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A q-enumeration of convex polyominoes
by the festoon approach

Svjetlan Fereti)c∗
�Setali�ste Joakima Rakovca 17, 51000 Rijeka, Croatia

Abstract

In 1938, P)olya stated an identity involving the perimeter and area generating function for
parallelogram polyominoes. To obtain that identity, P)olya presumably considered festoons. A
festoon (so named by Flajolet) is a closed path w which can be written as w = uv, where each
step of u is either (1; 0) or (0; 1), and each step of v is either (−1; 0) or (0;−1).

In this paper, we introduce four new festoon-like objects. As a result, we obtain explicit
expressions (and not just identities) for the generating functions of parallelogram polyominoes,
directed convex polyominoes, and convex polyominoes.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In 1938, George P)olya [14] made a study of lattice polygons (also known as
polyominoes). 1 One of P)olya’s results concerns p(x; q), the perimeter and area gen-
erating function for parallelogram polyominoes. 2 Namely, p(x; q) satis=es the identity

2x2 + p(x; q) + p(x; q−1) = 1 − 1∑∞
n=0

∑n
i=0

[
n
i

]2

x2nq−i(n−i)

; (1)

∗ Corresponding author. Fax: +385-51-332-816.
E-mail address: svjetlan.feretic@gradri.hr (S. Fereti)c).

1 In the above-mentioned year, P)olya just summarized that study in his diary. He wrote the related paper
[14] only in the late 1960s.

2 What is a parallelogram polyomino? See Section 2 for the de=nition and=or Fig. 1 for an example.
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Fig. 1. A parallelogram polyomino.

where [ ni ] is the q-binomial coeFcient, or Gaussian polynomial

[
n
i

]
=

(1 − qn)(1 − qn−1) · · · (1 − qn−i+1)
(1 − q)(1 − q2) · · · (1 − qi)

: (2)

(In (2), all empty products are taken to be one.)
P)olya himself published no proof of (1). However, by now this identity has been

proved at least twice. In [11], a paper containing a q-Lagrange inversion formula, one
of the examples is right the derivation of (1). On the other hand, in [10], an attempt
is made to reconstruct P)olya’s original argument. (Incidentally, both papers [10,11]
distinguish between horizontal and vertical perimeters.)

According to Flajolet [10], P)olya obtained identity (1) by examining festoons. What
is a festoon? It is a closed path w which can be written in the form w = uv, where u is
a path on the step-set {(1; 0); (0; 1)}, and v is a path on the step-set {(−1; 0); (0;−1)}.
See Fig. 2. The paths u and v can have any number k ∈ {0; 1; 2; : : :} of internal vertices
in common. These common vertices split a festoon into, so to speak, atoms. Some atoms
involve just one horizontal step of u and one horizontal step of v. Similarly, there are
also small vertical atoms. These midgets excepted, any atom bounds a parallelogram
polyomino. This parallelogram polyomino is either topped by u and bottomed by v, or
topped by v and bottomed by u.
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Fig. 2. A P)olya festoon (herein also called a delta festoon).

Altogether, with the variable x marking the number of steps, and the variable q
marking

(the sum of the ordinates of the rightward steps)

minus (the sum of the ordinates of the leftward steps);

the generating function for festoons is equal to

1 +
∞∑
k=0

[2x2 + p(x; q) + p(x; q−1)]k+1 =
1

1 − [2x2 + p(x; q) + p(x; q−1)]
: (3)

On the other hand, this generating function is easily seen to be

∞∑
n=0

n∑
i=0

[
n
i

]2

x2nq−i(n−i): (4)

(The proof of (4) uses some familiar facts about q-binomial coeFcients. See Section 3
for the details.)

Equating expressions (3) and (4) at once gives identity (1).
So, this was the purported P)olya’s argument. In the present paper, this argument is

developed further (hopefully without a drastic loss of elegance). In addition to P)olya’s
festoons, we introduce four other kinds of festoons. As a result, we get explicit ex-
pressions (and not just identities) for the generating functions of parallelogram poly-
ominoes, directed convex polyominoes, and general convex polyominoes. In the cases
of parallelogram polyominoes and directed convex polyominoes, our expressions can
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be found in the literature (proved in a diIerent way). In the case of general convex
polyominoes, our expression is new.

In a P)olya festoon, there is no guarantee that (the sum of the ordinates of the
rightward steps) is greater or equal than (the sum of the ordinates of the leftward
steps). Therefore, the generating function for the P)olya festoons is a Laurent se-
ries (i.e., a series where positive, zero and negative powers of q are all involved).
The same is true of our new kinds of festoons and their respective generating
functions.

Before our q-enumeration (i.e., enumeration by perimeter and area), convex poly-
ominoes have been q-enumerated about =ve times [2–4,6,13]. Four of those =ve times,
the q-enumeration bears the signature of Bousquet-M)elou. In [2–4,6,13], the generating
function for convex polyominoes is expressed by means of ordinary Taylor series. Not
that we pride ourselves on having obtained Laurent series in place of Taylor series.
However, considering the appeal of the proofs, we believe that this paper does have a
raison d’être.

To continue with, now (in Section 2) we state the necessary de=nitions. Then we
proceed to the enumerations. The agenda is the following. Section 3: P)olya festoons.
Section 4: directed convex polyominoes which are not parallelogram polyominoes.
Section 5: all directed convex polyominoes. Section 6: convex polyominoes which are
not directed and remain not directed under the 180 degree rotation. Section 7: all
convex polyominoes.

Remark 1. Our method is able to derive both the generating function (gf) for convex
polyominoes and the gf for parallelogram polyominoes. Now, those two derivations
have a common beginning (the enumeration of P)olya festoons), but are otherwise inde-
pendent from each other. Since our main object here is the gf for convex polyominoes,
we relegate the gf for parallelogram polyominoes to a remark in Section 4.

2. De�nitions, conventions and notations

2.1. Convex polyominoes

If c is a closed unit square in the Cartesian plane, and if the vertices of c have
integer coordinates, then c is called a cell. A polyomino is a union of cells which is
=nite and possesses connected interior. A convex polyomino is a polyomino having
a convex intersection both with every horizontal straight line and with every vertical
straight line. For certain prominent points of a convex polyomino, we use the name
poles and we write W; W ′; N; N ′; : : : : See Fig. 3.

We distinguish between true and untrue convex polyominoes. A convex polyomino
is true when S ′ �=W and N ′ �=E. Therefore, a convex polyomino is untrue when S ′ =W
or N ′ =E.

A convex polyomino is directed if S ′ =W . See Fig. 4.
We consider a directed convex polyomino to be true if N ′ �=E, and to be untrue if

N ′ =E. Untrue directed convex polyominoes are commonly known as parallelogram
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Fig. 3. A convex polyomino.

polyominoes (Fig. 1). A parallelogram polyomino with E′ = S is a Ferrers diagram.
See Fig. 5.

We count polyominoes in the usual way—that is, up to translations.
Let P be a convex polyomino. Suppose that the horizontal perimeter of P is 2i, that

the vertical perimeter of P is 2j, and that the area of P is n. Then we write h(P) = 2i,
v(P) = 2j and a(P) = n.

Let � be a subset of the set of all convex polyominoes. We de=ne the generating
function of � to be the formal sum

gf(�) =
∑
P∈�

xh(P)yv(P)qa(P):

We denote the set of all convex polyominoes by C, the set of true convex polyomi-
noes by Tc, the set of untrue convex polyominoes by Uc, the set of directed convex
polyominoes by Dc, the set of true directed convex polyominoes by Tdc, the set of
parallelogram polyominoes by P, and the set of Ferrers diagrams by F . For gf(C),
gf(Tc), gf(Uc); : : : ; we use the abbreviated notations c, tc, uc; : : : : That is, the set
names begin with upper-case letters, while the generating function names begin with
lower-case letters.
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Fig. 4. A directed convex polyomino.

Fig. 5. A Ferrers diagram.
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2.2. Paths

In this paper, our attention is con=ned to paths with vertices at lattice points,
and with steps lying in the set {(1; 0); (0; 1); (−1; 0); (0;−1)}. We denote the steps
as follows: x is a (1; 0)-step, y is a (0; 1)-step, x is a (−1; 0)-step, and y is a
(0;−1)-step.

For A⊆ {x; y; x; y}, the symbol A∗ stands for the set of all paths on step-set A.
Let u; v∈A∗. The product uv is then understood as the concatenation of u and v.
It is assumed that A∗ contains an empty path 1 such that u1 = 1u= u, for every
u∈A∗.

Let u∈ {x; y; x; y}∗. The symbol |u|x means the number of x-steps in u. The symbols
|u|y, |u|x and |u|y are interpreted similarly. Let h(u) = |u|x + |u|x and v(u) = |u|y + |u|y.
By de=nition, the length of u is the number |u| = h(u) + v(u).

Let u ∈ {x; y; x; y}∗ and let e be a horizontal step of u. Let v and z be the paths
such that u= vez. Then we put lev(e) = |v|y − |v|y. We say that lev(e) is the level of
e with respect to the path u.

For u∈ {x; y; x; y}∗, we de=ne the integral of u to be

int(u) =
∑

e a rightward
step of u

lev(e) − ∑
e a leftward

step of u

lev(e):

For example, int(y · x · y · x · yyy · x · yy · x · y) = 1 − 2 − 1 + 3 = 1.
Let � be a subset of {x; y; x; y}∗. We de=ne the generating function of � to be the

formal sum

gf(�) =
∑
u∈�

xh(u)yv(u)qint(u):

If the set � is =nite, we also de=ne the small generating function of �

sgf(�) =
∑
u∈�

qint(u):

2.3. Tailed Ferrers diagrams

For u∈ {x; y}∗, let û be the closed path obtained by continuing u with |u|y downward
steps, followed by |u|x leftward steps. We de=ne a tailed Ferrers diagram to be a
plane =gure obtainable from some u∈ {x; y}∗ by forming the union of û with the cells
“trapped” inside û. (Those “trapped” cells are int(u) in number.) True to its name, a
tailed Ferrers diagram looks like a Ferrers diagram with two (possibly empty) tails.
See Fig. 6.

If a tailed Ferrers diagram L has area n, we write a(L) = n.
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Fig. 6. Tailed Ferrers diagrams have this form.

3. Delta festoons

To begin with, we state two well-known facts about the q-binomial coeFcients.

Fact 1. Let sij = sij(q) be the small generating function for Sij , the set of all paths
u∈ {x; y}∗ such that |u|x = i and |u|y = j. Let ftij =ftij(q) be the area generating
function for Ftij , the set of tailed Ferrers diagrams of width i and height j. We have

ftij = sij =
[
i + j
i

]
:

Let h be a formal Laurent series in the variable q. Suppose that, in h, we substitute
q by q−1. To denote the result (which is again a formal Laurent series), we write h−1.

Fact 2. For i; j∈N∪ {0} we have[
i + j
i

]
−1

=
[
i + j
i

]
· q−ij :

The proofs of Facts 1 and 2 can be found, for example, in Andrews’ book [1].
Now, a delta festoon is a closed path w which can be written in the form w= uv,

where u∈ {x; y}∗ and v∈ {x; y}∗. (By stating this de=nition, we just provide another
name for the P)olya festoons.) See Fig. 2 again. Observe that, if w is a delta festoon,
then the just-mentioned factorization w = uv is unique.

Denoting the set of all delta festoons by &, we let '= gf(&).
For i; j∈N∪ {0}, let &ij be the set of those w∈& which are made up of 2i

horizontal steps and 2j vertical steps. Consider a festoon w∈&ij . Let u∈ {x; y}∗ and
v∈ {x; y}∗ be the paths such that w= uv. Then u∈ Sij . De=ne V to be the union of
vxiyj with the cells living inside vxiyj. Clearly, V is a tailed Ferrers diagram. That is,
V lies in Ftij . See Fig. 7. The correspondence w 
→ (u; V ) is a bijection from &ij to the
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Fig. 7. The elements of &ij have this form.

Cartesian product Sij ×Ftij . Furthermore, we have int(w) = int(u) − a(V ). Altogether,
this means that

sgf(&ij) =
∑
w∈&ij

qint(w) =
∑
u∈Sij

∑
V∈Ftij

qint(u)−a(V )

=

[ ∑
u∈Sij

qint(u)

] [ ∑
V∈Ftij

q−a(V )

]
= sgf(Sij)(ftij)−1

=
[
i + j
i

] [
i + j
i

]
−1

=
[
i + j
i

] [
i + j
i

]
q−ij :

Proposition 1. The generating function for delta festoons is given by

' =
∞∑
i;j=0

[
i + j
i

] [
i + j
j

]
x2iy2jq−ij : (5)

Proof. The set & being a disjoint union of the &ij’s, we easily =nd

'= gf(&) =
∞∑
i;j=0

gf(&ij) =
∞∑
i;j=0

sgf(&ij)x2iy2j

=
∞∑
i;j=0

[
i + j

i

] [
i + j

j

]
x2iy2jq−ij :
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4. Gamma festoons and the gf for true directed convex polyominoes

Similarly as in Section 3, we begin with stating one well-known fact about the
q-binomial coeFcients.

Fact 3. Let fij =fij(q) be the area generating function for Fij , the set of all Ferrers
diagrams of width i and height j. We have

fij =
[
i + j − 2
i − 1

]
qi+j−1:

Now, a gamma festoon is a closed path w which can be written in the form
w=w1w2w3, where
()1) The path w1 lies in {x; y}∗ and ends with an x-step.
()2) The path w2 lies in {x; y}∗, begins with a y-step and ends with an x-step.
()3) The path w3 lies in {x; y}∗ and begins with a y-step.
See Fig. 8.

If w is a gamma festoon, then the just-mentioned factorization w=w1w2w3 is
unique. Indeed, the =rst step of w2 is the =rst y-step of w; the last step of w2 is

Fig. 8. A gamma festoon.
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the last x-step of w. Needless to say, w1 (resp. w3) is the portion of w coming before
(resp. after) w2.

Denoting the set of all gamma festoons by *, we let )= gf(*).
Let w be a gamma festoon. Let w=w1w2w3, where w1, w2, and w3 have properties

()1), ()2), and ()3). Imagine that we travel along the path w1w2 from its origin up to
its next to last vertex. After leaving the origin of w1w2 (= the terminus of w3), we
may or may not meet other vertices of w3. In either case, let M be the vertex of w3

which we meet latest. Let w1w2 = u1u2 and w3 = z1z2, where u1 and z1 both terminate
at M . It is fairly easy to see that u1z2 is a delta festoon, and that u2z1 is the boundary
of a true directed convex polyomino. Denoting this delta festoon by s and the true
directed convex polyomino by J , we have

h(w) = h(s) + h(J ); v(w) = v(s) + v(J )

and

int(w) = int(s) + a(J ):

Furthermore, the correspondence w 
→ (s; J ) is a bijection from * to the Cartesian
product &×Tdc. So, the generating functions of these sets are related by )= '·tdc, or
equivalently, by

tdc =
)
'
: (6)

With the formula for ' already in hand, we now embark on computing ). Let
i; j∈ {2; 3; : : :}, k ∈ {1; : : : ; i − 1} and ‘∈ {1; : : : ; j − 1}. We de=ne *ijk‘ to be the
set of all gamma festoons w for which, in the factorization w=w1w2w3 satisfying
()1)–()3), it happens that
()4) |w1|x + |w2|x = |w3|x = i,
()5) |w1|y = |w2|y + |w3|y = j,
()6) |w1|x = k,
()7) |w3|y = ‘.

See Fig. 9.
Consider a festoon w∈*ijk‘. Let w1, w2, and w3 be the paths satisfying the equa-

tion w=w1w2w3 and conditions ()1)–()7). Then we can write w1 as w1 = ux, with
u∈ {x; y}∗. Likewise, w3 =yz, with z ∈ {x; y}∗. De=ne V to be the =gure bounded by
the path w2yj−‘xi−k . (If we reQect V about the x-axis, the resulting =gure, say V ′,
is a Ferrers diagram.) Also, de=ne Z to be the union of zxiy‘−1 with the cells living
inside zxiy‘−1. The =gure Z is a tailed Ferrers diagram.

It is clear that u∈ Sk−1; j, V ′ ∈Fi−k; j−‘ and Z ∈Fti; ‘−1. Moreover, the correspondence
w 
→(u; V ′; Z) is a bijection from *ijk‘ to the Cartesian product Sk−1; j×Fi−k; j−‘×Fti; ‘−1.
And we have

int(w) = int(u) + j + (i − k)j − a(V ′) − a(Z)

= int(u) − a(V ′) − a(Z) + (i − k + 1)j;

with (i − k)j − a(V ′) = (i − k)j − a(V ) coming from the path w2.
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Fig. 9. The elements of *ijk‘ have this form.

At this point, things begin to fall into place. We see that

sgf(*ijk‘) = sk−1;j(fi−k;j−‘)−1(fti;‘−1)−1q(i−k+1)j

=
[
j + k − 1
k − 1

] ([
i + j − k − ‘ − 2

i − k − 1

]
qi+j−k−‘−1

)
−1

×
[
i + ‘ − 1

i

]
−1
q(i−k+1)j

=
[
i + ‘ − 1

i

] [
j + k − 1

j

] [
i + j − k − ‘ − 2

i − k − 1

]
qi+j−k‘:

Proposition 2. The generating function for gamma festoons is given by

) =
∞∑
i;j=2

i−1∑
k=1

j−1∑
‘=1

[
i + ‘ − 1

i

] [
j + k − 1

j

] [
i + j − k − ‘ − 2

i − k − 1

]
x2iy2jqi+j−k‘:

(7)

Proof. The set * being a disjoint union of the *ijk‘’s, we obtain at once

)= gf(*) =
∞∑
i;j=2

i−1∑
k=1

j−1∑
‘=1

gf(*ijk‘)
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=
∞∑
i;j=2

i−1∑
k=1

j−1∑
‘=1

sgf(*ijk‘)x2iy2j

=
∞∑
i;j=2

i−1∑
k=1

j−1∑
‘=1

[
i+‘−1

i

] [
j+k−1

j

] [
i+j−k−‘−2

i−k−1

]
x2iy2jqi+j−k‘:

Now we have all the ingredients for the following theorem.

Theorem 1. The generating function for true directed convex polyominoes is given by

tdc =

∑∞
i;j=2

∑i−1
k=1

∑j−1
‘=1

[
i+‘−1

i

] [
j+k−1

j

] [
i+j−k−‘−2

i−k−1

]
x2iy2jqi+j−k‘

∑∞
i;j=0

[
i+j
i

] [
i+j
j

]
x2iy2jq−ij

:

Proof. Substitute (5) and (7) into (6).

Remark 2. Parallelogram polyominoes dwell in epsilon festoons, which are practically
as easy as delta festoons. In fact, epsilon festoons are a subset of delta festoons: an
epsilon festoon is a closed path w which can be written in the form w=w1w2, where
w1 lies in {x; y}∗ and ends with an x-step, while w2 lies in {x; y}∗ and begins with a
y-step. See Fig. 10.

Fig. 10. An epsilon festoon.
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Fig. 11. The elements of Eij have this form.

Denoting the set of all epsilon festoons by E, we let 0= gf(E). By reapplying the
argument which lead us to (6), we now =nd that p = 0='.

For i; j∈N, let Eij be the set of those w∈E which are made up of 2i horizontal
steps and 2j vertical steps (Fig. 11). Consider a festoon w∈Eij . Let u∈ {x; y}∗ and
v∈ {x; y}∗ be the paths such that w= uxyv. Then u∈ Si−1; j. De=ne V to be the union
of vxiyj−1 with the cells living inside vxiyj−1. The =gure V is a tailed Ferrers diagram.
That is, V ∈Fti; j−1.

The correspondence w 
→ (u; V ) is a bijection. Therefore, from the fact that int(w) =
int(u) + j − a(V ) it follows that

sgf(Eij) = si−1;j(fti;j−1)−1qj =
[
i + j − 1

j

] [
i + j − 1

i

]
qi+j−ij :

Accordingly,

0= gf(E) =
∞∑
i;j=1

gf(Eij) =
∞∑
i;j=1

sgf(Eij)x2iy2j

=
∞∑
i;j=1

[
i + j − 1

i

] [
i + j − 1

j

]
x2iy2jqi+j−ij : (8)

Theorem 2. The generating function for parallelogram polyominoes is given by

p =

∑∞
i;j=1

[
i + j − 1

i

] [
i + j − 1

j

]
x2iy2jqi+j−ij

∑∞
i;j=0

[
i + j
i

] [
i + j
j

]
x2iy2jq−ij

: (9)

Proof. Substitute (5) and (8) into the equation p = 0='.
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The q-enumeration of parallelogram polyominoes has an eventful history. For an
overall account see, for example, Bousquet-M)elou’s habilitation [5]. However, if we
concentrate on the Laurent-series results, all we have to tell is the following:

Formula (9) apparently originated in Goulden and Jackson’s book [12, Exercise
5.5.2.b]. Fereti)c [9] derived (9) in another way. F)edou and Rouillon [8] expressed the
gf p by a formula which looks rather diIerent from (9), but still involves Laurent
series.

5. Beta festoons and the gf for all directed convex polyominoes

A beta festoon is a closed path w which can be written in the form w=w1w2w3,
where:
(11) The path w1 lies in {x; y}∗ and ends with a y-step.
(12) The path w2 lies in {x; y}∗, begins with an x-step and ends with a y-step.
(13) The path w3 lies in {x; y}∗ and begins with an x-step.

So to speak, beta festoons and gamma festoons have equal bones, but diIerent joints.
See Fig. 12.

Denoting the set of all beta festoons by B, we let 1= gf(B). Once again inferring
as in the derivation of (6), we readily obtain

dc =
1
'
: (10)

Fig. 12. A beta festoon.
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Fig. 13. The elements of Bijk‘ have this form.

Our next task is to compute 1. Let i; j∈N, k ∈ {1; : : : ; i} and ‘∈ {1; : : : ; j}. We de-
=ne Bijk‘ to be the set of all beta festoons w for which, in the factorization w=w1w2w3

satisfying (11)–(13), it happens that
(14) |w1|x + |w2|x = |w3|x = i,
(15) |w1|y = |w2|y + |w3|y = j,
(16) |w1|x = k − 1,
(17) |w3|y = ‘ − 1.

See Fig. 13.
Consider a festoon w∈Bijk‘. Let w1, w2, and w3 be the paths satisfying the equation

w = w1w2w3 and conditions (11)–(17). Then we can write w1 as w1 = uy, with
u∈ {x; y}∗. Likewise, w2 = xvy, with v∈ {x; y}∗, and w3 = xz, with z ∈ {x; y}∗. De=ne
V to be the union of vyj−‘xi−k with the cells living inside vyj−‘xi−k . (If we reQect V
about the x-axis, the resulting =gure, say V ′, is a tailed Ferrers diagram.) Also, de=ne
Z to be the union of zxi−1y‘−1 with the cells living inside zxi−1y‘−1. The =gure Z ,
too, is a tailed Ferrers diagram.

It is clear that u∈ Sk−1; j−1, V ′ ∈Fti−k; j−‘ and Z ∈Fti−1; ‘−1. Moreover, the corre-
spondence w 
→ (u; V ′; Z) is a bijection from Bijk‘ to the Cartesian product Sk−1; j−1 ×
Fti−k; j−‘ ×Fti−1; ‘−1. Observing that

int(w) = int(u) + j + (i − k)j − a(V ′) − (‘ − 1) − a(Z);

we now =nd that

sgf(Bijk‘) = sk−1;j−1(fti−k;j−‘)−1(fti−1;‘−1)−1q(i−k+1)j−(‘−1)
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=
[
j + k − 2
k − 1

] [
i + j − k − ‘

i − k

]
−1

[
i + ‘ − 2
i − 1

]
−1
q(i−k+1)j−(‘−1)

=
[
i + ‘ − 2
i − 1

] [
j + k − 2
j − 1

] [
i + j − k − ‘

i − k

]
qi+j−k‘:

Hence

1= gf(B) =
∞∑
i;j=1

i∑
k=1

j∑
‘=1

gf(Bijk‘)

=
∞∑
i;j=1

i∑
k=1

j∑
‘=1

sgf(Bijk‘)x2iy2j

=
∞∑
i;j=1

i∑
k=1

j∑
‘=1

[
i + ‘ − 2
i − 1

] [
j + k − 2
j − 1

] [
i + j − k − ‘

i − k

]
x2iy2jqi+j−k‘: (11)

Theorem 3. The generating function for all directed convex polyominoes is given by

dc =

∑∞
i;j=1

∑i
k=1

∑j
‘=1

[
i+‘−2
i−1

] [
j+k−2
j−1

] [
i+j−k−‘

i−k
]
x2iy2jqi+j−k‘

∑∞
i;j=0

[
i+j
i

] [
i+j
j

]
x2iy2jq−ij

:

(12)

Proof. Substitute (5) and (11) into (10).

The =rst ever q-enumeration of directed convex polyominoes was done in [7]. In that
paper, the formula for dc has the Taylor-series form. Formula (12) was =rst proved
in [9].

6. Alpha festoons and the gf for true convex polyominoes

An alpha festoon is a closed path w which can be written in the form w=w1w2w3w4,
where:
(31) The path w1 lies in {x; y}∗, begins with a y-step and ends with an x-step.
(32) The path w2 lies in {x; y}∗, begins with a y-step and ends with an x-step.
(33) The path w3 lies in {x; y}∗, begins with a y-step and ends with an x-step.
(34) The path w4 lies in {x; y}∗, begins with a y-step and ends with an x-step.

See Fig. 14.
If w is an alpha festoon, then the above factorization w=w1w2w3w4 is unique.

Indeed, the last step of w1w2 is the last x-step of w; the =rst step of w2 is the =rst
y-step of w1w2; the =rst step of w4 is the =rst y-step of w3w4.
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Fig. 14. Three alpha festoons.
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Let w be an alpha festoon. Let w = w1w2w3w4, where w1, w2, w3, and w4 have
properties (31), (32), (33), and (34). Naturally, w is either self-avoiding or not. If
w is not self-avoiding, then there are two possibilities: that w1 intersects w3, and that
w2 intersects w4. These two possibilities cannot materialize at the same time. Indeed,
suppose that w1 intersects w3. Consider the horizontal projections of w1 and w3. Those
projections of course overlap. But the length of the overlap is not zero—in fact, that
length is at least two. Thus, the horizontal projections of w2 and w4 stand at least two
units apart. Needless to say, it follows that w2 and w4 are disjoint.

Let A be the set of all alpha festoons, and let A√ be the set of self-avoiding alpha
festoons. For w∈A, let w1; : : : ; w4 again be the paths for which w = w1 · · ·w4 holds
and the conditions (31); : : : ; (34) are satis=ed. De=ne

A= = {w ∈ A : w is not in A√ because w1 intersects w3}
and

A\ = {w ∈ A : w is not in A√ because w2 intersects w4}:

Example 1. In Fig. 14, the top festoon is in A√, the middle festoon is in A= , and the
bottom festoon is in A\.

We have seen that the set A is partitioned into A√, A= , and A\. Hence, if we put
3= gf(A), then

3 = gf(A√) + gf(A=) + gf(A\): (13)

Consider a festoon w∈A√. It is obvious that w bounds a true convex polyomino.
Calling that polyomino J , we have h(w) = h(J ), v(w) = v(J ), and int(w) = a(J ). More-
over, the correspondence w 
→ J is a bijection from A√ to Tc, the set of true convex
polyominoes. Recasting these facts “generatingfunctionologically”, we =nd that

gf(A√) = tc: (14)

Now consider a festoon w∈A= . Let w=w1w2w3w4, where w1; : : : ; w4 have properties
(31); : : : ; (34). By the de=nition of A= , the paths w1 and w3 have some vertices in
common. Of those vertices, let M1 (resp. M2) be the one which is closest to (resp.
farthest from) the origin of w1. Let w1w2 = u1u2u3 and w3w4 = z1z2z3, where u1 and z2
terminate at M1, and where u2 and z1 terminate at M2. Now, the path s= u2z2 is a delta
festoon. The path u3z1 bounds a true directed convex polyomino. The path u1z3 bounds
a polyomino which, in order to become a true directed convex one, just needs to be
rotated by 180◦. Let I (resp. J ) denote the true directed convex polyomino arising out
of u1z3 (resp. u3z1). Then we have

h(w) = h(I) + h(s) + h(J ); v(w) = v(I) + v(s) + v(J )

and

int(w) = a(I) + int(s) + a(J ):
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Furthermore, the correspondence w 
→ (I; s; J ) is a bijection from A= to the Cartesian
product Tdc×&×Tdc. Translating all of this into the language of generating func-
tions, we obtain gf(A=) = tdc · ' · tdc. The series tdc being an old friend (found in
Section 4), we now see that

gf(A=) =
( )
'

)2
' =

)2

'
; (15)

where ) and ' are given by (7) and (5), respectively.
Finally, consider a festoon w∈A\. Once again, let w=w1w2w3w4, where w1; : : : ; w4

have properties (31); : : : ; (34). By the de=nition of A\, the paths w2 and w4 have some
vertices in common. Of those vertices, let M1 (resp. M2) be the one which is closest
to (resp. farthest from) the origin of w2. Let w1w2 = u1u2u3 and w3w4 = z1z2z3, where
u1 and z2 terminate at M1, and where u2 and z1 terminate at M2.

Put s= u2z2. It is good to reQect s about the x-axis and, upon that, orient the re-
sulting path the other way round. Namely, the reQection gives us a delta festoon (say
s′), but also makes the levels of horizontal steps change sign. Hence, int(s′) = −int(s).
Changing the orientation turns s′ into another delta festoon, say s′′. However,
where s′ had rightward steps, s′′ has leftward steps (and vice versa). Thus, int(s′′) =
−int(s′) = int(s).

Further, the path u1z3 bounds a polyomino which, in order to become a directed
convex one, just needs to be reQected about the y-axis. Similarly for the path u3z1,
except that the reQection is about the x-axis. Let I and J denote the directed convex
polyominoes arising out of u1z3 and u3z1, respectively. Much as before, we have

h(w) = h(I) + h(s′′) + h(J ); v(w) = v(I) + v(s′′) + v(J )

and

int(w) = a(I) + int(s) + a(J ) = a(I) + int(s′′) + a(J ):

The correspondence w 
→ (I; s′′; J ) being a bijection from A\ to the Cartesian product
Dc×&×Dc, it follows that gf(A\) =dc ·' ·dc. Clearly, this formula can be combined
with the results of Section 5. This short step leads to

gf(A\) =
(
1
'

)2

' =
12

'
; (16)

where 1 and ' are given by (11) and (5), respectively.
Now we embark on computing the series 3= gf(A). That done, we shall solve

equation (13) for the only remaining unknown—that is, for tc—and the q-enumeration
of true convex polyominoes will be complete.

Let i; j∈ {2; 3; : : :}. Let k; ‘∈ {1; : : : ; i−1} and m; n∈ {1; : : : ; j−1}. We de=ne Aijk‘mn
to be the set of all alpha festoons w for which, in the factorization w=w1w2w3w4

satisfying (31)–(34), it happens that
(35) |w1|x + |w2|x = |w3|x + |w4|x = i,
(36) |w1|y + |w4|y = |w2|y + |w3|y = j,
(37) |w1|x = k,
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Fig. 15. The elements of Aijk‘mn have this form.

(38) |w3|x = ‘,
(39) |w1|y =m,

(310) |w3|y = n.
See Fig. 15.
Consider a festoon w∈Aijk‘mn. Let w1, w2, w3, and w4 be the paths satisfying the

equation w=w1w2w3w4 and the conditions (31)–(310). Then the path w2yj−nxi−k

bounds a polyomino which, in order to become a Ferrers diagram, just needs to be
reQected about the x-axis. Similarly for the path w4yj−mxi−l, except that the reQection
is about the y-axis. Let U and Z denote the Ferrers diagrams arising out of w2yj−nxi−k

and w4yj−mxi−l, respectively.
Now look at the paths w1 and w3. We can write w1 as w1 =ytx, with t ∈ {x; y}∗.

Likewise, w3 =yvx, with v∈ {x; y}∗. De=ne T to be the union of txk−1ym−1 with the
cells living inside txk−1ym−1. (If we rotate T by 180◦, the resulting =gure, say T ′, is
a tailed Ferrers diagram.) Also, de=ne V to be the union of vx‘−1yn−1 with the cells
living inside vx‘−1yn−1. The =gure V , too, is a tailed Ferrers diagram.

It is clear that T ′ ∈Ftk−1; m−1, U ∈Fi−k; j−n, V ∈Ft‘−1; n−1, and Z ∈Fi−‘; j−m. More-
over, the correspondence w 
→ (T ′; U; V; Z) is a bijection from Aijk‘mn to the Cartesian
product Ftk−1; m−1 ×Fi−k; j−n ×Ft‘−1; n−1 ×Fi−‘; j−m. Observing that

int(w) = ij − a(T ′) − a(U ) − a(V ) − a(Z);

we now =nd that

sgf(Aijk‘mn) = qij(ftk−1;m−1fi−k;j−nft‘−1;n−1fi−‘;j−m)−1
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= qij
([

k + m− 2
k − 1

] [
i + j − k − n− 2

i − k − 1

]
qi+j−k−n−1

)
−1

×
([

‘ + n− 2
‘ − 1

] [
i + j − ‘ − m− 2

i − ‘ − 1

]
qi+j−‘−m−1

)
−1

=
[
k + m− 2
k − 1

] [
‘ + n− 2
‘ − 1

] [
i + j − k − n− 2

i − k − 1

]
×

[
i + j − ‘ − m− 2

i − ‘ − 1

]
qk+‘+m+n−2−(i−k−‘)(j−m−n):

Hence

3= gf(A) =
∞∑
i;j=2

i−1∑
k;‘=1

j−1∑
m;n=1

gf(Aijk‘mn)

=
∞∑
i;j=2

i−1∑
k;‘=1

j−1∑
m;n=1

sgf(Aijk‘mn)x2iy2j

=
∞∑
i;j=2

i−1∑
k;‘=1

j−1∑
m;n=1

[
k + m− 2
k − 1

] [
‘ + n− 2
‘ − 1

] [
i + j − k − n− 2

i − k − 1

]
×

[
i + j − ‘ − m− 2

i − ‘ − 1

]
x2iy2jqk+‘+m+n−2−(i−k−‘)(j−m−n): (17)

Combining (13)–(17), we obtain:

Theorem 4. The generating function for true convex polyominoes can be written as

tc = 3− 12 + )2

'
;

where 3, 1, ), and ' are given by (17), (11), (7), and (5), respectively.

7. Untrue convex polyominoes and all convex polyominoes

Well, true convex polyominoes were rather a hard nut. But now we are in the =nal
straight: it only remains to count untrue convex polyominoes, which are, so to speak,
a soft nut.

In Section 2, we de=ned the poles W;W ′; N; N ′; : : : ; and then we told: “: : : a convex
polyomino is untrue when S ′ =W or N ′ =E”. Accordingly, convex polyominoes with
S ′ = W (commonly referred to as directed convex polyominoes) are all untrue. Which
convex polyominoes are untrue and not directed? Exactly those with both S ′ �=W and
N ′ =E. Or equivalently, exactly those belonging to the image of Tdc (the set of true
directed convex polyominoes) under the 180◦ rotation. Now, this image has the same
generating function as the set Tdc itself. Therefore, the generating function for untrue
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convex polyominoes is

uc = gf(Uc) = gf(Dc) + gf(Tdc) =
1 + )
'

;

where 1, ), and ' are given by (11), (7), and (5), respectively. Furthermore, the
generating function for all convex polyominoes is

c= gf(C) = gf(Tc) + gf(Uc)

= 3− 12 + )2

'
+
1 + )
'

= 3 +
1(1 − 1) + )(1 − ))

'
;

where 1, ), and ' are as above, and 3 is given by (17).
Let us rewrite this last result in an easy-to-survey manner.

Theorem 5. The generating function for all convex polyominoes is given by

c = 3 +
1(1 − 1) + )(1 − ))

'
;

where

3=
∞∑
i;j=2

i−1∑
k;‘=1

j−1∑
m;n=1

[
k + m− 2
k − 1

] [
‘ + n− 2
‘ − 1

] [
i + j − k − n− 2

i − k − 1

]
×

[
i + j − ‘ − m− 2

i − ‘ − 1

]
x2iy2jqk+‘+m+n−2−(i−k−‘)(j−m−n);

1 =
∞∑
i;j=1

i∑
k=1

j∑
‘=1

[
i + ‘ − 2
i − 1

] [
j + k − 2
j − 1

] [
i + j − k − ‘

i − k

]
x2iy2jqi+j−k‘;

) =
∞∑
i;j=2

i−1∑
k=1

j−1∑
‘=1

[
i + ‘ − 1

i

] [
j + k − 1

j

] [
i + j − k − ‘ − 2

i − k − 1

]
x2iy2jqi+j−k‘;

' =
∞∑
i;j=0

[
i + j
i

] [
i + j
j

]
x2iy2jq−ij :
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