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Summary

The position of the division plane affects cell shape
and size, as well as tissue organization. Cells of the
fission yeast Schizosaccharomyces pombe have a
centrally placed nucleus and divide by fission at the
cell center. Microtubules (MTs) are required for the
central position of the nucleus [1-4]. Genetic studies
lead to the hypothesis that the position of the nucleus
may determine the position of the division plane
[5—10]. Alternatively, the division plane may be posi-
tioned by the spindle or by morphogen gradients or
reaction diffusion mechanisms [7, 11]. Here, we inves-
tigate the role of MTs in nuclear positioning and the
role of the nucleus in division-plane positioning by
displacing the nucleus with optical tweezers. A dis-
placed nucleus returned to the cell center by MT
pushing against the cell tips. Nuclear displacement
during interphase or early prophase resulted in asym-
metric cell division, whereas displacement during
prometaphase resulted in symmetric division as in
unmanipulated cells. These results suggest that the
division plane is specified by the predividing nucleus.
Because the yeast nucleus is centered by MTs during
interphase but not in mitosis, we hypothesize that the
establishment of the division plane at the beginning
of mitosis is an optimal mechanism for accurate sym-
metric division in these cells.

*Correspondence: tolic@mpi-cbg.de

Results and Discussion

Displacing the Nucleus with Optical Tweezers

A direct way to study nuclear and division-plane posi-
tioning employs mechanical perturbation of the nuclear
position. We displaced the nucleus with optical tweez-
ers by trapping a granule naturally present in the cyto-
plasm [12] and using it as a handle to push the nucleus
(Figures 1A and 1B; see Movie S1 in the Supplemental
Data available with this article online). Without inducing
significant damage or heating of the cell [13], optical
manipulations offer several advantages over methods,
such as centrifugation, previously used to displace cell
organelles [14]: (1) Organelles can be displaced selec-
tively; (2) a single cell can be observed both before and
after the manipulation—thus, the manipulation can be
performed exactly at a chosen phase of the cell cycle;
and (3) displacements as small as a few hundred nano-
meters can be detected because the state of the cell
after the manipulation can be compared directly to that
before the manipulation.

Microtubule Pushing Moves a Displaced Interphase
Nucleus Back to the Cell Center

We assessed the mechanism of nuclear centering by
moving the nucleus away from its natural central posi-
tion with optical tweezers. We followed simultaneously
the dynamics of MTs with tubulin tagged with the green
fluorescent protein (GFP) [15] and the position of the
nucleus and of the spindle pole body (SPB) by GFP-
tagged chromodomain protein Swi6p, which gives a
diffuse signal through the whole nucleus, and several
fluorescent spots in the nucleus including the bright
and motile centromere spot [16], which is associated
with the SPB [17]. The cells were observed by a two-
photon microscope [18, 19]. After the transient dis-
placement of the nucleus, the MT number, length, and
brightness remained similar to that before the manipu-
lation in a subset of cells (n = 5 out of 15 cells), whereas
other cells showed short and/or faint MTs. It is therefore
possible that in some cells, MTs were affected by the
micromanipulation. The displaced nucleus returned to
the geometric cell center in all the cells with unaffected
MTs, as well as, either partially or completely, in a few
cells with affected MTs (~50% of all nuclei returned).
We explored the positioning of the nucleus in cells with
unaffected microtubules. In these cells, the nucleus
was displaced by 0.5-0.9 um, whereas natural changes
in the position of the unmanipulated nuclei do not ex-
ceed 0.2 um during a 10 min interval (n = 5). After
nuclear displacement, the centromere/SPB returned to
the geometric center of the cell within 5-15 min (Figure
1C). Subsequently, the SPB oscillated around the cell
center, as in unmanipulated cells (n = 10 cells; Figure
S1). The fast large movements of the SPB toward one
cell end occurred when an MT extending from the SPB
reached the opposite cell end and continued growing
(Figure 1C; Movie S2). The direction of the SPB move-
ment away from the tip touched by the microtubule
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Figure 1. Displaced Interphase Nucleus Returns to the Cell Center by Microtubule Pushing

(A) For displacement of the nucleus, a granule (arrow) is optically trapped close to the nucleus (red circle) and used as a handle to push
the nucleus.

(B) Superposition of two images of a single cell: before (red) and after (green) the manipulation of the nucleus. The nuclear envelope and cell
membrane were marked with GFP.

(C) Top: A time-lapse sequence of images of a cell with GFP-tubulin and GFP-Swi6p (SPB is colored red). The nucleus was displaced after
the first image. Bottom: Position of the center of the nucleus and the SPB along the major axis of the cell (zero represents the cell center),
before and after the displacement (arrow). Periods in which one microtubule extends upward from the SPB (dark-blue areas) or downward
(light-blue areas) correlate with the movement of the SPB downward and upward, respectively. The motion of the nucleus is correlated with
that of the SPB. The error on each data point is ~50 nm; n = 5 cells.

(D) The displaced SPB and nucleus do not return to the cell center in cells treated with TBZ. Legend as in (C); n = 6.

(E and F) The SPB’s (red) and nucleus’s (blue) degrees of motion, measured as standard deviation (SD) of their position over 5 min intervals
(10 data points). For each bar, 12-19 intervals from 4-6 cells were used. Micromanipulation did not significantly change the extent of motion
(light bars, “+Laser,” versus dark bars, “~Laser”), suggesting that the positioning mechanism was not affected. Disruption of microtubules by
TBZ ([F] versus [E]) decreased the motion of the SPB and of the manipulated nucleus significantly (asterisk; p < 5%, t test). The error bars

represent the SEM.

suggests that the SPB is being pushed, as opposed to
pulled, by the attached microtubule. The nucleus moved
in a manner correlated with the movement of the SPB,
typically with the SPB at the forward-facing side of the
nucleus [20, 21]. These observations are consistent
with the hypothesis that the SPB-attached MTs push
against the cell ends and thus move the SPB, which
leads the movement of the bulk of the nucleus.

The Displaced Nucleus Does Not Return to the Cell
Center in Cells Treated with TBZ

We asked whether MTs are necessary for the move-
ments of the SPB and the nucleus. In cells treated with
the MT-depolymerizing agent thiabendazole (TBZ), the
displaced nucleus and the SPB did not return to the

cell center within the time course of the experiments
(n = 6 out of 6 cells; Figure 1D; Movie S3). The excur-
sions of the SPB decreased ~ 3.5 times after disruption
of MTs, both in manipulated and unmanipulated cells
(n = 4-6 cells in each group; Figures 1E and 1F). The
movements of the nucleus also decreased significantly
after MT disruption in manipulated cells. The decrease
was not significant in unmanipulated cells, most likely
because the nuclear motion is minimal in those cells
because the nucleus is in its equilibrium position at the
cell center. Manipulation of the nucleus did not signifi-
cantly change the extent of nuclear motion. This is con-
sistent with the MTs moving the nucleus by the same
amount during short periods of time (5 min), irrespec-
tive of whether the nucleus had been displaced by the
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Figure 2. Displacement of the Nucleus during Interphase Can Re-
sult in an Asymmetric Cell Division

(A) Histogram of the length ratio of the longer and shorter sister
cell in intact (red, n = 32) and micromanipulated cells (blue, n = 41).
Intact cells divide symmetrically, whereas some micromanipulated
cells show asymmetric division.

(B) Examples of septating cells with various length ratios.

laser (by a moderate distance of up to 1 um) or not,
thus suggesting that the MT-based positioning mecha-
nism was not affected by the laser manipulation. We
conclude that MTs are required for large excursions of
the SPB, as well as for the return of the displaced SPB
and the nucleus toward the cell center. Our data pro-
vide direct evidence in favor of the model of nuclear
centering by MT pushing forces, which are most likely
generated by MT polymerization at the cell ends [4].

Displacement of the Nucleus during Interphase Can
Result in an Asymmetric Cell Division

Next, we investigated the spatiotemporal coordination
of nuclear events (chromosome segregation) and corti-
cal activities (cytokinesis). Is the spatial cue for the divi-
sion site provided by the position of the nucleus? If the
division site is established by a signal from the nucleus
at a defined period of the cell cycle, then displacing the
nucleus at an earlier time would result in a correspond-
ing displacement of the division plane, whereas a later
displacement would not affect the normal position of
the division plane at the cell center. To study the effect
of the displacement of the nucleus during interphase,
we took advantage of the fact that in ~50% of the
cells, the displaced nucleus did not return to the cell
center. Intact cells divide symmetrically: 97% of the
cells (n = 32) produce two equally long daughter cells,
within a 10% difference. When the cells with optically
manipulated nuclei divided, the two daughter cells
were equally long in only 59% of the cases (n = 41;
Figure 2). The distribution of the length ratio of the two

sister cells was significantly different between the
group of unmanipulated and the group of manipulated
cells (p = 0.0024 with a Kolmogorov-Smirnov [K-S] test
for comparing the distribution of two samples [22]; t
test was not appropriate because both distributions
were non-normal). This result supports the correlation
between the position of the premitotic nucleus and the
position of the division plane.

Cells with the Spindle Displaced at Prometaphase
Divide at the Cell Center

In contrast to interphase, the nuclei displaced during
mitosis did not return spontaneously to their normal lo-
cation at the cell center (n = 26 out of 26 nuclei dis-
placed by more than 0.5 m). This can be explained by
the absence of MTs, which could center the nucleus
along the long cell axis: Cytoplasmic MTs are absent
during prometaphase [23], whereas in anaphase, astral
MTs center the nucleus along the short cell axis [24].
The cells with spindles displaced in prometaphase di-
vided symmetrically, as do unmanipulated cells (within
a 10% difference; n = 15 out of 15 manipulated cells;
Figures 3A, 3B, and 3F). Indeed, the hypothesis that the
values of the sister cells’ length ratio in unmanipulated
cells (n = 32) and in cells manipulated in prometaphase
(n = 15) are drawn from the same distribution could not
be rejected (p = 0.24, K-S test). This result suggests
that the division site is determined before prometa-
phase.

Cells with the Spindle Displaced at the Time of SPB
Separation Can Divide Off-Center

When the manipulation was performed in early pro-
phase, at the time of SPB separation, the cells divided
either close to the cell center (n = 8 out of 15 cells) or
close to the new position of the spindle after displace-
ment (n = 7 out of 15 cells; Figures 3C-3E). The distribu-
tion of the distance between the cell center and the
division plane of the cells micromanipulated in early
prophase was significantly different from that of the
cells manipulated in prometaphase (p = 0.0011, K-S
test). We conclude that the division plane is specified
by the position of the nucleus simultaneously with SPB
separation in early prophase. Alternatively, the division
plane may be positioned by an MT-based mechanism
acting independently of the nucleus position, which
might have been disturbed by the laser treatment. This
possibility is unlikely because the interphase MTs are
to a large extent disassembled by the time of SPB sep-
aration. Our observations are related to the studies of
M. Girbardt, who showed that displacement of the nu-
cleus with a needle in another fungus, Trametes versi-
color, resulted in a corresponding displacement of the
septum if the nucleus was moved before prometa-
phase, but if the nucleus was moved after this stage,
the septum formed where the nucleus was during early
mitosis [25].

Proteins such as Mid1p, Pom1p, and Plo1p were hy-
pothesized to link the cell division site to the nuclear
position [5, 6, 8, 9]. Mid1p migrates from the nucleus to
a broad cortical band overlying the nucleus. The transfer
of Mid1p starts more than 90 min before mitosis and
ends 2 min after SPB separation [26]. We propose that
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Figure 3. Division Plane Is Determined in Early Prophase

(A) Control cell in which trapping was performed without a displacement of the nucleus. Top: Images of the dividing cell with GFP-tagged
tubulin, separated by 10 min, are shown. The cell divides at the center (red arrow points to the equatorial MT-organizing center, which
coincides with the septum position [29, 30]). Bottom: The position of the spindle center with respect to the cell center (zero) is shown as a
function of time. The red line marks the position of the division plane.

(B) A cell with the spindle displaced at prometaphase (black arrows) divides at the cell center (red arrow points to the septum in a bright-
field image).

(C) A cell with the spindle displaced at the time of SPB separation (black arrows) divides off-center.

(D) Position of the division plane versus the position of the spindle center after the displacement of the nucleus. The spindles displaced in
prometaphase (spindle length 1-2.5 um; green) divide within 350 nm (horizontal lines) away from the geometric cell center, equivalent to a
~10% variation of the sister-cell length (n = 15/15). The spindles displaced early in prophase at the time of SPB separation (red) divide either
close to the cell center (n = 8/15) or close to the position of the spindle after displacement (n = 7/15).

(E and F) Each panel is a superposition of two images of a single cell: immediately before (red) and after (green) the manipulation of the
nucleus. (E) A cell with a nucleus displaced in early prophase divided off-center (yellow line). (F) A cell with a nucleus displaced in prometa-
phase divided at the center.

upon completion of Mid1p transfer, the position of the Determination of the Division Plane

broad band is fixed at the cell cortex. Compaction of
the broad band into a tight ring determines the final
position of the division plane. It is possible that among
the cells in which the nucleus was displaced in early
prophase, Mid1p export finished earlier in the cells that
divided symmetrically than in those that divided asym-
metrically. Correlation between the position of the nu-
cleus, the Mid1p cortical domain, and the septum could
be tested by optical micromanipulation in cells ex-
pressing fluorescently labeled Mid1p. Furthermore, dis-
placing the nucleus in cells with a variety of labeled
contractile-ring proteins should provide new mecha-
nistic details of the exact sequence of events that lead
to specification of the division plane.

by the Predividing Nucleus May Be an Optimal
Mechanism for Fission-Yeast Fission

Successful cell division requires that the division plane
intersect the spindle axis, so that the daughter nuclei
are found on opposite sides of the division plane. Al-
though fission yeast and higher eukaryotes share the
main molecular mechanisms of cytokinesis, the relative
timing of the spindle positioning and the division-plane
selection is different, as well as the signal that deter-
mines the division-plane position. Here, we have shown
directly that the division-plane selection in fission yeast
occurs before spindle formation, by the position of the
nucleus. In animal cells, on the contrary, the spindle is
positioned first, and the division plane is selected later



Current Biology
1216

by a signal from the spindle [27, 28]. Because the yeast
nucleus is centered by microtubules during interphase
but not in mitosis, the establishment of the division
plane at the beginning of mitosis may be an optimal
mechanism for accurate symmetric division in these
cells.

Supplemental Data

Supplemental Data including three movies, one figure, and detailed
Experimental Procedures are available at http://www.current-
biology.com/cgi/content/full/15/13/1212/DC1/.
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