 10-4 (9.75 10-4)

� 2
2.48 (0.67) � 2

M 0.62 (0.25) 

� 2
C 1.28 (0.35)

1.08 (0.31)

� v
2

0.18 (0.09) 0.31 (0.08) 0.24 (0.11)

range 33441 (10535)

DIC 68546 70030 69771

pD 689 605 884
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result is rather encouraging. But we could take into account overdispersion by adding an interaction term 
between winters and townships.

Some other geographical structure than the massifs could better explain the avalanche frequency. For 
instance, the excess risk in the middle of the map seems to be structured around massifs delimitations, 
that means that valleys should be considered as structuring components. However, in order to identify 
elements precisely, we should work at the path scale.

5. Conclusion

With this model, we highlight a spatial dependence of avalanche occurrences at a relatively small 
scale, in the French Alps.

This result suggests that it is possible to bring information about avalanche events from documented 
path to undocumented path, by using Cartesian coordinates as surrogate covariables. This step is essential, 
in order to supply avalanche information at the regional scale.

Acknowledgements

This work was achieved in the framework of the MOPERA project funded by the French National 
Research Agency (ANR-09-RISK-007-01). 

References

[1] Keylock, C.J., McClung, D. et Magnusson, M. (1999). Avalanche risk mapping by simulation. Journal of Glaciology 45 

(150), 303-314.

[2] Eckert, N., Parent, E., Bélanger L. et Garcia S. (2007). Hierarchical Bayesian modelling for spatial analysis of the number of 

avalanche occurences at the scale of the township. Cold Regions Science and technology, 50, 97-112.

[3] Eckert, N., Parent, E., Kies, R. et Baya, H. (2009). A Spatio-temporal modelling framework for assessing the fluctuations of 

avalanche occurrence resulting from climate change: application to 60 years of data in the northern French Alps. Climatic Change, 

101, 515-553.

[4] Mollié, A. et Richardson, S. (1991). Empirical Bayes estimate of cancer mortality rate using spatial models. Statist. Med., 

10, 95-112.

[5] Wahba, G (1978). Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression.

Journal of the Royal Statistical Society. Series B (Methodological), 40, 364-372.

[6] Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and van der LindeA. (2002). Bayesian measures of model complexity and fit.

Journal of the Royal Statistical Society. Series B (Statistical Methodology), 64-4, 583-639


