
Theoretical Computer Science 450 (2012) 3–9

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Complexity of problems concerning reset words for cyclic and
Eulerian automata
Pavel Martyugin
Ural Federal University, 620083 Ekaterinburg, Russia

a r t i c l e i n f o

Keywords:
Synchronization
Automata
Reset words
Computational complexity

a b s t r a c t

A word is called a reset word for a deterministic finite automaton if it maps all states
of this automaton to one state. We consider two classes of automata: cyclic automata
and Eulerian automata. For these classes we study the computational complexity of the
following problems: does there exist a reset word of given length for a given automaton?
what is the minimal length of the reset words for a given automaton?

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A deterministic finite automaton (DFA) A is a triple ⟨Q ,Σ, δ⟩, where Q is a finite set of states, Σ is a finite alphabet, and
δ : Q × Σ → Q is a totally defined transition function. The function δ extends in a unique way to an action Q × Σ∗

→ Q
of the free monoidΣ∗ overΣ; this extension is also denoted by δ. We denote δ(q, w) by q ·w. For S ⊆ Q ,w ∈ Σ∗, we also
define S · w = {q · w | q ∈ S}.

A DFAA is called synchronizing if there exists awordw ∈ Σ∗ whose action synchronizesA , that is, leaves the automaton
in one particular state no matter at which state in Q it started: δ(q, w) = δ(q′, w) for all q, q′

∈ Q . Any word w with this
property is said to be a reset word for the automaton.

Černý in [4] produced for each integer n a synchronizing automaton with n states, 2 input letters and the shortest reset
word has length (n−1)2. He conjectured that these automata represent theworst possible case, that is, every synchronizing
automaton with n states can be reset by a word of length (n − 1)2. The conjecture is arguably the most longstanding open
problem in the combinatorial theory of finite automata. Upper bounds within the confines of the Černý conjecture have
been obtained for the maximum length of the shortest reset words for synchronizing automata in some special classes, see,
e.g., [6,1,7,5,12]. Two of these classes are considered in the present paper. In the general case there is only a cubic upper
bound (n3

− n)/6, see [10].
It is natural to consider computational complexity of various problems arising from the study of automata

synchronization. The most important questions are: is a given automaton synchronizing or not, and what is the minimal
length of the reset words for a given automaton?

It follows from [4] that there exists an algorithm that checks whether a given DFA A = ⟨Q ,Σ, δ⟩ is synchronizing.
This algorithm works within O(|Σ | · |Q |

2) time bound. In [6], Eppstein presented another algorithm which works within
O(|Σ | · |Q |

2) + O(|Q |
3) time bound and finds some reset word (which need not to be the shortest reset word for A). In

[6,11] it was shown that the following problem SYN is NP-complete: given a DFA A and a positive integer L, is there a
synchronizing word of length at most L. This problem remains NP-complete even if restricted to automata on a 2-letter
alphabet. Moreover, Berlinkov in [3] proved that no polynomial time algorithm approximates the length of the shortest
synchronizing word within a constant factor for a given DFA.

In [9], Olschewski and Ummels considered a problemMIN-SYN: given a DFA A and a positive integer L, is the minimum
length of reset words for the automaton A equal to L? They proved that this problem is DP-complete, where DP is a class of

E-mail address:martugin@mail.ru.

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.04.022

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82380551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2012.04.022
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:martugin@mail.ru
http://dx.doi.org/10.1016/j.tcs.2012.04.022

4 P. Martyugin / Theoretical Computer Science 450 (2012) 3–9

all languages of the form L = L1 \ L2 with L1, L2 ∈NP. The canonical DP-complete problem is SAT-UNSAT: given two Boolean
formulae φ and ψ (in CNF), the problem is to decide whether φ is satisfiable and ψ is unsatisfiable. The problem MIN-SYN
remains DP-complete even for 2-letter automata.

Since the problems SYN and MIN-SYN turn out to be computationally difficult in general, it is reasonable to consider
their restrictions to some natural classes of automata. For any class C of automata, we define the restricted versions SYN(C)
and MIN-SYN(C) of SYN and respectively MIN-SYN.

Instance: A DFA A ∈ C and an integer L > 0.
Question of SYN(C): Is there a reset word of length L for the automaton A ?
Question of MIN-SYN(C): Is the minimum length of reset words for the automaton A equal to L?

These problems have been considered in the literature for cyclically monotonic (see [6]), monotonic, commutative,
aperiodic, D-trivial automata, for automata with simple idempotents and for automata with a zero state (see [8]). In some
cases they become solvable in polynomial time, in some other cases they remain computationally hard. In the present paper
we consider these problems for two further natural classes of automata: the class CYCLE of cyclic automata and the class
EULER of Eulerian automata. Let us define these classes and comment on their synchronization properties.

Let A = ⟨Q ,Σ, δ⟩ be a DFA and |Q | = n. The letter b ∈ Σ is said to be cyclic if it acts on the set Q as a cyclic permutation
of order n. This means that for any q ∈ Q and i ∈ {1, . . . , n − 1}, we have δ(q, bn) = q ≠ δ(q, bi). A DFA with a cyclic letter
is called cyclic. Dubuc [5] has proved that every n-state synchronizing cyclic DFA has a reset word of length (n − 1)2, thus,
the Černý conjecture holds true for cyclic automata. Furthermore, this upper bound of the length of the shortest reset words
is tight, because automata from the Černý series [4] are cyclic.

A DFA A = ⟨Q ,Σ, δ⟩ is said to be Eulerian if its underlying digraph is Eulerian. It is well-known that the underlying
digraph of A is Eulerian if and only if for every state q ∈ Q there are exactly |Σ | pairs (p, a) ∈ Q ×Σ such that p ·a = q. For
any n-state synchronizing Eulerian DFA there exists a reset word of length n2

− 3n + 3 (see [2,7]). It means that the Černý
conjecture is true for Eulerian automata.

For a class C of automata and a positive integer k, we denote by Ck the class of all automata in C with k input letters. Here
we prove that each of the problems SYN(CYCLE), SYN(CYCLEk) with k ≥ 2, SYN(EULER), SYN(EULERk) with k ≥ 3 is NP-
complete, and each of the problems MIN-SYN(CYCLE), MIN-SYN(CYCLEk) with k ≥ 2, MIN-SYN(EULER), MIN-SYN(EULERk)
with k ≥ 3 is both NP-hard and co-NP-hard. The question about the complexity of the problems SYN(EULER2) and
MIN-SYN(EULER2) remains open.

For the sequel, we need some notation. For a set Q , let |Q | denote the cardinality of Q and let 2Q stands for the set of all
subsets of Q . For a wordw ∈ Σ∗, we denote by |w| the length ofw and byw[i], where 1 ≤ i ≤ |w|, the i-th letter inw from
the left. If 1 ≤ i ≤ j ≤ |w|, we denote byw[i, j] the wordw[i] · · ·w[j].

2. Cyclic automata

Theorem 1. The problem SYN(CYCLE2) is NP-complete.
Proof. It is easy to see that the general problem SYN belongs to NP, because any synchronizing automaton can be
synchronizing by a word of polynomial length (of length at most (n3

− n)/6, see [10]). Now we reduce the problem SAT to
SYN(CYCLE2). Take an instance of SAT consisting of the clauses c1(x1, . . . , xn), . . . , cp(x1, . . . , xn) over the Boolean variables
x1, . . . , xn ∈ {0, 1}. Wemay (andwill) assume that no clause contains both xm and¬xm for anym ∈ {1, . . . , n}. We are going
to construct a 2-letter automaton Acycle = ⟨Q ,Σ, δ⟩ and a number L such that there exists a reset word of length L for Acycle
if and only if c1 ∧ c2 ∧ · · · ∧ cp is satisfiable.

Let G = {(i,m) | ci contains ¬xm}. We put

Σ = {a, b}, Q =


p

i=1

Qi


∪


p

i=1

Di


∪

 
(i,m)∈G

Smi


, where

Qi = {q(i, 0), . . . , q(i, n + 2)}, Di = {d(i, 1), . . . , d(i, n + 4)},
Smi = {s(i,m, 1), . . . , s(i,m, n + 4)}.

Now we define the action of the letters a and b. For all i ∈ {1, . . . , p} and m ∈ {1, . . . , n}, we put

q(i, 0) · a = q(i, 1); q(i, 0) · b =


q(i − 1, 0) if i > 1,
q(1, 1) if i = 1;

q(i,m) · b =


s(i,m, 1) if ¬xm occurs in ci,
q(i,m + 1) otherwise;

q(i,m) · a =


d(1, 1) if xm occurs in ci,
q(i,m + 1) otherwise;

q(i, n + 1) · a = q(i, n + 1) · b = q(i, n + 2);
q(i, n + 2) · a = d(1, 1); q(i, n + 2) · b = d(i, 1).

P. Martyugin / Theoretical Computer Science 450 (2012) 3–9 5

Fig. 1. The automaton Acycle for the clauses x1 ∨ ¬x2 , x2 ∨ ¬x3 , ¬x1 ∨ ¬x3 .

For all i ∈ {1, . . . , p}, m ∈ {1, . . . , n} such that (i,m) ∈ G, and for all j ∈ {1, . . . , n + 4}, we put

s(i,m, j) · a = d(1, 1); s(i,m, j) · b =


s(i,m, j + 1) if j < n + 4,
q(i,m + 1) if j = n + 4.

For all i ∈ {1, . . . , p} and j ∈ {1, . . . , n + 4}, we put

d(i, j) · a = d(1, 1); d(i, j) · b =


d(i, j + 1) if j < n + 4,
q(i + 1, 1) if j = n + 4, i < p,
q(p, 0) if j = n + 4, i = p.

We put L = n + 2. An example of the automaton Acycle is presented in Fig. 1. The action of the letter b is shown with
solid lines. The action of the letter a is shown with dashed lines. All large black circles represent the same state d(1, 1) (this
way we try to improve the readability of the picture). Every bold arrow labeled by n + 4 represents one of the sets Smi or Di.
Every set Di, i ∈ {1, . . . , p}, and every set Smi , (i,m) ∈ G, contains n + 4 states. Fig. 1 contains three columns of states. The
i-th column contains the states q(0, i), . . . , q(n + 2, i) for fixed i. Every horizontal row contains the states q(m, 1), q(m, 2),
q(m, 3) for fixed m. There are some right arrows labeled by b from columns to the sets Smi . The set Di is drawn under the
corresponding set Qi.

The size of the automaton Acycle is a polynomial function of the size of the clauses c1, . . . , cp. It easy to prove that the
automaton Acycle is cyclic, namely, the letter b acts on the set Q as a cyclic permutation of order |Q |.

We notice that the word an+3 is a reset word for Acycle. We will prove that there is a reset word of length less than n + 3
if and only if the formula c1 ∧ c2 ∧ · · · ∧ cp is satisfiable.
Lemma 1. If q ∈ Q , w ∈ Σ∗, w[n + 2] = a and there is an integer s such that s ∈ {1, . . . , n + 1} and q · w[1, s] = d(1, 1),
then q · w[1, n + 2] = d(1, 1).
Proof. We have

q · w[1, n + 1] = q · w[1, s]w[s + 1, n + 1] = d(1, 1) · w[s + 1, n + 1] ∈ D1.

Therefore, q · w[1, n + 2] = d(1, 1). �

Lemma 2. Ifw ∈ Σ∗, |w| = n + 2 andw[1] = w[n + 2] = a, then
δ(Q\{q(1, 0), . . . , q(p, 0)}, w) = {d(1, 1)}.

Proof. The letter a maps all sets Di and Smi to the state d(1, 1). Therefore, if q ∈ (

(i,j)∈G S ji) ∪ (

p
i=1 Di), then q · w[1] =

d(1, 1), and we obtain from Lemma 1 that q · w[1, n + 2] = d(1, 1).
Let q ∈ Qi for some i ∈ {1, . . . , p}. If for some s ∈ {1, . . . , n + 1} the state q · w[1, s] belongs to one of the sets Smi or Di,

then either q·w[n+1] belongs to the same set Smi orDi, or there is some s′ ∈ {s+1, . . . , n+1} such that q·w[1, s′] = d(1, 1)
and we can apply Lemma 1. In any case, if for some s ∈ {1, . . . , n + 1}, one has q · w[1, s] ∈ (


(i,j)∈G S ji) ∪ (

p
i=1 Di), then

q · w[1, n + 2] = d(1, 1), becausew[n + 2] = a.
Let q ∈ Qi \ {q(0, i)} and suppose that, for all s ∈ {1, . . . , n + 1}, one has

q · w[1, s] /∈

 
(i,j)∈G

S ji


∪


p

i=1

Di


.

It means that q · w[1, s] ∈ Qi for s ∈ {1, . . . , n + 1}. Hence, q = q(1, i). Therefore, q · w[1, n + 2] = d(1, 1). Thus,
δ(Q\{q(1, 0), . . . , q(p, 0)}, w) = {d(1, 1)}. �

6 P. Martyugin / Theoretical Computer Science 450 (2012) 3–9

It follows from Lemma 2 that a wordw with |w| = n + 2 andw[1] = w[n + 2] = a is a reset word for Acycle if and only
if q(1, 0) · w = · · · = q(p, 0) · w = d(1, 1).

Lemma 3. If c1 ∧ c2 ∧ · · · ∧ cp is satisfiable, then there exists a reset wordw of length n + 2 for the automaton Acycle.

Proof. Letw = aα1 . . . αna, where for i ∈ {1, . . . , n}, αi =


a if xi = 1,
b if xi = 0.

We are going to prove that {q(1, 0), . . . , q(p, 0)} ·

w = {d(1, 1)}. Let i ∈ {1, . . . , p}. We have q(i, 0) · a = q(i, 1). We also have ci(x1, . . . , xn) = 1 (1 means true). Hence,
there is m ∈ {1, . . . , n} such that xm = 1 (in this case w[m + 1] = αm = a) and the variable xm occurs in ci; or xm = 0
(in this case w[m + 1] = αm = b) and ¬xm occurs in ci. Let m be the least number with such property. Then we have
q(i, 1) · α1 . . . αm−1 = q(i,m) and q(i,m) · αm ∈ {s(i,m, 1), d(1, 1)}. If q(i,m) · αm = s(i,m, 1) and αm+1 = · · · = αn = b,
then q(i, 1) · α1 . . . αn ∈ Smi and q(i, 0) · w = d(1, 1). Otherwise, there is a number m′

∈ {m, . . . , n + 1} such that
q(i, 1) · α1 . . . αm′ = d(1, 1). In this case we obtain from Lemma 1 that q(i, 0) · w = d(1, 1). Therefore, by Lemma 2
we obtain Q · w = {d(1, 1)}. �

Lemma 4. If there is a reset wordw ∈ {a, b}∗ of length n + 2 for the automaton Acycle, then c1 ∧ c2 ∧ · · · ∧ cp is satisfiable.

Proof. For any letterw[1] ∈ {a, b}, we have {q(1, 1), . . . , q(1, p)} ⊆ Q · w[1].
We consider the wordw[2, n + 1]. For m ∈ {1, . . . , n}, we put

xm =


0 ifw[m + 1] = b,
1 ifw[m + 1] = a.

Arguing by contradiction, suppose that ci(x1, . . . , xn) = 0 for some clause ci. If for some s ∈ {2, . . . , n + 1}, we have
q(i, 1) ·w[2, s] ∈ Smi , then ci(x1, . . . , xn) = 1. Therefore, q(i, 1) ·w[2, n + 1] = q(i, n + 1). In both casesw[n + 2] = a and
w[n+ 2] = bwe obtain q(i, 0) ·w = q(i, n+ 1) ·w[n+ 2] = q(i, n+ 2). Therefore, the wordw resets the automaton Acycle
to the state q(i, n + 2). On the other hand, the state q(i, n + 2) cannot be reached from the state q(j, 1), i ≠ j by using the
word of length n + 2. We obtain a contradiction. Therefore, for any i ∈ {1, . . . , p}, ci(x1, . . . , xn) = 1. The lemma and the
theorem is proved. � �

Corollary 1. 1. The problems SYN(CYCLE) and SYN(CYCLEk) for k ≥ 2 are NP-complete.
2. The problems MIN-SYN(CYCLE) and MIN-SYN(CYCLEk) for k ≥ 2 are NP-hard and co-NP-hard.

Proof. 1. The problem SYN(CYCLE2) is a special case of SYN(CYCLE). Hence, the latter problem is NP-complete. To reduce
the problem SYN(CYCLE2) to SYN(CYCLEk) for any k ≥ 2, we add k − 2 letters that act as identical transformations to the
construction in the proof above.

2. The NP-hardness of the problem MIN-SYN(CYCLE2) for k ≥ 2 follows from the same reduction as in the proof of
Theorem 1. To prove the co-NP-hardness, we use the same automaton Acycle constructed from given clauses c1, . . . , cp but
put L = n + 3. Then the shortest reset word for the automaton Acycle has length L if and only if there are no values for the
variables x1, . . . , xn such that c1(x1, . . . , xn) = · · · = cp(x1, . . . , xn) = 1. Therefore, the problem is co-NP-hard. The result
extends to the problems MIN-SYN(CYCLE) and MIN-SYN(CYCLEk) for k ≥ 2 in an obvious way. �

3. Eulerian automata

Theorem 2. The problem SYN(EULER3) is NP-complete.

Proof. The problem SYN(EULER3) belongs to NP because general problem SYN belongs to NP. We use a reduction from
SAT again. Take an instance of SAT consisting of the clauses c1(x1, . . . , xn), . . . , cp(x1, . . . , xn) over the Boolean variables
x1, . . . , xn. We assume that no clause contains both xm and ¬xm for anym ∈ {1, . . . , n}. We are going to construct a 3-letter
automaton Aeuler = ⟨Q ,Σ, δ⟩ and an integer L > 0 such that there exists a reset word of length L for Aeuler if and only if
c1 ∧ c2 ∧ · · · ∧ cp is satisfiable.

Let Aeuler = ⟨Q ,Σ, δ⟩, where

Σ = {a, b, c}, Q = Z ∪


p

i=1

Qi


∪


p

i=1

Ri


∪


p

i=1

Si


,

Z = {z(m) | m ∈ {2, . . . , n + p + 5}} and, for i ∈ {1, . . . , p},
Qi = {q(i,m) | m ∈ {1, . . . , n + 3}}, Ri = {r(i,m) | m ∈ {2, . . . , n + 3}},
Si = {s(i,m) | m ∈ {1, . . . , p − i + 1}}.

P. Martyugin / Theoretical Computer Science 450 (2012) 3–9 7

Now we define the action of the letters a and b. Let i ∈ {1, . . . , p}. For allm ∈ {1, . . . , n}, we put

q(i,m) · a =


r(i,m + 2) if xm occurs in ci,
q(i,m + 1) otherwise;

q(i,m) · b =


r(i,m + 2) if ¬xm occurs in ci,
q(i,m + 1) otherwise.

q(i, n + 1) · a = q(i, n + 1) · b = q(i, n + 2); q(i, n + 2) · a = q(i, n + 2) · b = q(i, n + 3);
q(i, n + 3) · a = r(i, n + 3) · a = s(i, 1); q(i, n + 3) · b = q(i, n + 3);
r(i, n + 3) · b = r(i, n + 3).

Form ∈ {2, . . . , n + 2}, we put r(i,m) · a = r(i,m) · b = r(i,m + 1).
Form ∈ {1, . . . , p − i + 1}, we put

s(i,m) · b = s(i,m); s(i,m) · a =


s(i,m + 1) if m < p + i − 1,
s(i − 1, p − i + 2) ifm = p + i − 1, i > 1,
z(n + p + 4) ifm = p, i = 1.

Form ∈ {2, . . . , n + p + 2}, we put z(m) · a = z(m) · b = z(m + 1).We also put

z(n + p + 3) · a = z(n + p + 4); z(n + p + 3) · b = z(n + p + 3);
z(n + p + 4) · a = z(n + p + 5); z(n + p + 4) · b = z(n + p + 4);
z(n + p + 5) · a = z(n + p + 5) · b = z(n + p + 5).

The letters a and b encode satisfiability of the clauses. Now we define the action of the letter c such that the automaton
A becomes Eulerian. For q ∈ Q , we put q · c = q except the following cases. Let i ∈ {1, . . . , p}, m ∈ {1, . . . , n}. If either xi
or ¬xi occurs in cm, then we put r(i,m + 2) · c = q(i,m + 1). Besides that, we put

q(i, n + 3) · c = s(i, 1) · c = q(i, 1); r(i, n + 3) · c = r(i, 2) for i ≠ p;
s(i, p − i + 1) · c = r(i + 1, 2); z(n + p + 3) · c = z(n + p + 4) · c = z(2);
z(n + p + 5) · c = r(1, 2).

An example of the automaton Aeuler is presented in Fig. 2. The action of the letters a, b, c is shown by solid, dashed and
dotted lines respectively. The states in Fig. 2 are organized in several columns containing respectively the sets Z , Q1 ∪ S1, R1,
Q2 ∪ S2, R2, and so on. We put L = n + p + 3.

In general, the states of the automaton Aeuler can be partitioned in n + p + 5 ‘‘rows’’ T1, . . . , Tn+p+5. We put T1 =

{q(1, 1), . . . , q(p, 1)}; for m ∈ {2, . . . , n+3} we put Tm = {z(m), q(1,m), r(1,m), . . . , q(p,m), r(p,m)} and for m ∈

{n+4, . . . , n+p+4}weput Tm = {z(m), s(m−n−3, 1), . . . , s(m−n−3, p−m+n+4)};we also put Tn+p+5 = {z(n+p+5)}.
Clearly, the size of the automaton Aeuler is a polynomial function of the size of the clauses c1, . . . , cp.

Lemma 5. The DFA Aeuler is Eulerian.

Proof. It is easy to check that for any state q ∈ Q there exist exactly 3 pairs (r, α) ∈ Q ×Σ such that r · α = q. �

Let U ⊆ Q , Θ ⊆ Σ . We denote by dΘ(U) the minimum length of words w ∈ Θ∗ such that |U · w| = 1. Thus, the
minimum length of reset words for Aeuler is equal to dΣ (Q).

Lemma 6. dΣ (Q) = d{a,b}(Q) ∈ {n + p + 3, n + p + 4}.

Proof. It is immediate to check that the word an+p+4 is a reset word for DFA Aeuler . Therefore dΣ (Q) ≤ n+ p+ 4. We notice
that d{a,b}({z(2), z(n + p + 5)}) = n + p + 3. Therefore d{a,b}(Q) ≥ n + p + 3.

Now let w be a shortest reset word for the Aeuler and suppose that the letter c occurs in w. We aim to prove that
|w| ≥ n + p + 4. It is not difficult to verify that dΣ ({z(2), r(1, 2)}) = n + p + 2 and there is no word u ∈ Σ∗

\ {a, b}∗
of length n + p + 2 such that z(2) · u = r(1, 2) · u. Let i be the position of the leftmost occurrence of the letter c in w. If
i ≥ n + p + 4, then |w| ≥ n + p + 4. Let i ≤ n + p + 3, then we have z(n + p + 4), z(n + p + 5) ∈ Q · w[1, i − 1]. Hence
z(2), r(1, 2) ∈ Q ·w[1, i]. Therefore |w| ≥ i + dΣ ({z(2), r(1, 2)}) = i + n + p + 2. If i ≥ 2, then |w| ≥ n + p + 4. If i = 1,
then w[1] = c and {z(2), z(3), r(1, 2)} ⊆ Q · w[1]. It is not difficult to prove that dΣ ({z(2), z(3), r(1, 2)}) ≥ n + p + 3.
Hence, |w| ≥ n + p + 4 in any case. Therefore dΣ (Q) = d{a,b}(Q). �

In particular, the lemma claims that there exists a reset word of theminimum length in which the letter c does not occur.
We notice that Tn+p+5 · a = Tn+p+5 · b = Tn+p+5, and Tm · a, Tm · b ⊆ (Tm ∪ Tm+1) for m ∈ {n + 1, . . . , n + p + 4} while
Tm · a, Tm · b ⊆ Tm+1 ∪ Tm+2 for m ∈ {1, . . . , n}. The following lemma is an immediate corollary of this property.

Lemma 7. 1. Every reset word from {a, b}∗ resets the DFA Aeuler to the state z(n + p + 5).
2. d{a,b}(Tn+2 ∪ · · · ∪ Tn+p+5) = p + 3.

8 P. Martyugin / Theoretical Computer Science 450 (2012) 3–9

Fig. 2. The automaton Aeuler for the clauses x1 ∨ ¬x2 , x2 ∨ ¬x3 , ¬x1 ∨ ¬x3 .

3. If a wordw ∈ {a, b}∗ of length n + p + 3 is a reset word for Aeuler , then Q · w[1, n] ⊆ Tn+2 ∪ · · · ∪ Tn+p+5.

4. If a wordw ∈ {a, b}∗ of length n + p + 3 is a reset word for Aeuler , then T1 · w[1, n] ⊆ Tn+2.

5. If there is a wordw of length n such that Q ·w ⊆ Tn+2 ∪ · · ·∪ Tn+p+5, then the wordwap+3 is a reset word of length n+p+3
for Aeuler .

6. If there is a wordw of length n such that T1 · w ⊆ Tn+2, then there is a reset word of length n + p + 3 for Aeuler .

7. d{a,b}(Q) = d{a,b}(T1).

Lemma 8. If c1 ∧ c2 ∧ · · · ∧ cp is satisfiable, then there exists a reset wordw of length n + p + 3 for the automaton Aeuler .

Proof. Let w = α1 . . . αnap+3, where for i ∈ {1, . . . , n}, αi =


a if xi = 1,
b if xi = 0.

We are going to prove that T1 · w =

{z(n + p + 5)}. Let i ∈ {1, . . . , p}. We have ci(x1, . . . , xn) = 1. Hence, there is m ∈ {1, . . . , n} such that xm = 1 (in
this case w[m] = a) and xm occurs in ci or xm = 0 (in this case w[m] = b) and ¬xm occurs in ci. Let m be the least number
with this property. We obtain from the definition of the action of a and b that

q(i, 1) · w[1,m − 1] = q(i,m) and q(i,m) · w[m] = r(i,m + 2).

For any word w[m + 1, n] ∈ {a, b}∗ we have r(i,m + 2) · w[m + 1, n] = r(i, n + 2) ∈ Tn+2. Hence, from Lemma 7, w is a
reset word for the automaton Aeuler . �

Lemma 9. If there is a reset wordw ∈ {a, b}∗ of length p + n + 3 for the automaton Aeuler , then c1 ∧ c2 ∧ · · · ∧ cp is satisfiable.

Proof. The wordw resets DFA Aeuler . Therefore, we have T1 · w[1, n] ∈ Tn+2. Form ∈ {1, . . . , n} we put

xm =


0 ifw[m] = b,
1 ifw[m] = a.

Arguing by contradiction, suppose that ci(x1, . . . , xn) = 0 for some clause ci. If, for some m ∈ {1, . . . , n}, we would
have q(i, 1) · w[1,m] = r(ı,m + 2), then ci(x1, . . . , xn) = 1. Therefore, q(i, 1) · w[1, n] = q(i, n + 1) ∈ Tn+1. By
Lemma 7, the word w is not a reset word for Aeuler . We obtain a contradiction. Therefore, for any i ∈ {1, . . . , p}, we have
ci(x1, . . . , xn) = 1. � �

Corollary 2. 1. The problems SYN(EULER) and SYN(EULERk) for k ≥ 3 are NP-complete.
2. The problems MIN-SYN(EULER) and MIN-SYN(EULERk) for k ≥ 3 are NP-hard and co-NP-hard.

Proof. The proof is the same as the proof of Corollary 1. �

P. Martyugin / Theoretical Computer Science 450 (2012) 3–9 9

4. Conclusion and conjectures

We proved that problems SYN(EULER) and SYN(CYCLE) are NP-complete. This means that these problems have the
same complexity as the general problem SYN stated for the class of all DFA. At the same time we proved that the problems
MIN-SYN(EULER) andMIN-SYN(CYCLE) are NP-complete and co-NP-complete. But it is only the lower bound and it does not
seem to be tight. The general problemMIN-SYN is DP-complete for a class of all DFA (see [9]). It is natural to conjecture the
following.

Conjecture 1. For any integer k ≥ 2 the problemsMIN-SYN(EULER),MIN-SYN(CYCLE),MIN-SYN(EULERk),MIN-SYN(CYCLEk)
are DP-complete.

The NP-completeness of the problem SYN(EULER2) now is also unproved. It may happen that if problem SYN(EULER2)
can be solved in a polynomial time, then the problem MIN-SYN(EULER2) can be also solved in polynomial time.

It follows from [3] that no polynomial time algorithm approximates the length of the shortest synchronizing word
within a constant factor for a given DFA. There is no such algorithm, even for automata over the binary alphabet. So we
can conjecture the following.

Conjecture 2. No polynomial time algorithm approximates the length of the shortest synchronizing word within constant factor
for a given cyclical or Eulerian DFA. There is no such algorithm, even for DFA over the binary alphabet.

Acknowledgments

The author acknowledges support from the Presidential Program for young researchers, grant MK-266.2012.1.
The work was supported by the Federal Education Agency of Russia, project 2.1.1/3537.

References

[1] D.S. Ananichev, M.V. Volkov, Synchronizing monotonic automata, Theoret. Comput. Sci. 327 (2004) 225–239.
[2] M.-P. Beal, A note on Cernys conjecture and rational series, Preprint IGM 2003-05, Unpublished, 2003.
[3] M. Berlinkov, Approximating the Minimum Length of Synchronizing Words is Hard, Proc. of CSR2010, Kazan, Russia, in: LNCS, vol. 6072, pp. 37–47.
[4] J. Černý, Poznámka k homogénnym eksperimentom s konecnými avtomatami, Mat.-Fyz. Čas. Slovensk. Akad. Vied. 14 (1964) 208–216 (in Slovak).
[5] L. Dubuc, Sur les automates circulaires et la conjecture de Černý, RAIRO Inform. Theor. Appl. 32 (1998) 21–34 (in French).
[6] D. Eppstein, Reset sequences for monotonic automata, SIAM J. Comput. 19 (1990) 500–510.
[7] J. Kari, Synchronizing finite automata on Eulerian digraphs, Theoret. Comput. Sci. 295 (2003) 223–232.
[8] P. Martyugin, Complexity of problems concerning reset words for some partial cases of automata, Acta Cybernet. 19 (2009) 517–536.
[9] J. Olschewski, M. Ummels, The Complexity of Finding Reset Words in Finite Automata, Proc. of MFCS 2010, in: LNCS, vol. 6281, 2010, pp. 568–579.

[10] J.-E. Pin, On two combinatorial problems arising from automata theory, Ann. Discrete Math. 17 (1983) 535–548.
[11] A. Salomaa, Composition sequences for functions over a finite domain, Theoret. Comput. Sci. 292 (2003) 263–281.
[12] M.V. Volkov, Synchronizing automata preserving a chain of partial orders, Theoret. Comput. Sci. 410 (2009) 3513–3519.

	Complexity of problems concerning reset words for cyclic and Eulerian automata
	Introduction
	Cyclic automata
	Eulerian automata
	Conclusion and conjectures
	Acknowledgments
	References

