
FEBS Letters 581 (2007) 1335–1341

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Membrane protein assembly patterns reflect selection for
non-proliferative structures

Arianna Ratha,b, Charles M. Debera,b,*

a Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ont., Canada M5G 1X8
b Department of Biochemistry, University of Toronto, Toronto, Ont., Canada M5S 1A8

Received 29 January 2007; revised 14 February 2007; accepted 20 February 2007

Available online 1 March 2007

Edited by Maurice Montal
Abstract Membrane proteins that regulate solute movement
are often built from multiple copies of an identical polypeptide
chain. These complexes represent striking examples of self-
assembling systems that recruit monomers only until a prescribed
level for function is reached. Here we report that three modes of
assembly – distinguished by sequence and stoichiometry –
describe all helical membrane protein complexes currently solved
to high resolution. Using the 13 presently available non-redun-
dant homo-oligomeric structures, we show that two of these types
segregate with protein function: one produces energy-dependent
transporters, while the other builds channels for passive diffusion.
Given such limited routes to functional complexes, membrane
proteins that self-assemble exist on the edge of aggregation,
susceptible to mutations that may underlie human diseases.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: Membrane protein; Protein folding;
Quaternary protein structure; Classification
1. Introduction

Proteins embedded in the cytoplasmic membrane have been

estimated to constitute �20–30% of all proteins in sequenced

genomes [1], and regulate the trafficking water, ions, and other

molecules into and out of the cell. Many of these proteins do

not function as individual polypeptides but as complexes of

more than one copy of a polypeptide chain [2]. The essential

function of these oligomers in maintaining homeostasis means

that their assembly must be carefully controlled: structures of

the correct size and shape must be built, and the probability of

protein aggregation minimized. Disease-causing mutations

that promote non-native associations are common in mem-

brane-spanning domains [3], implying that the disruption or

failure of assembly constraints may not only lead to a loss of

protein function but also promote uncontrolled and poten-

tially pathogenic polypeptide self-assembly.
Abbreviations: TM, transmembrane; LASA, lipid accessible surface
area; ASA, accessible surface area; CA, contact area
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Recognition of the principles that underlie complexation in

the membrane is facilitated for a-helical membrane proteins

by the conceptual division of folding into two major steps

[4]. The first – insertion of transmembrane (TM) segments into

the membrane – specifies topology and secondary structure.

The second – adoption of tertiary and/or quaternary structure

within the membrane – relies mostly on lateral interactions

between helices [5–7] and is facilitated by the reduced entropic

penalty of helix–helix association in the bilayer [2]. Final com-

plex assembly therefore strongly relies on a specific network of

helix–helix partnerships mediated by TM helical faces –

defined as individual sets of residues on distinct surfaces of

each a-helical TM segment – that form the required inter-chain

contacts.

What mechanisms operate to constrain the assembly process

to the production of the different structures necessary for

homeostasis while evading aggregation? Here, we devise a clas-

sification system to describe membrane protein oligomers and

apply it to a non-redundant set of three-dimensional structures

of membrane protein complexes. We find that two distinct

architectures can be distinguished by sequence and stoichio-

metry. Subdividing proteins into these categories reveals that

one produces energy-dependent transporters, while the other

builds channels for passive diffusion. Each assembly pattern

reflects selection for non-proliferating structures and provides

useful constraints for structure and function predictions.
2. Materials and methods

2.1. Data set construction
PDB files were obtained from a database of membrane proteins of

known structure (http://blanco.biomol.uci.edu/Membrane_Proteins_
xtal.html); the glycophorin A structure was obtained from the Protein
Data Bank. As of October 2006, this database contained �30 entries
corresponding to a-helical homo-oligomeric membrane proteins
(where proteins of the same type from different species are considered
unique). Structures were selected for analysis from this pool using two
criteria: (i) the structure of the complete complex was represented in
the PDB file; and (ii) the oligomeric state present in the PDB file
was supported by biochemical evidence. Because we wished to consider
only helix–helix interactions in this work, proteins where large cofac-
tors (such as heme, chlorophyll, and/or lipid molecules) were either
coordinated within the monomer fold and/or between subunit mole-
cules were excluded. We note that each structure that met the above
criteria could be classified into Types I, II, and/or III. However, to
avoid bias in residue composition analysis, we filtered the transmem-
brane (TM) domain sequences (including loops) of these structures
for redundancy by sequence alignment and percent identity calcula-
tions using ClustalX [8]. Amino acid sequences with P 30% identity
were considered homologous. For sequences with P 30% sequence
blished by Elsevier B.V. All rights reserved.
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identity, a single PDB file corresponding to the highest-resolution
structure available was included in the data set as a representative of
the group. KcsA (1BL8, 3.2 Å) was selected as representative of potas-
sium channel tetramers rather than its Kv1.2 homolog (2A79, 2.9 Å)
based on the clarity of electron density data in the TM regions (mean
B factors 90–110 Å2 [9] vs. 159–162 Å2 [10]). This filtering process re-
sulted in a data set with 13 unique (<30% identical) polypeptide se-
quences (see Table 1).

2.2. Lipid accessibility calculations
Side chain accessibility was estimated using the program NACCESS

[11] by submitting each PDB file to the program and determining the
lipid accessible surface area (LASA) of each side chain in Å2 as de-
scribed [12]. Briefly, a probe of radius 1.88 Å was used to approximate
the radius of a methylene group on a lipid acyl chain. Side chain rela-
tive LASA values were obtained by dividing the absolute LASA in Å2

of each side chain in the protein by its LASA in Å2 calculated in an a-
helical Gly-X-Gly tripeptide. Substrate molecules within the lumen of
channels or pores were omitted from PDB files before analysis. The
percentage of side chain accessibility of each subunit in isolation was
calculated using PDB files where all atoms excepting those in a single
monomer were deleted. This method considers each subunit as a rigid
body and does not address any conformational changes that might
occur upon oligomerization. The percent burial for each residue was
averaged for all monomers in each structure with the exception of
the aquaporin (2ABM) structure, where the conformation of subunit
A differs from that of subunits B–D [13]. As such, the percent burial
for each residue was averaged for subunits B–D.

2.3. Identification of interacting helix surfaces and classification
The relative accessible surface area (ASA) thresholds used the liter-

ature for defining buried vs. solvent-exposed positions in protein struc-
tures vary, with some groups utilizing 20% thresholds in membrane
protein structure analysis [14], and others defining thresholds in soluble
protein structures of 7% using statistical methods [15] or 5% via site-di-
rected mutagenesis [16]. In this work, residues were divided into buried
and surface positions using a side chain relative LASA threshold of
20%. The change in side chain LASA upon oligomerization (DLASA)
was then calculated for each residue in each subunit using absolute side
chain LASA values in Å2, as follows:

DLASA ¼ ðside chain LASAmonomer � side chain LASAcomplexÞ � 100%

side chain LASAmonomer

Residues on the surface of the subunit (side chain relative LASA > 20%)
with a >50% DLASA value were considered as inter-chain interaction
sites. The location(s) of these residues was mapped onto each structure
and used in conjunction with sequence for classification.

2.4. Contact area calculations
The contact areas (CAs) on the TM domain of each monomer were

calculated as the difference between the sum of the individual side
chain absolute LASA values in Å2 in the TM regions of each polypep-
tide in isolation and as part of its complex, as follows:
Table 1
Database of solved membrane protein structures used for analysis

PDBID Type Na Protein name

1AFO I 2 Glycophorin A
1L7V II 2 BtuCD vitamin B12 transporte
1OTS II 2 H+/Cl� exchange transporter
2HYD II 2 Sav1866 multidrug transporter
2ABM II 4 AQPZ aquaporin water chann
1BL8 III 4 KcsA potassium channel
1MSL III 5 MscL mechanosensitive ion ch
1MXM III 7 MscS voltage-modulated mech
1YCE III 11 F-type Na+-ATPase rotor
1ZLL III 5 Phospholamban
2BBJ III 5 CorA Mg2+ transporter
2BL2 III 10 V-type Na+-ATPase rotor
1XFHb II + III 3 Glutamate transporter homolo

aStoichiometry of complex.
bThis complex is built from Type II and Type III contacts. See text for deta
CAðÅ2Þ ¼
X

side chain LASAmonomer ðTM segmentsÞ

�
X

side chain LASAcomplex ðTM segmentsÞ

CAs were averaged for each subunit within the structure, with the
exception of aquaporin, where chain A was excluded as above. TM
segment boundaries were selected with reference to the literature where
available, or with reference to the position of aromatic, basic and/or
acidic residues in each structure.
2.5. Residue and motif composition calculations
The 20 amino acid residues were grouped into 11 categories by phys-

icochemical character (Ala/Gly, Cys/Ser, Asp/Glu/Asn/Gln, Phe/Trp/
Tyr, His/Lys/Arg, Ile, Leu, Met, Pro, Thr, Val) in order to ensure large
enough counts of each residue for statistical testing. The percentage
occurrence in the TM domains of each of the 11 resulting amino acid
categories was then evaluated for each polypeptide within each com-
plex for each of the total, buried, surface, and interfacial positions,
as follows:

Percentage occurrence of amino acid i:

% Occurrencei

¼ No: of i residues� 100% at total; buried; surface; or interfacial position

total No: residues at total; buried; surface; or interfacial position

Mean values for % Occurrencei were calculated for the Type II and
Type III groups. Surface/buried residues and interfacial residues were
defined as described as above. Because it is a single-pass membrane
protein, phospholamban (1ZLL) does not have buried residues and
was omitted from calculations of percent occurrence at buried posi-
tions in the Type III polypeptide set. We noted that the exact assign-
ment of the TM region of the helices did not significantly influence
the residue composition analysis, in agreement with the results of other
groups [14].

Small-xxx-small motifs were defined using any combination of Ala,
Gly, and/or Ser residues separated by three variable residues. The num-
ber of motifs was counted for each polypeptide in each of the total, bur-
ied, surface, and interfacial categories and averaged within the Type II
and Type III groups. Both small residues of the motif were required to
meet the above mentioned criteria for buried, surface, and/or interfacial
residues in order for the motif to be counted in the category.
2.6. Statistical analysis and Type II/Type III comparisons
Sample sizes of the Type II and Type III groups (n = 4 and n = 7,

respectively) reflect the limited availability of non-redundant, high-
resolution homo-oligomeric structures where complete oligomer
coordinates are available. Statistical testing on small sample sizes is
complicated by the fact that they contain little information concerning
their underlying distributions. With small sample sizes, normality test-
ing has little power to discriminate between Gaussian and non-Gauss-
ian distributions, and non-parametric tests such as the Mann–Whitney
(or rank-sum) test – while they do not require normality – assume that
Resolution (Å) Reference

NMR [37]
r 3.2 [38]

2.5 [39]
3.0 [40]

el 3.2 [13]
3.2 [9]

annel 3.5 [41]
anosensitive ion channel 3.9 [42]

2.4 [36]
NMR [27]
3.9 [43]
2.1 [35]

gue GltPh 3.5 [21]

ils.



A. Rath, C.M. Deber / FEBS Letters 581 (2007) 1335–1341 1337
the shape and spread of the two distributions is identical. We therefore
have generally used the ratio of the mean values of a given parameter in
Type II vs. Type III groups (or vice-versa) as a basis of comparison. In
order to illustrate the potential relationship between these ratios and
statistical significance, for distributions of contact areas, stoichio-
metries, numbers of TM segments, and numbers of small-xxx-small mo-
tifs, we assumed normal distributions and compared the mean values of
these parameters for the Type II and Type III groups with unpaired
two-tailed t tests. Means derived from normalized values – residue per-
cent occurrences and number of small-xxx-small motifs/number of TM
segments – were also compared using unpaired two-tailed t-tests. P val-
ues of 0.10 or less were deemed marginally statistically significant, and
values of 0.01 or less as highly statistically significant, with P 6 0.05 the
conventional standard of statistical significance.
3. Results and discussion

We envisaged the possible ways that membrane protein com-

plexes could be assembled in a controlled manner. TM helices

within each polypeptide were first divided into equivalent

(homologous or identical in sequence) or non-equivalent

(neither homologous nor identical) groups. We found that

the face-to-face TM helix associations that connect polypep-

tides within a complex could then be organized into three pos-

sible categories (symmetric (Type I), non-symmetric (Type II),

and asymmetric (Type III) interactions, see Fig. 1). This cate-

gorization showed that the number, arrangement, and Type of
Fig. 1. Three categories of helix–helix contacts describe membrane protein
monomer where circles represent end-on views of TM helices, connecting loo
orientation with the C-terminus pointing out of the page, and crosses (X) in
into the page. Grey shading indicates helices with their C-termini out of the
complexes, a single helix face (blue) contacts its counterpart on an equivalen
contacts between faces (orange and purple) of two or more non-equivalent/no
chains therefore represent a special case of Type II assembly where each subu
Type III or asymmetric complexes, two distinct interactive surfaces (green an
such that each retains an interaction-competent face when matched with its
inter-chain contacts between TM helices describes the con-

trolled assembly of three corresponding membrane protein

complex Types with distinct architectures (Fig. 1).

Whether actual membrane protein complexes exploit these

theoretical assembly modes was evaluated with reference to

the structural database. We constructed a non-redundant data

set of 13 a-helical homo-oligomers where no two sequences

were more than 30% identical (Table 1). Analysis of the

lipid-accessible surface area on the structure of the assembled

complex vs. its component polypeptide chains was used to de-

fine and map buried positions, surface positions, and inter-

chain interaction sites. The number and location of inter-chain

contact sites was then used in conjunction with TM helix

sequences for classification. We found that every structure

could be described as one or more of Types I, II, and/or III

(see Fig. 2 for examples; Table 1 for a complete classification).

While inter-chain contact areas (CAs) could not discriminate

between Type II and Type III groups, these architectures could

be readily delimited by stoichiometry, and the number of TM

helices/polypeptide (Table 2). The number of polypeptide

chain copies present in Type II structures was significantly

lower than Type III (<2-fold, see Table 2). Why are fewer

chains required for function of Type II structures? It has been

previously noted that 7–10 TM helices are needed to move

molecules across the membrane [17]; we observe that the aver-

age number of helices present in Type II chains (�10 TM heli-
complexes. Assembly is diagrammed with a model three-helix bundle
ps are shown as solid lines, dots (d) indicate an N-to-C terminal helix
dicate N-to- C-terminal helix orientation with the C-terminus oriented
page. Helix faces bridging chains are colored. In Type I or symmetric
t/homologous helix. Type II or non-symmetric complexes assemble via
n-identical helices. Complexes built from non-identical/non-equivalent
nit is a unique polypeptide with its own set of interactive helix faces. In
d gold) found on the same equivalent helix make ‘‘two-faced’’ contacts
counterpart in another monomer.



Fig. 2. Examples of each interaction Type. Ribbon diagrams of the glycophorin A (Type I), BtuC (Type II), and phospholamban (Type III)
structures are shown with interfacial residues (those with >50% DLASA) in ball-and-stick representation. Interfacial residues are colored according
to Type following the schemes given in Fig. 1. Figure produced with SwissPDB Viewer [34].

1The structure examined here functions as an energy-dependent
exchanger; other ClC family members are Cl-channels.
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ces) falls within this range, while Type III chains are limited to

�2 TM helices each (Table 2). Once constructed, the numbers

of helices in each complex are essentially identical. The lower

stoichiometry of Type II vs. Type III structures therefore

appears to be offset by the larger number of TM helices in

Type II polypeptide chains.

Type II and Type III chains were strikingly similar in the

composition of amino acids at their buried, surface, and

importantly inter-chain interaction sites (Table 3). Neverthe-

less, certain statistically significant variations were observed:

Type II chains had 16-fold more basic residues buried within

their individual structures than Type III; basic residues were

more abundant on Type II surfaces; and Met was more fre-

quent at Type III inter-chain contact sites. We found the

strong enrichment of basic residues in Type II polypeptide

interiors to be intriguing, as the basic residue Arg is thought

to play a role in permeation through aquaporins [13]. To dis-

cern any other sequence patterns that could underlie the con-

struction of such different and distinct groups of membrane

proteins, we investigated the well-characterized small-xxx-

small/Gly-xxx-Gly-like interaction motif that mediates strong

intra- and inter-chain helix–helix contacts (where Ala, Gly,

and Ser are small residues, see [18] for review). Type II poly-

peptides had significantly more small-xxx-small motifs in total

(�3-fold) and buried in their interiors (�5-fold) than Type III

chains (Table 4). This distinction disappears when motif

counts within each group are normalized to the total number

of TM segments in each chain. On the other hand, the occur-

rence of motifs on the surfaces and at inter-chain contact sites

in Type III subunits were markedly enriched when normalized,

with >8-fold more motifs/TM helix at surface positions, and

�20-fold more motifs/TM helix at sites of inter-subunit con-

tact than Type II structures (Table 4). The consistent pattern

of enrichment of small-xxx-small motifs on the surfaces and

at the inter-chain interaction sites of Type III vs. Type II struc-

tures led us to suspect that these motifs play a central role in

the construction of Type III architectures in preference to

Type II.

Once we considered the overall trends that distinguish the

two groups of structures – Type II have (i) lower stoichio-

metry; (ii) component chains that exceed the number of TM

helices needed for membrane permeation; (iii) more basic res-

idues and more small-xxx-small motifs in their subunit interi-

ors; and (iv) fewer of these motifs on their surfaces and

inter-chain contact sites, than Type III – it seemed as though

each architecture Type could have been recruited through evo-
lution to function in characteristic ways. The cellular role(s) of

each member of the Type II or Type III groups in our data set

was thus examined (Fig. 3). Remarkably, we found that 3 of 4

Type II structures catalyze the uphill transport of ions and/or

small molecules against their electrochemical gradient, while 0

of 7 Type III structures were capable of active transport. In-

stead, 6 of the 7 Type III structures promote the downhill

movement of ions. We also noted that the Type II channel

and channel-like structures – aquaporin and the H+/Cl� ex-

changer1 each feature one solute pathway per chain, whereas

0 of the Type III channel subunits have this capability. For

Type III structures, formation of a single conduit across the

membrane requires assembly of all subunits. Interestingly,

the Type II + Type III mixed-architecture homo-oligomer

(1XFH, see Table 1) functions both as an active transporter

and as a passive channel: (i) it couples the uphill movement

of Glu to the energetically favorable movement of Na+, K+

and H+ ions [19]; and (ii) catalyzes the downhill movement

of Cl� ions [20]. Like other Type II structures, each 1XFH

protomer is suspected to have an independent Glu transport

pathway, while the location of the chloride permeation path-

way remains unknown [21]. The Type II + Type III architec-

ture of 1XFH may therefore reflect energy-dependent

transporter and -independent channel-like functionalities.

The Type/function segregation that we observe as a conse-

quence of our classification is readily connected to stoichio-

metry, subunit size, and residue composition patterns in the

Type II vs. Type III groups. For example, Type III relies

strongly on the small-xxx-small interaction motif to mediate

inter-chain contacts than Type II. In terms of residue compo-

sition, Type III assembly sites thus more closely resemble the

folds of membrane protein interiors – where large numbers

of Ala, Gly, and Ser residues are buried [14,22] – than do Type

II interfaces. This preference may have a structural origin in

the small TM domain size of Type III subunits. With too

few TM segments to form channels independently [17], their

inter-chain contacts may require a high degree of stability in

order to ensure maintenance of a functional pore. Small resi-

due motifs may also additionally provide pivot points for

structural rearrangements, helping to confer the flexibility re-

quired for gating [23]. Conversely, the larger size of Type II

subunits – within the range of TM helices needed to form a



Table 3
Comparison of Type II and Type III amino acid compositions

Residue/group Ratioa

Total Buriedb Surface Interface

L 1.1 (0.9) 1.6 (0.6) 1.2 (0.8) 1.5 (0.7)
I 0.8 (1.2) 0.6 (1.7) 1.1 (0.9) 1.5 (0.7)
F,W,Y 1.2 (0.8) 2.0 (0.5) 1.4 (0.7) 1.3 (0.8)
M 0.7 (1.4) 0.5 (2.0) 0.8 (1.3) 0.0c (—)
V 0.7 (1.4) 0.8 (1.3) 0.6 (1.7) 0.6 (1.7)
C,S 0.9 (1.1) 0.5 (2.0) 1.4 (0.7) 1.2 (0.8)
T 1.1 (0.9) 2.3 (0.4) 0.5 (2.0) 0.5 (2.0)
A,G 0.9 (1.1) 0.9 (1.1) 0.6 (1.7) 0.6 (1.7)
D,E,N, Q 0.9 (1.1) 0.6 (1.7) 1.0 (1.0) 1.1 (0.9)
H,K,R 1.9 (0.5) 16.9 (0.1) 2.2 (0.5) 1.6 (0.6)
P 2.2 (0.5) 1.6 (0.6) 2.5 (0.4) 2.1 (0.5)

aRatio of residue/group percentage occurrences in Type II/Type III.
The inverse ratio is given in parentheses. Values are rounded to the
nearest decimal place. Means were compared using two-tailed un-
paired t-tests with n = 4 (Type II) and n = 7 (Type III), with the
exception of buried positions, where n = 6 for Type III (see Section 2
for details). Ratios representing marginally significant (P 6 0.10), sig-
nificant (P 6 0.05), or highly significant (P 6 0.01) differences between
groups are shown underlined, in bold type, or underlined and in bold
type, respectively. Residues are sorted in order of decreasing hydrop-
athy (in the case of grouped residues, mean hydropathy) according to
the Liu–Deber scale [44].
bBuried and surface residues have 620% and >20% side chain relative
LASA, respectively. Interfacial residues are those surface residues with
a >50% DLASA value.
cMet residues were not present at interfacial positions in the group of
Type II polypeptides and had a percent occurrence of 3.1% in Type III
inter-chain interaction sites.

Table 2
Properties of Type II and Type III polypeptides and complexes

Property Averagea Ratiob Pc

Type II Type III

CA/polypeptide (Å2) 1725 ± 476 1801 ± 836 1.0 (1.0) 0.870
Stoichiometry 2.5 ± 1.0 6.7 ± 2.8 0.4 (2.7) 0.020
No. TM helices/polypeptide 9.8 ± 4.5 2.3 ± 1.0 4.3 (0.2) 0.043
No. TM helices/complex 23.0 ± 8.9 16.6 ± 12.2 1.4 (0.7) 0.372

aMeans ± S.D. of parameter value in Type II or Type III groups.
bRatio of average value in Type II/Type III. The inverse ratio is given in parentheses. Values are rounded to the nearest decimal place.
cP-value determined using unpaired two-tailed t-tests.

Table 4
Small-xxx-small motifs in Type II and Type III chains

Residue/group Ratioa

Total Buried Surface Interface

No. small-xxx-small 3.0 (0.3) 5.3 (0.2) 0.5 (2.1) 0.2 (4.9)
No. small-xxx-small/
No. TMs

0.7 (1.4) 1.2 (0.8) 0.1 (8.8) 0.0 (20.7)

aRatio of average value in Type II/Type III. The inverse ratio is given
in parentheses. Values are rounded to the nearest decimal place. Ratios
representing marginally significant or significant differences between
groups are shown underlined or in bold type, respectively (see Section
2 for details).

Fig. 3. Functional characteristics of Type II and Type III complexes.
Type II and Type III structures are encircled in yellow and blue,
respectively. The cellular role(s) of each protein is given along with its
PDB identifier. Note that the 1XFH structure with mixed Type
II + Type III architecture exhibits dual functionality. *Other members
of the ClC family of proteins have channel rather than H+/Cl�

exchange activity; the structure analyzed in this work is an exchanger.
**These rotors catalyze the downhill movement of Na+ ions in concert
with a static membrane component of the ATPase machinery; the
rotor must be assembled and in contact with additional ATPase
subunits in order for sodium flux to occur [35,36].
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tunnel across the membrane [17] – is a structural parameter

that may relate to the ability of certain Type II subunits to

form individual permeation pathways. This property – and/

or the requirement for large structural shifts needed for trans-

port – may also preclude the utilization of small-xxx-small
motifs for strong inter-subunit contacts in favor of other

residues [24].

Two structures, phospholamban (Type III) and aquaporin

(Type II), appear to be outliers in the architecture/function

relationship discerned in our analysis (Fig. 3). Phospholamban

dissociates from its pentameric structure to associate with and

regulate the activity of the sarcoplasmic reticulum calcium-

ATPase pump in cardiomyocytes. Early ion conductance stud-

ies, however, suggest that the phospholamban homo-oligomer

may also function as a Ca2+-selective channel [25,26], a possi-

bility revisited upon solution of its channel-like pentameric

structure [27], and consistent with its Type III classification.

Notably, phospholamban is also distinguished from the other

Type III structures in terms of residue composition: it is the

only protomer that contains zero small-xxx-small motifs. Aqu-

aporin, on the other hand, differs in function from other Type

II proteins in that it facilitates passive transport of water rather

than active transport of ions or small molecules. Its structure is

nevertheless distinct from Type III channels in that each its

four component polypeptide chains has a single permeation

pathway. In this, aquaporin subunits are similar to those of

the homo-dimeric H+/Cl� exchanger, a Type II active trans-

porter with membership in a protein family that includes pas-



Fig. 4. Controlled (A) and proliferative (B) membrane protein aggregation. Self-assembly is diagrammed using the model three-helix-bundle
described in Fig. 1. (A) Type I complexes are limited to dimer stoichiometry when a single helix face (blue) mediates inter-chain contacts, or by
topology inversion when multiple symmetric interactive sites (blue or red) are present. In Type II complexes, the angle separating the interacting faces
(purple and orange) on the monomer surface could potentially influence stoichiometry. Placement of inter-chain contact sites (green and yellow) on
the same equivalent helix in Type III structures restricts their angle of separation, minimizing the possibility of propagation. (B) Creation of a single
non-native symmetric interaction site (pink asterisk) can lead to loss of stoichiometric control and potentially pathogenic self-association in all three
Types.
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sive Cl� channels. It is not yet clear in either case whether

assembly is absolutely required for conduction. The potential

role for complex formation in the proper intra-chain folding

and/or cell surface targeting of these two proteins is also a fas-

cinating possibility, especially given the complex ‘‘double-

funnel’’ arrangement of their subunits [28–30].

Membrane protein complexes represent a striking example

of self-assembling systems that must recruit identical polypep-

tides until a prescribed level for function is reached. The mech-

anisms by which these complexes are constructed should be

distinct from proliferative structures such as amyloid. It is per-

haps not surprising, then, that our scheme predicts Type-spe-

cific strategies that promote controlled association of

identical chains (Fig. 4A). For example, Type I homo-oligo-

mers are inevitably dimeric: if more than a single symmetric in-

ter-chain interaction site participates in assembly,

stoichiometry cannot be controlled without topology inver-

sion. Utilization of Type II and/or Type III (also termed

‘‘two-faced’’ [31]) helix–helix contacts permit a wider sampling

of sizes, and the angular requirements of placing both interac-

tive surfaces on the same helix in Type III pairings may help to

ensure eventual cyclization. Control of self-assembly is never-

theless readily disrupted; the presence of a single aberrant sym-

metric contact site supports out-of-control proliferation

(Fig. 4B). Several circumstances could conceivably lead to this

potentially pathogenic situation. Surfaces normally employed

for intra-chain contacts could become exposed following

improper folding of a wild-type monomer – or weakening of

its fold by a residue substitution; atypical site(s) could also

be created by mutation of surface residues. We note that such

proliferative/pathogenic complexes are unlikely to be repre-

sented in the structural database, as these proteins should be

identified as improperly folded by the cell and targeted for deg-

radation.

Our classification system may prove useful in the prediction

of protein architecture in the absence of high-resolution struc-

tures. Polypeptides with a large number of TM segments and
low stoichiometry are likely to be Type II structures involved

in active transport; conversely, chains with few TM segments

known to specifically self-assemble are likely Type III com-

plexes built by surfaces enriched in small residues that trans-

port ions or small molecules down their concentration

gradients. The number of TM helices/polypeptide chain can

be estimated from amino acid sequence using a variety of pro-

grams (for reviews, see [32,33]), and biochemical experiments

can be used to examine oligomeric state and/or determine func-

tional properties. Given the limited routes to assembly of dis-

crete complexes, membrane proteins that self-assemble for

function exist on the edge of aggregation, highly susceptible

to mutations that create non-native interaction sites.
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