1524-Pos Board B416
Human ES- and Induced Pluripotent Stem-Derived Cardiomyocytes: A Comparative Electrophysiological Study
Fernando López-Redondo, Junko Kurokawa, Fumimasa Nomura, Tomoyuki Kaneko, Tomoyo Hamada, Kenji Yasuda, Tetsushi Furukawa. Tokyo Medical Dental University, Tokyo, Japan.

Special attention is directed to the potential application of human induced pluripotent stem (iPS) cell-derived cardiomyocytes for cardiac safety pharmacology and toxicology with fewer legal and ethical issues. Supply of commercial available products enables many researchers to test any utility in their own systems. Although variations of electrophysiological properties have been reported among pluripotent cell lines by classifying cardiac subtypes into nodal, atrial and ventricular cells, most cells are spontaneously contracting, which makes difficult to be implicated in adult human hearts. Thus, we sought objective description on action potential (AP) parameters recorded from perforated patch-clamped iCell cardiomyocytes (iCell-CMs, AJ/CDI) by systematically comparing with those from human ES-derived cardiomyocytes (hES-CMs, Cellartis). Mean +/- SE values of APD_{50} in iCell-CMs (382 +/- 38 ms, n=36) were significantly longer than those in hES-CMs (278 +/- 28 ms, n=64), while APD_{50} in iCell-CMs (1210 +/- 346 ms, n=36) tended to be longer than those in hES-CMs (776 +/- 136 ms, n=64). As for APD_{90}, despite of the large sample size, there was no statistical significance between iPS-CM and hES-CMs. Detailed analysis of the variation by Gaussian fitting revealed that marked differences in shapes of probability distribution between iPS-CMs and hES-CMs. Although further studies are necessary to know if the variation of AP parameters affect drug responses, our data provide important information for cardiac safety assessments.

1525-Pos Board B417
Examining the Causes and Consequences of Calcium Overload in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
Matthew J. Betzenhauser, Serge Sicouri, Vanessa Roach, Jaqueline A. Treat, Michael Xavier Doss, Charles Antzelevitch. Masonic Medical Research Laboratory, Utica, NY, USA.

Intracellular calcium overload has been linked to arrhythmias in conditions such as ischemia reperfusion, heart failure, catecholaminergic polymorphic ventricular tachycardia and digitalis intoxication. While this link has been extensively studied at the cellular level using animal models, there is a paucity of information on the causes and consequences of Ca^{2+} overload in healthy human myocytes. With the advent of induced pluripotent stem cell-derived cardiomyocytes (iPS-CM), human myocytes are becoming more readily available. However, it remains unclear if these myocytes faithfully recapitulate all aspects of adult cardiomyocyte physiology. In order to determine if iPS-CM will be a useful platform to study the causes and consequences of Ca^{2+} overload, we developed methodology to examine Ca^{2+} overload in beating clusters of iPS-CM and in isolated myocytes. Spontaneous and field stimulated action potentials were measured with high resistance microelectrodes in spontaneously beating clusters of iPS-CM while measuring cluster contraction with simultaneous video edge detection. Free intracellular Ca^{2+} was measured with fluo-4 and confocal microscopy in beating clusters and in isolated iPS-CM. Ca^{2+} overload was induced in both preparations by treatment with ouabain (2.5-5 uM or with isotroper (1 uM) plus 5.4 mM extracellular Ca^{2+}. Both maneuvers produced a rise in diastolic Ca^{2+} as well as the appearance of oscillatory action potentials, putative delayed afterdepolarizations and triggered activities in beating clusters. These results indicate that iPS-derived cardiomyocytes provide a useful platform to study the mechanisms of Ca^{2+} overload-induced arrhythmias as well as possible treatments. However, given the spontaneous nature of iPS-derived cardiomyocytes, these cells may more readily recapitulate the effects of Ca^{2+} overload on sinoatrial or latent pacemaker cells.

1526-Pos Board B418
Characterization of a Transient Outward K⁺ Current in Hips-Derived Cardiomyocytes
Jonathan M. Cordeiro, Vladislav V. Nesterenko, Robert J. Goodrow, Serge Sicouri, Jacqueline A. Treat, Michael X. Doss, Charles Antzelevitch, Jose M. Di Diego. Masonic Medical Research Laboratory, Utica, NY, USA.

Background: Human induced pluripotent stem cell (hiPS)-cardiomyocytes can be used to create in vitro models of genetic disease such as Brugada Syndrome (BrS). Central to the development of BrS is the Ca^{2+}-independent transient outward K⁺ current (I_{to}). In this study, we characterized I_{to} in single hiPS-cardiomyocytes and determined its functional role in beating clusters.

Methods: Embryoid bodies (EBs) were made from a hiPS cell line reprogrammed with Oct4, Nanog, Lin28 and Sox2. Whole cell patch clamp was used to record I_{to}, in single cardiomyocytes. Action potential (AP) recordings from spontaneously beating clusters (BCs) were made using sharp microelectrodes. All recordings were done at 36°C.

Results: BCs exhibited spontaneous APs with an average rate of 54.9 ± 0.9 bpm and maximum diastolic potential (MDP) of −65.6 ± 9.3 mV (n=122). A small phase 1 repolarization which could be blocked by 4-AP (1 mM) was observed in 6/149 hiPS BCs suggesting the presence of I_{to}. Interestingly, in single dissociated hiPS cardiomyocytes, patch clamp analysis revealed a robust I_{to} (13.4 ± 1.79 pA/pF at +40 mV, n=14) in the majority of cells studied. Recovery of I_{to} (at −80 mV) showed a fast and slow phase as follows: i) 1=271 ± 93 ms and 2=2697 ± 103 ms (n=8 cells). These observations demonstrate that I_{to} is present but the slow recovery suggests minimal contribution during the course of an action potential. Mathematical modeling of APs from hiPS-CMs confirmed these observations.

Conclusion: There is a disconnect between the presence of I_{to} in cells and the absence of phase 1 repolarization in BCs. In BCs the depolarized MDP and fast spontaneous AP rate suggests negligible contribution of I_{to} to phase 1 repolarization. Our results point to an important deficiency of hiPS-CMs in recapitulating the phenotype of adult native myocytes.

1527-Pos Board B419
Analysis of Zolpidem-Induced Long QT Syndrome in Recombinant hERG Channels and Stem Cell-Derived Human Cardiomyocytes
Julian Jehle, Xiaoping Wan, Isabelle Deschenes, Dierk Thomas, Eckhard Ficker.1 Medical University of Heidelberg, Germany, 2 Case Western Reserve University, Cleveland, OH, USA.

Zolpidem, a short-acting hypnotic drug prescribed to treat insomnia, has been clinically associated with acquired long QT syndrome (acLQTS) and torsade de pointes tachyarrhythmias (TdP). Because acLQTS is most often precipitated by a reduction of hERG1_{to} currents, we have studied acute hERG block by zolpidem in HEK cells using patch clamp recordings. We found that zolpidem reduced hERG currents with an IC_{50} value of 65.5 ± 4.5 μM (n=3-6).

Methods: Embryoid bodies (EBs) were made from a hiPS cell line reprogrammed with Oct4, Nanog, Lin28 and Sox2. Whole cell patch clamp was used to record hERG currents, in single cardiomyocytes. Action potential (AP) recordings from spontaneously beating clusters (BCs) were made using sharp microelectrodes. All recordings were done at 36°C.

Results: BCs exhibited spontaneous APs with an average rate of 54.9 ± 0.9 bpm and maximum diastolic potential (MDP) of −65.6 ± 9.3 mV (n=122). A small phase 1 repolarization which could be blocked by 4-AP (1 mM) was observed in 6/149 hiPS BCs suggesting the presence of I_{to}. Interestingly, in single dissociated hiPS cardiomyocytes, patch clamp analysis revealed a robust I_{to} (13.4 ± 1.79 pA/pF at +40 mV, n=14) in the majority of cells studied. Recovery of I_{to} (at −80 mV) showed a fast and slow phase as follows: i) 1=271 ± 93 ms and 2=2697 ± 103 ms (n=8 cells). These observations demonstrate that I_{to} is present but the slow recovery suggests minimal contribution during the course of an action potential. Mathematical modeling of APs from hiPS-CMs confirmed these observations.

Conclusion: There is a disconnect between the presence of I_{to} in cells and the absence of phase 1 repolarization in BCs. In BCs the depolarized MDP and fast spontaneous AP rate suggests negligible contribution of I_{to} to phase 1 repolarization. Our results point to an important deficiency of hiPS-CMs in recapitulating the phenotype of adult native myocytes.

1528-Pos Board B420
Time Resolved FRET in the SR Ca-ATPase
Joseph M. Autry, Josephine Haydon, Simon J. Gruber, Kurt C. Peterson, Bengt Svensson, David D. Thomas. University of Minnesota, Minneapolis, MN, USA.

We have detected structural dynamics of the sarcoplasmic reticulum Ca-ATPase (SERCA) using time-resolved fluorescence spectroscopy. The Ca-ATPase from fast-twitch skeletal muscle (SERCA1a isoform) was labeled with cyan fluorescent protein (CFP) at the N-terminus in the actuator domain (A) and fluorescein isothiocyanate (FITC) at Lys-515 in the nucleotide-binding domain (N). Time-resolved FRET was detected between CFP (donor in A domain) and FITC (acceptor in N domain) for SERCA in ligand-stabilized states, including calcium-free (E2), calcium-bound (E1), and actively-cycling phosphoenzyme (EP). Lifetime fitting and molecular modeling were used to interpret fluorescence decays, thereby identifying a dynamic distribution of structural states within the cytoplasmic headpiece of SERCA.