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Abstract

We compare Friedlander’s definition of the étale topological type for simplicial schemes to

another definition involving realizations of pro-simplicial sets. This can be expressed as a

notion of hypercover descent for étale homotopy. We use this result to construct a homotopy

invariant functor from the category of simplicial presheaves on the étale site of schemes over S

to the category of pro-spaces. After completing away from the characteristics of the residue

fields of S; we get a functor from the Morel–Voevodsky A1-homotopy category of schemes to

the homotopy category of pro-spaces.
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1. Introduction

In the recent proof of the Milnor conjecture [26], a certain realization functor from

the A1-homotopy category of schemes over C [20] to the ordinary homotopy
category of spaces plays a useful role. The basic idea is to detect that a certain map in

the stable A1-homotopy category is not homotopy trivial by checking that its image
in the ordinary stable homotopy category is not homotopy trivial.
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This analytic realization functor is defined by extending the notion of the
underlying analytic space of a complex variety. As defined in [20, Section 3.3], it has
two shortcomings. First, it is defined directly on the homotopy categories. It would
be much preferable to have a functor on the point-set level that is homotopy
invariant and therefore induces a functor on the homotopy categories. This problem
was fixed in [6].

The second shortcoming is that analytic realization does not work over fields with
positive characteristic. The goal of this paper is to use the étale topological type to
avoid this problem. The étale topological type [1,9] is a substitute for the underlying
analytic topology of a variety. In characteristic zero, the étale topological type Et X

of a variety X is the pro-finite completion of the underlying analytic space of X : In
any characteristic, Et X carries information about the étale cohomology of X and
the algebraic fundamental group of X :

Using a model structure for A1-homotopy theory slightly different than the one in
[20], the étale topological type provides a functor from the category of simplicial
presheaves on the Nisnevich site of smooth schemes over S to the category of pro-
spaces. This functor is a left Quillen functor, which means that it automatically gives
a functor on the homotopy categories.

The étale realization functor provides a calculational tool forA1-homotopy theory
over fields of positive characteristic. In future work, we hope to take Galois group
actions into account to obtain a realization functor into a homotopy category of
equivariant pro-spaces. However, the foundations for a suitable equivariant
homotopy theory of pro-spaces have not yet been established. We also hope to

stabilize our techniques to obtain a functor on stable A1-homotopy theory.
Although some progress on the foundations of the homotopy theory of pro-spectra
has been made [3,15], it is not yet clear whether these theories are suitable for the
current application.

The main tool for establishing the étale realization functor on A1-homotopy
theory is the étale hypercover descent theorem for the étale topological type (see
Theorem 12). This theorem states that if U-X is an étale hypercover of X ; then the
natural map from the realization of the simplicial pro-space n/Et Un to Et X is a
weak equivalence of pro-spaces. Here the realization is internal to the category of
pro-spaces.

This result is similar in spirit to [9, Proposition 8.1], but it differs in an important
respect. In [9], the étale topological type is defined for simplicial schemes as well as
ordinary schemes. In order to keep definitions straight, we shall write sEt U for
Friedlander’s definition of the étale topological type of the simplicial scheme U : It is
not obvious that sEt U is weakly equivalent to the realization Reðn/Et UnÞ:

The étale hypercover descent theorem is interesting for its own sake, even though

our application is to A1-homotopy theory. For example, it is closely related to [7].
Our work can probably be used to give a more conceptual proof of [7, Theorem 9], in
which only the properties of the étale topological type are used (and not any special
properties of étale K-theory). Descent theorems in general are an important step
towards powerful calculational tools in algebraic geometry.
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The étale hypercover descent theorem is stated in terms of the realization of a
simplicial pro-space. Philosophically, we would prefer a statement involving the
homotopy colimit of this simplicial pro-space. It is likely that the realization is in fact
weakly equivalent to the homotopy colimit, but we have not been able to prove this.
The trouble lies in our incomplete understanding of the homotopy theory of pro-
spaces [13].

1.1. Organization

In some sense, the paper is organized backwards. We start with the application to

A1-homotopy theory, then discuss the étale hypercover descent theorem for the étale
topological type, and finally we provide the details necessary for proving these
theorems. The reason for this order is that a reader can learn about the main
theorems of this paper without having to drag through the highly technical details of
hypercovers, the étale topological type, and the homotopy theory of pro-spaces.

Section 2 begins with a review of simplicial presheaves and their homotopy
theory. We assume familiarity with closed model structures. General references
on this topic include [11], [12], or [22]. We conform to the conventions of [11] as
closely as possible. See also [4] for more details on model structures as applied to
simplicial presheaves. The first major result is that the étale realization functor is
homotopy invariant on the local projective model structure for simplicial presheaves
on the étale site. Specializing to the Nisnevich site of smooth schemes, étale

realization is also homotopy invariant with respect toA1-weak equivalences but only
after completing away from the characteristics of the residue fields of the base

scheme S: The reason for this completion is that EtA1 is non-trivial in positive
characteristic.

Section 2 closes with a corollary concerning the behavior of the étale topological
type on elementary distinguished squares. This result can be interpreted as excision
for étale topological types.

Next, Section 3 gives the hypercover descent theorem for the étale topological
type. This finishes the main thrust of the paper. The remaining sections are dedicated
to developing language and machinery suitable for proving the étale hypercover
descent theorem.

Section 4 introduces the language of simplicial schemes that is necessary to work
with hypercovers. Section 3 describes rigid covers, which are also essential
ingredients. Both of these sections build towards Section 6, which is dedicated to
the study of hypercovers and rigid hypercovers. We redefine and clarify some of the
constructions concerning the étale topological type that first appeared in [9].

Finally, Section 7 discusses some aspects of the homotopy theory of pro-spaces.
See [1,24, Appendix; Exposé 1.8] for background on pro-categories. We use the
homotopy theory of pro-spaces as developed in [13]. Some results from [14] on
calculating colimits of pro-spaces are also necessary. An n-truncated realization
functor for pro-spaces is important because the infinite colimits that are used to
construct ordinary realizations are hard to handle in the category of pro-spaces.
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1.2. Terminology

We make a few final remarks on terminology. We always mean simplicial sets [17]
whenever we refer to spaces.

Some authors define an étale map to be any map U-X such that U is a

(possibly infinite) disjoint union of schemes Ui and each map Ui-X is étale. We
shall not follow this convention. For us, all étale covers will be finite unless
explicitly stated otherwise. We will refer to infinite étale covers when we want to
allow infinitely many pieces in an étale cover. This is an essential point in
understanding the difference between a hypercover and a rigid hypercover
(Section 6).

Throughout, we assume that the base scheme S is Noetherian. Since all
of our schemes are of finite type over S; every scheme that we consider is
Noetherian. This is a technical requirement for the machinery of étale topological
types [9].

2. Etale realizations

We begin with a brief review of the construction of A1-homotopy theory [20].
Let S be a Noetherian scheme. Consider the category Sm=S of schemes of finite

type over S: We consider two Grothendieck topologies on this category. The étale
topology has covers consisting of finite collections of étale maps that have surjective
images. The Nisnevich topology [21] has covers consisting of finite collections of
étale maps fUa-Xg that have surjective images and such that for every point x of
X ; there is a point u of some Ua such that the map kðxÞ-kðuÞ on residue fields is an
isomorphism.

Let SpcðSÞ be the category of simplicial presheaves on Sm=S: The notation stands
for ‘‘spaces over S’’. This category has several model structures. Morel and
Voevodsky start with the Nisnevich local injective model structure [16], in which the
cofibrations are all monomorphisms and the weak equivalences are detected by

Nisnevich sheaves of homotopy groups. They then formally invert the maps X �
A1-X for every scheme X to obtain the A1-local injective model structure.

For our purposes, we need a slightly different model structure. We start with the
Nisnevich local projective model structure, in which the weak equivalences are again
detected by Nisnevich sheaves of homotopy groups but the cofibrations are
generated by maps of the form @D½n�#X-Dn#X for any scheme X : Then we

formally invert the maps X �A1-X to obtain the A1-local projective model

structure. Both the A1-local projective and A1-local injective model structures have
the same homotopy category. We choose to work with the projective version because
it is easier to construct functors out of the projective version than out of the injective
version.

Following [5], there is another construction of the local projective model structure
that is particularly useful for us. Start with the objectwise projective model structure,
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in which the weak equivalences are objectwise weak equivalences and the
cofibrations are the same as in the local projective model structure. Then we take
the left Bousfield localization [11, Chapter 3] of this model structure at the set of two
kinds of maps:

(1) for every finite collection fX ag of schemes with disjoint union X ; the map‘
X a-X from the coproduct (as presheaves) of the presheaves represented by

each X a to the presheaf represented by X ; and
(2) every Nisnevich hypercover U-X (see Definition 28).

This gives us the Nisnevich local projective model structure. In the language

of [4], the A1-local projective model structure is the universal model category
on Sm=S subject to the two kinds of relations described above, plus the
relations:

(3) X �A1-X for every scheme X :

If we replace Nisnevich covers with étale covers, then we obtain the étale local
injective and the étale local projective model structures on SpcðSÞ:

The étale topological type is a functor Et from schemes to pro-spaces. See Section
3 or [9] for the definition and properties of this functor. As described in [4],
this functor can be extended in a canonical way to an étale realization functor,
which we also denote Et; from simplicial presheaves to pro-spaces. The principle
behind this extension is that Et is the unique functor such that Et X is the
étale topological type of X for every representable X and such that Et preserves
colimits and simplicial structures. The following definition gives a concrete
description of Et:

Definition 1. If X is a representable presheaf, then Et X is the étale topological type
of X : Next, if P is a discrete presheaf (i.e., each simplicial set PðX Þ is zero
dimensional), then P can be written as a colimit colimi Xi of representables and
Et P ¼ colimi Et Xi: Finally, an arbitrary simplicial presheaf P can be written as the
coequalizer of the diagram

a
½m�-½n�

Pm#Dn4
a
½n�

Pn#Dn;

where each Pn is discrete. Define Et P to be the coequalizer of the diagram

a
½m�-½n�

Et Pm#Dn4
a
½n�

Et Pn#Dn:

Observe that if X is a simplicial scheme, then Et X is equal to the realization of the
simplicial pro-space n/Et Xn:
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Theorem 2. With respect to the étale local (or Nisnevich local) projective model

structure on SpcðSÞ and the model structure on pro-simplicial sets given in [13], the

functor Et is a left Quillen functor.

Remark 3. The theorem is not true if we consider the local injective model structure
on SpcðSÞ: There are too many injective cofibrations.

Proof. By general nonsense from [4, Proposition 2.3], we need only show that Et
takes relations (1) and (2) described above to weak equivalences of pro-spaces.
Cofibrant replacements are no problem because the targets and sources of every map
in question are already projective cofibrant. To show that U is projective cofibrant
for every hypercover U ; use Proposition 33 to conclude that U is a split simplicial
scheme.

For relations of type (1), note that Et commutes with coproducts of schemes
[9, Proposition 5.2]. For relations of type (2), see Theorem 12. &

The point of the previous theorem is that Et induces a homotopy invariant derived
functor L Et:

Corollary 4. The functor L Et induces a functor from the étale local (or Nisnevich

local) homotopy category of simplicial presheaves to the homotopy category of pro-

spaces. Moreover, L Et X is the usual étale topological type Et X for every scheme X in

Sm=S:

Proof. The first claim follows from the formal machinery of Quillen adjoint functors
[11, Section 8.5]. The last claim follows from general nonsense and the fact that every
representable presheaf is projective cofibrant. &

In order for étale realization to be A1-homotopy invariant, it is necessary to
complete away from the characteristics of the residues fields of S: We next describe a
model for Z=p-completion of pro-spaces. This is very similar to the Z=p-completion
described in [19], except that we prefer to work with the category of pro-simplicial
sets rather than the category of simplicial pro-finite sets. See [14] for the subtle
distinctions between these categories.

Theorem 5. There is a model structure on the category of pro-spaces in which the weak

equivalences are the maps inducing cohomology with coefficients in Z=p:

Proof. The proof is entirely analogous to the proof of the main theorem of [3].
We colocalize with respect to the objects KðZ=p; nÞ for all nX0: More
precisely, a pro-map X-Y is a weak equivalence if the induced map
MapðY ;KðZ=p; nÞÞ-MapðX ;KðZ=p; nÞÞ is a weak equivalence of simplicial sets
for every nX0: Pro-categories have sufficiently good properties that this kind of
colocalization always exists [3]. &
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Now let p be a fixed prime that does not occur as the characteristic of any residue
field of S:

Theorem 6. With respect to the A1-local projective model structure on SpcðSÞ and the

Z=p-cohomological model structure on pro-simplicial sets described in Theorem 5, Et is

a left Quillen functor.

As for Theorem 2, this theorem is not true when considering the A1-local injective
model structure on SpcðSÞ: There are too many injective cofibrations.

Proof. The argument is basically the same as in the proof of Theorem 2. The only
significantly different part is in showing that

EtðX �A1Þ-Et X

is a Z=p-cohomological weak equivalence for every scheme X in Sm=S: We need to
show that this map induces an isomorphism in cohomology with coefficients in Z=p:
In order to understand these cohomology maps, Friedlander [9, Proposition 5.9]
allows us to consider the map on étale cohomology induced by the projection

X �A1-X :

By Milne [18, Corollary VI.4.20], the projection induces an isomorphism in étale
cohomology. &

The next corollary follows from Theorem 6 in the same way that Corollary 4
follows from Theorem 2.

Corollary 7. The left derived functor L Et induces a functor from the A1-homotopy

category to the Z=p-cohomological homotopy category of pro-spaces.

The Z=p-completion of a pro-space X is a fibrant replacement X̂ with respect to the
Z=p-cohomology model structure. This functor has the important property that a

map X-Y is a Z=p-cohomology isomorphism if and only if the induced map X̂-Ŷ

on Z=p-completions is a weak equivalence of pro-spaces in the sense of [13]. Let cEtEt
be the functor from SpcðSÞ to pro-spaces that takes F to the Z=p-completion of Et F :

Corollary 7 means that this functor takes A1-local weak equivalences to weak
equivalences of pro-spaces in the sense of [13].

2.1. Excision for the étale topological type

This section gives an interesting corollary about étale topological types
and elementary distinguished squares. Recall that an elementary distinguished
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square [20, Definition 3.1.3] is a diagram

of smooth schemes over S in which i is an open inclusion, p is étale, and p : p	1ðX 	
UÞ-X 	 U is an isomorphism (where the schemes p	1ðX 	 UÞ and X 	 U are
given the reduced structure). The relevance of such squares is that the maps i and p

form a Nisnevich cover of X :
One interpretation of [2, Lemma 4.1] says the following. Instead of localizing at all

the hypercovers to obtain local model structures, one can localize at the maps from
the homotopy pushout of the diagram

U’U �X V-V

into X ; for every elementary distinguished square as in the previous paragraph. This
leads immediately to the following excision theorem for étale topological types.

Theorem 8. Given an elementary distinguished square of smooth schemes over S as in

diagram 1, the square

is a homotopy pushout square of pro-spaces.

Proof. By Corollary 4, it suffices to show that the square

is a homotopy pushout square. Let P be the homotopy pushout of the diagram

U’U �X V-V :

From the paragraph preceding this theorem, we know that P-X is a local weak
equivalence of presheaves. The functor L Et preserves weak equivalences by
Theorem 2, so L Et P-L Et X is also a weak equivalence. Left derived functors
commute with homotopy colimits, so the homotopy pushout of the diagram

L Et U’L EtðU �X VÞ-L Et V

is weakly equivalent to L Et P: &
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The previous theorem agrees with the cohomological excision theorem of [18,
III.1.27], at least with locally constant coefficients, because the étale cohomology of a
scheme is isomorphic to the singular cohomology of its étale topological type.

3. Hypercover descent for the etale topological type

This section reviews the definition of the étale topological type functor, which
appeared throughout the previous section. The key result is the hypercover descent
theorem as stated in Theorem 12.

For a scheme X ; recall the cofiltered category HRRðXÞ of rigid hypercovers of X :
See Section 6 for more details on rigid hypercovers. Each object U of HRRðX Þ is a
simplicial scheme over X : Applying the component functor p to U gives a simplicial
set. Thus we have a functor from HRRðX Þ to simplicial sets. Since HRRðXÞ is
cofiltered, we regard this functor as a pro-space Et X ; this is Friedlander’s notion of
the étale topological type of a scheme.

Given a scheme map f : X-Y ; rigid pullback as described in Definition 34 gives a
functor f 
 : HRRðY Þ-HRRðX Þ: If U is a rigid hypercover of Y ; then there is a
canonical rigid hypercover map f 
U-U : These maps induce a map Et X-Et Y of
pro-spaces. This map is strict in the sense that it is given by a natural transformation
(of functors from HRRðY Þ to spaces) from the functor Et Y to the functor
ðEt XÞ3f 
: The strictness of this map is critical for the proof of Proposition 10.

If X is a pointed and connected scheme, then Et X is a pointed and connected
pro-space [9, Proposition 5.2]. In this case, the pro-groups pi Et X determine the
homotopy type of Et X in the sense of the homotopy theory of pro-spaces
from [13] because we do not have to worry about choosing basepoints. The étale
topological type commutes with coproducts [9, Proposition 5.2], so the study of
arbitrary schemes reduces easily to the study of pointed and connected schemes by
considering one component at a time and choosing an arbitrary basepoint for each
component.

When X is a simplicial scheme, we can again use the cofiltered category HRRðXÞ
of rigid hypercovers of X to form a pro-space. Each object U of HRRðX Þ is a
bisimplicial scheme over X : Applying the component functor p to U yields a
bisimplicial set, and its realization is an ordinary simplicial set. This establishes a
functor from HRRðXÞ to simplicial sets. We regard it as a pro-space sEt X ; this is
Friedlander’s notion of the étale topological type of a simplicial scheme.

Recall the diagonal functor that takes a bisimplicial set T to its diagonal simplicial
set n/Tn;n: This functor was used instead of realization in [9]. However, the

diagonal of a simplicial space is the same as its realization [23, p. 94], so our
definition is the same.

When X is a scheme, note that Et X is equal to sEtðcXÞ; where cX is the constant
simplicial scheme with value X : This follows from Lemma 32.

Similarly to the case of ordinary schemes, a map f : X-Y of simplicial schemes
gives rise to a strict map of pro-spaces sEt X-sEt Y :
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It is important to distinguish between sEt X and Et X : As described in the
previous paragraph, sEt X is Friedlander’s étale topological type. On the other hand,
Et X is constructed by considering X to be a simplicial presheaf and then applying
the étale realization functor Et X of the previous section. More explicitly, Et X is
constructed by first considering the simplicial pro-space n/Et Xn and then taking
the realization of this simplicial object to obtain a pro-space.

We would like to compare sEt X with Et X : In general they are not isomorphic.
Nevertheless, we shall prove that the natural map Reðn/Et XnÞ-sEt X is a weak
equivalence of pro-spaces.

In order to avoid the infinite colimits that are used in constructing realizations, we
introduce n-truncated realizations. For any simplicial scheme X ; let sEtn X be the
pro-space given by the functor Ren3p from HRRðX Þ to spaces, where Ren is the n-
truncated realization functor (see Section 7). In other words, we take a bisimplicial
scheme U in HRRðX Þ; consider the simplicial space pU ; and then take the n-
truncated realization of this simplicial space to obtain a simplicial set.

In general, sEtn X is not equivalent to sEt X ; but the next proposition tells us that
the pro-spaces sEtn X are close enough to sEt X to determine its homotopy type.

Proposition 9. Suppose that X is a pointed simplicial scheme. The pro-map

pi sEtn X-pi sEt X is an isomorphism of pro-groups whenever ion:

Proof. This follows immediately from Corollary 47 applied to each bisimplicial set
pU ; where U is any rigid hypercover of X : &

Although sEt X and Et X are not the same, their n-truncated versions are in fact
isomorphic.

Proposition 10. The pro-space sEtn X is isomorphic to the pro-space

Renðm/Et XmÞ:

Proof. For simplicity of notation, let Y be the pro-space Renðm/Et XmÞ: As
described in Remarks 43 and 45, Y is a colimit of a diagram of strict maps such that
the diagram has no loops and each object is the source of only finitely many arrows.
Moreover, each of the categories HRRðXmÞ has finite limits because of the existence
of rigid limits (see Section 6.2). This allows us to apply the method of [14, Section
3.1] to compute Y : The index set K for Y is the product category

HRRðX0Þ �HRRðX1Þ �?�HRRðXnÞ:

For each V ¼ ðV0;�;V1;�;y;Vn;�Þ in K ; the space YV is the coequalizer of the diagram

a
f : ½m�-½k�

m;kpn

pðVk;� �
R
f
Vm;�Þ#D½m�4

a
mpn

pðVm;�Þ#D½m�:
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In this diagram, the upper map is induced by the maps f
 : D½m�-D½k� and the

projections Vk;� �
R
f
Vm;�-Vk;�; while the lower map is induced by the maps

Vk;� �
R
f
Vm;�-f
Vm;�-Vm;�:

The forgetful functor HRRðX Þ-K is cofinal by Proposition 41. Therefore, we might
as well assume that HRRðXÞ is the indexing category for Y : If V is a rigid
hypercover of X ; then YV is the coequalizer of the diagram

a
f : ½m�-½k�

m;kpn

pðVk;� �
R
f
Vm;�Þ#D½m�4

a
mpn

pðVm;�Þ#D½m�:

For every f : ½m�-½k�; the rigid hypercover map Vk;�-Vm;� gives us a map

Vk;�-f
Vm;�: Since HRRðXkÞ is actually a directed set, this means that Vk;� �
R
f
Vm;�

is isomorphic to Vk;�: It follows that YV is isomorphic to the coequalizer of the

diagram

a
f : ½m�-½k�

m;kpn

pðVk;�Þ#D½m�4
a
mpn

pðVm;�Þ#D½m�:

In other words, YV is Renðm/pVm;�Þ: This is precisely the definition of sEtn X :

The next theorem describes the étale topological type of a simplicial scheme X in
terms of the étale topological types of each scheme Xn and realizations of pro-spaces.

Theorem 11. For any simplicial scheme X ; the natural map

Reðn/Et XnÞ-sEt X

is a weak equivalence in the category of pro-spaces.

Proof. As in [9, Proposition 5.2], we can write X as a disjoint union of simplicial
schemes X a; where each X a is connected in the sense that the simplicial set n/pX a

n is

connected. Since Et; sEt; and realization all commute with disjoint unions, it suffices
to assume that X is connected. We choose any basepoint in X0:

Now both sEt X and Reðn/Et XnÞ are pointed connected pro-spaces. By Isaksen
[13, Corollary 7.5], it suffices to show that the natural map Reðn/Et XnÞ-sEt X

induces an isomorphism of pro-homotopy groups in all dimensions. By Corollary 49
and Proposition 9, we may as well consider the map Remðn/Et XnÞ-sEtm X to
study the homotopy groups in dimension less than m: This map induces an
isomorphism on pro-homotopy groups by Proposition 10. Since m was arbitrary, the
map pi Reðn/Et XnÞ-pi sEt X is a pro-isomorphism for all i: &
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We come to the key ingredient for the proof of Theorem 2. The following result is
a hypercover descent theorem for the étale topological type.

Theorem 12. Let U be a hypercover of a scheme X : Then the natural map

Reðn/Et UnÞ-Et X

is a weak equivalence of pro-spaces.

Proof. By Theorem 11, the map

Reðn/Et UnÞ-sEt U

is a weak equivalence. By Friedlander [9, Proposition 8.1], the map sEt U-Et X is a
weak equivalence. Thus, the composition of these two maps is also a weak
equivalence. &

4. Simplicial schemes

The point of this section is to study simplicial schemes and to make some useful
constructions concerning them.

4.1. Finite limits of schemes

We first study how finite limits interact with étale maps and separated maps. The
results here are not particularly striking, but they do not appear in the standard
literature [8,10,18,25].

Proposition 13. Let f : U-X be a map of finite diagrams of schemes such that the

map f a : Ua-X a is étale (resp., separated) for every a: Then the map

lim f : lim U-lim X is étale (resp., separated).

Proof. Every finite limit can be expressed in terms of finite products and fiber
products, so it suffices to consider a diagram of schemes

such that the three vertical maps are étale (resp., separated). We want to show that
the induced map

U �V W-X �Y Z
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is also étale (resp., separated). We prove the lemma for étale maps. The proof for
separated maps is identical. See [8, Proposition I.5.3.1] for the necessary properties of
separated maps.

Recall that base changes preserve étale maps [18, Proposition I.3.3(c)]. Let f be the
map in question. Factor f as

U �V W-U �Y W-X �Y W-X �Y Z:

The second and third maps are étale because they are base changes of U-X

and W-Z; respectively. It remains to show that the first map is also étale. The
diagram

is a pullback square, where D is the diagonal map. It suffices to observe that D is étale
[18, Proposition I.3.5]. &

4.2. Simplicial schemes

We work in the category of schemes or more generally in the category of schemes
over a fixed base scheme S; these two cases are actually the same since the category
of schemes has a terminal object Spec Z:

Let D be the category whose objects are the non-empty ordered sets ½n� ¼
f0o1o2o?ong and whose morphisms are the weakly monotonic maps. This is
the usual indexing category for simplicial objects. Let Dþ be the category D with an
initial object ½	1� adjoined. The opposite of Dþ is the usual indexing category for
augmented simplicial objects. Let Dpn be the full subcategory of D on the objects ½m�
for mpn: Note that Dpn is a finite category.

Definition 14. A simplicial scheme is a functor from Dop to schemes. An n-truncated

simplicial scheme is a functor from Dop
pn to schemes. An augmented simplicial

scheme is a functor from Dop
þ to schemes. A bisimplicial scheme is a functor from

ðD� DÞop to schemes. An augmented bisimplicial scheme is a functor from ðD�
DþÞop to schemes.

Note that augmented bisimplicial schemes are augmented in only one direction.
Augmented bisimplicial schemes are perhaps more correctly but awkwardly called
simplicial augmented simplicial schemes.

For every scheme X ; let cX be the constant simplicial scheme with value X :
Recall the nth latching object LnX of a simplicial object X [11, Definition 15.2.5].

It is a certain finite colimit of the objects Xm for 0pmpn 	 1: Beware that LnX does
not necessarily exist for every simplicial scheme X because the category of schemes is
not cocomplete.
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Definition 15. A simplicial scheme X is split if LnX exists for every nX0 and the
canonical map LnX-Xn is the inclusion of a direct summand. If X is split, let NXn

be the subscheme of Xn such that Xn ¼ LnXNNXn:

The idea is that NXn is the non-degenerate part of Xn and that Xn splits into a
direct sum of its degenerate part and its non-degenerate part. Note that NXn is well
defined because the category of schemes is locally connected [1, Section 9].

4.3. Skeleta and coskeleta

Definition 16. If X is a simplicial scheme, then the n-skeleton skn X is the
n-truncated simplicial scheme given by restriction of X along the inclusion

Dop
pn-Dop:

There is another possible definition of skn X ; at least when X is split up to
dimension n: Namely, we could consider the simplicial scheme given in dimen-
sion m by

colim
f : ½m�-½k�

kpn

Xk:

In general, this does not exist because the necessary colimits may not exist in the
category of schemes. However, it does exist when X is split up to dimension n: In this
case, ðskn XÞm is a disjoint union of one copy of NXk for each surjective map

½m�-½k� with kpn: In the end, it does not really matter which construction we
consider, so we will not worry about the ambiguous notation.

Similarly, for a simplicial set X ; there are two possible definitions of skn X ; one an
n-truncated simplicial set and the other a simplicial set that is degenerate above
dimension n: Again, it is not very important which construction we use, especially
since both exist for every simplicial set.

Definition 17. The nth coskeleton functor coskn from n-truncated simplicial schemes
to simplicial schemes is right adjoint to the functor skn:

We abuse notation and write coskn X instead of cosknðskn XÞ for a simplicial

scheme X : To avoid confusion, we write coskS
n for the nth coskeleton functor in

the category of schemes over S: By convention, cosk	1 X is the constant

simplicial scheme c Spec Z: More generally, coskS
	1 X is the constant simplicial

scheme cS: This convention makes our definition of hypercovers in Section 6 more
concise.

Each object ðcoskn XÞm is a finite limit of the objects Xk for kpn: Also, ðcoskn X Þm

is isomorphic to Xm when mpn: In other words, coskn X and X agree up to
dimension n:
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For every simplicial scheme X ; the unit map X-cosknðskn XÞ induces a natural
map

Xm-ðcoskk XÞm:

These maps will appear again and again.
Note that ðcoskn XÞnþ1 is the nth matching object MnX of X [11, Definition 15.2.5].

Remark 18. For any finite simplicial set K and any scheme X ; define X#K to be the
simplicial scheme isomorphic to

‘
Kn

X in dimension n: For any simplicial scheme

Y ; define the cotensor homðK ;YÞ such that the functors ð�Þ#K and homðK; �Þ are
adjoints. In these terms, the scheme ðcoskn XÞm is isomorphic to homðskn D½m�;X Þ:
This is the notation used in [5].

5. Rigid covers

In this section, we review the notion of a rigid cover and introduce some
constructions and results concerning them. Some of the material in this section can
be found in [9].

For any point x0 of a scheme X ; a geometric point of X over x0 is a map

x : Spec %k-X with image x0; where %k is the separable closure of the residue field

kðx0Þ: If f : X-Y is a map of schemes and y : Spec %k-Y is a geometric point of Y ;

then a lift of y is a geometric point x : Spec %k-X such that y ¼ f 3x: Equivalently, x

goes to y under the set map f ð %kÞ : Xð %kÞ-Y ð %kÞ: In this situation, we abuse notation
and write f ðxÞ ¼ y:

Definition 19. A rigid cover U of a scheme X is

(1) a map f : U-X ;
(2) a decomposition U ¼

‘
Ux; where the coproduct is indexed by the geometric

points of X ; each Ux is connected, and each map Ux-X is étale and
separated;

(3) and a geometric point ux of each component Ux such that f ðuxÞ ¼ x:

Note that rigid covers are not étale covers. The problem is that rigid covers have
infinitely many pieces in general. In fact, rigid covers are infinite étale covers. Also,
we require that the maps in a rigid cover are separated. For technical precision, it is
important to keep this difference in mind.

If U and U 0 are rigid covers of X and X 0; then a rigid cover map over a scheme
map h : X-X 0 consists of a commuting square
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for each geometric point x of X such that gxðuxÞ ¼ u0
hðxÞ: The idea is that the map of

rigid covers preserves basepoints.
The importance of rigid covers is that there exists at most one rigid cover map

between any two rigid covers of a scheme [9, Proposition 4.1].

5.1. Rigid pullbacks

Suppose that f : X-Y is a map of schemes and U-Y is étale surjective. Then the
base change f 
U-X is the projection X �Y U-X ; which is again étale surjective.
This idea generalizes to rigid covers.

Definition 20. Let f : X-Y be any map of schemes and let U be a rigid cover of Y :
Then the rigid pullback f 
U is the rigid cover of X defined by the following
construction. For each geometric point x of X ; let ð f 
UÞx be the component of

X �Y U containing x � uf ðxÞ; and let x � uf ðxÞ be the basepoint of ð f 
UÞx:

Remark 21. Note that ð f 
UÞx is a component of X �Y Ux; but f 
U is not a

subobject of X �Y U since some components of X �Y U may occur more than once
as components of f 
U : Also note that there is a canonical rigid cover map from f 
U
to U over the map X-Y :

Proposition 22. Let f : X-Y be any map of schemes and let U be a rigid cover of Y :
Then the rigid cover f 
U of X has the following universal property. Let V be an

arbitrary rigid cover of Z: Rigid cover maps V-f 
U over a map Z-X correspond

bijectively to rigid cover maps from V to U over the composition Z-X-Y :

Proof. The category of connected pointed schemes has finite limits. To construct
such limits, just take the basepoint component of the usual limit of schemes. The
proposition now follows from this observation and the universal property of
pullbacks of schemes. &

5.2. Rigid limits

The goal of this section is to generalize Proposition 13 from étale covers to rigid
covers. The following lemma shows that the usual notion of limit does not quite
work.

Lemma 23. Let f : U-X be a finite diagram of maps of schemes such that each

Ua-X a is a rigid cover and such that each map Ua-Ub is a rigid cover map over

X a-X b: Then the map

lim
a

f a : lim
a

Ua- lim
a

X a

is surjective.
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Proof. We need to show that every geometric point x of lim X lifts to lim :U : Let xa

be the composition of x with the projection map lim X-X a: Since each Ua is a rigid
cover of X a; there exist canonical lifts ua of each xa to Ua: They assemble to give a
geometric point u of lim U because f is a diagram of rigid cover maps.

The above proposition is not true if each f a is only surjective. A limit of surjective
maps is not necessarily surjective. &

Note that lim U is not in general a rigid cover of lim X : As the proof above
indicates, there are canonical lifts for each geometric point of lim X ; but the
components of lim U may not correspond bijectively to the geometric points of
lim X : Since ordinary finite limits do not preserve rigid covers, the notion of limit
must be refined in order to get a rigid cover-preserving construction.

Definition 24. Let f : U-X be a finite diagram of rigid cover maps. Then the rigid

limit

Rlim
a

f a : Rlim
a

Ua- lim
a

X a

is the rigid cover defined as follows. For each geometric point x ¼ lima xa of lima X a;
let ðRlima UaÞx be the connected component of lima Ua containing ux ¼ lima ua

xa ;

and let ux be the basepoint of ðRlima UaÞx:

Note that there is a natural map Rlim U-lim U over lim X : The geometric points
ua

xa are compatible and induce a geometric point ux of lima Ua because f is a diagram

of rigid cover maps.
First, we must show that rigid limits are in fact rigid covers.

Lemma 25. The rigid limit of a finite diagram of rigid cover maps is a rigid cover.

Proof. The map Rlima Ua-lima X a factors as a local isomorphism
Rlima Ua-lima Ua followed by the map lima Ua-limaX a: The latter is étale and
separated by Proposition 13, so the composition is also étale and separated. The
other parts of the definition of a rigid cover are satisfied by construction. &

The symbols
QR and �R denote rigid limits in the case of products or fiber

products. Similarly, if U and X are n-truncated schemes and f : U-X is a diagram
of rigid cover maps, then

ðRcoskn f Þk : ðRcoskn UÞk-ðcoskn X Þk

is the rigid limit of the finite diagram whose ordinary limit is ðcoskn f Þk: Because of

the functoriality expressed below in Remark 27, these constructions assemble
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into a map

Rcoskn f : Rcoskn U-coskn X

of simplicial schemes that is a simplicial object in the category of rigid covers.

Proposition 26. Let f : U-X be a finite diagram of rigid cover maps. Then Rlima f a is

universal in the following sense. Let g : V-Y be any rigid cover of a scheme Y : Rigid

cover maps g-Rlim f are in one-to-one correspondence with collections of rigid cover

maps g-f a such that for every map f a-f b; the diagram

of rigid cover maps commutes.

Proof. As in the proof of Proposition 22, it is important that the category of
connected pointed schemes has finite limits. The lemma now follows from this
observation and the universal property of limits. &

Remark 27. Rigid limits have the same kind of functoriality as ordinary limits. We
make this more precise. Let f : U-X and g : V-Y be diagrams of rigid cover
maps indexed by finite categories A and B; respectively. Suppose given a functor
F : B-A; and let F
f be the diagram of rigid cover maps indexed by B given by the

formula ðF 
f Þb ¼ f FðbÞ: Suppose given a natural transformation Z : F
f-g: Then Z
induces a natural map RlimA f-RlimB g: This is precisely what happens for
ordinary limits.

6. Hypercovers

Much of the material in this section can be found in [9]. We review the basic
notions of hypercovers and rigid hypercovers and formalize some useful construc-
tions concerning them. Our investment in language and machinery clarifies some of
the technical complexities in the proofs of [9, Chapter 4].

Definition 28. A hypercover (resp., Nisnevich hypercover) of a scheme X is an
augmented simplicial scheme U such that U	1 ¼ X and the map

Un-ðcoskX
n	1 UÞn
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is étale surjective (resp., Nisnevich surjective) for all nX0: A hypercover of a
simplicial scheme X is an augmented bisimplicial scheme U such that U�;	1 ¼ X and

Un;� is a hypercover of Xn for each n:

By convention, the map

Un-ðcoskX
n	1 UÞn

is equal to the map U0-X when n ¼ 0: It is important to remember that U0-X

must be étale surjective.
Maps of hypercovers are just maps of augmented simplicial schemes or augmented

bisimplicial schemes.

Definition 29. A rigid hypercover of a scheme X is an augmented simplicial scheme U

such that U	1 ¼ X and the map

Un-ðcoskX
n	1 UÞn

is a rigid cover for all nX0:

Note that rigid hypercovers are not hypercovers; the maps Un-ðcoskX
n	1 UÞn are

rigid covers, not étale covers. This causes some confusion in the notation, and it is an
important technical point.

If U and U 0 are rigid hypercovers of schemes X and X 0; then a rigid hypercover
map U-U 0 is a map of augmented simplicial schemes such that for every nX0; the

map Un-U 0
n is a rigid cover map over ðcoskX

n	1 UÞn-ðcoskx0

n	1 U 0Þn:

Definition 30. A rigid hypercover of a simplicial scheme X is an augmented
bisimplicial scheme such that U�;	1 ¼ X ; Un;� is a rigid hypercover of Xn for each n;
and Un;�-Um;� is a rigid hypercover map over Xn-Xm for every ½m�-½n�:

If U and U 0 are rigid hypercovers of simplicial schemes X and X 0; then a rigid
hypercover map U-U 0 is a map of augmented bisimplicial schemes such that
Un;�-U 0

n;� is a rigid hypercover map for each n:

Similarly to rigid covers, there exists at most one map between two rigid
hypercovers of a scheme (or simplicial scheme) [9, Proposition 4.3]. On the other
hand, maps between hypercovers are unique only in a certain homotopical sense [1,
Corollary 8.13].

Definition 31. For a scheme (or simplicial scheme) X ; let HRRðXÞ be the category of
rigid hypercovers of X :

The notation comes from [9]. The critical property of this category is that it is
cofiltered [9, Proposition 4.3]. Since there is at most one map between any two
objects, HRRðXÞ is actually a directed set.
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Lemma 32. Let X be a scheme. The category of rigid hypercovers over X is equivalent

to the category of rigid hypercovers over the constant simplicial scheme cX :

Proof. Consider the functor HRRðX Þ-HRRðcX Þ that takes a rigid hypercover U

of X to the hypercover V of cX given by the formula Vm;n ¼ Un: This functor is full
and faithful, so it suffices to show that every rigid hypercover of cX belongs to the
image of this functor.

Let V be an arbitrary rigid hypercover of cX : Then V is a simplicial diagram in the
category HRRðXÞ: There is at most one rigid hypercover map between any two rigid
hypercovers of X ; so the map Vn;�-Vn;� is the identity map for all ½n�-½n�: It follows
that all of the maps Vn;�-Vm;� are isomorphisms; in fact, they are all the same

isomorphism for all maps from ½m� to ½n�: &

The following lemma is a key property of hypercovers. It provides a technical
ingredient in the construction of rigid pullbacks and rigid limits of rigid hypercovers
later in this section.

Proposition 33. Every hypercover of a scheme is split. Also, every rigid hypercover of a

scheme is split.

Proof. Let U be a hypercover of X : By induction and Proposition 13, each Un and

each ðcoskX
n UÞn	1 are étale schemes over X : Thus, U is a simplicial object in the

category of étale schemes over X : The remark after [1, Definition 8.1] finishes the
argument.

The proof of the second claim is similar. Instead of considering étale schemes over
X ; we must consider disjoint unions of étale schemes over X : &

6.1. Rigid pullbacks

Using rigid pullbacks of rigid covers, we can also construct rigid pullbacks of rigid
hypercovers.

Definition 34. Suppose f : X-Y is a map of schemes and U is a rigid hypercover of
Y : Then the rigid pullback f 
U is the rigid hypercover of X constructed as follows.
Let ð f 
UÞ0 be the rigid pullback along f of the rigid cover U0-Y : Inductively define

ð f 
UÞn to be the rigid pullback along ðcoskX
n	1 f 
UÞn-ðcoskY

n	1 UÞn of the rigid

cover Un-ðcoskY
n	1 UÞn:

Remark 35. The face maps of f 
U are easy to describe; they are induced by the map

ð f 
UÞn-ðcoskX
n	1 f 
UÞn: The degeneracy maps are somewhat more complicated.

We need to describe a map d from the latching object Lnð f 
UÞ to ð f 
UÞn: There is a

natural map from Lnð f 
UÞ to the pullback of the diagram

Un-ðcoskY
n	1 UÞn’ðcoskX

n	1 f 
UÞn;
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but this pullback is not exactly equal to ð f 
UÞn: See Remark 21 for the difference

between the pullback and ð f 
UÞn: In order to produce the desired map

d : Ln f 
U-ð f 
UÞn; we must specify which component of ð f 
UÞn is the target of

each component of Ln f 
U : Since Ln f 
U is a disjoint union of copies of ð f 
UÞm for

mon; each component has a basepoint. Let C be a component of Ln f 
U with
basepoint c: Then d is defined to take C into the component ðð f 
UÞnÞc0 of ð f 
UÞn;

where c0 is the image of c under the map Lnð f 
UÞ-ðcoskX
n	1 f 
UÞn:

This complication with defining the degeneracies is not really important; all that
matters is that it is possible to define them in a natural way.

A careful inspection of the definitions indicates that rigid pullbacks of rigid
hypercovers are functorial. This means that the definition of rigid pullbacks extends
to rigid hypercovers of simplicial schemes.

Also note that there is a canonical rigid hypercover map f 
U-U over the map
f : X-Y :

Proposition 36. Let U be a rigid hypercover of a scheme Y ; and let f : X-Y be any

map of schemes. The rigid hypercover f 
U of X has the following universal property.

Let V be an arbitrary rigid hypercover of a scheme Z: Rigid hypercover maps V-f 
U
over a map Z-X correspond bijectively to rigid hypercover maps V-U over the

composition Z-X-Y :

Proof. This follows from Proposition 22 and induction. Because V ; U ; and f 
U are
all split by Proposition 33, the degeneracy maps take care of themselves. &

6.2. Rigid limits

We will now use rigid limits of rigid covers to make a similar construction for rigid
hypercovers. The next lemma demonstrates the problem with ordinary limits.

Lemma 37. Suppose that U is a finite diagram of rigid hypercovers, and let X equal

U	1: Then

ðlim UÞn-cosklim X
n	1 ðlim UÞn

is an infinite étale cover.

Proof. First note that

cosklim X
n	1 ðlim UÞnD lim

a
ðcoskX a

n	1 UaÞn:

Thus Lemma 23 gives us the surjectivity. Proposition 13 finishes the proof. &
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As in Lemma 23, the above proposition is not true if each Ua is only a hypercover.
Also, lim U is not a rigid hypercover because the components of ðlim UÞn do not

necessarily correspond to geometric points of the target.
Let U be a finite diagram of rigid hypercover maps, and let X equal U	1: Let V be

the simplicial scheme lima Ua over Y ¼ lima X a: Lemma 37 implies that V is almost
a hypercover of Y ; the only problem is that the étale covers have infinitely many
pieces. As observed above, it is also not quite a rigid hypercover. As for rigid covers,
we need a more refined construction in order to obtain a rigid hypercover W ¼
Rlima Ua of Y and a natural map W-V over Y :

Begin by defining W0 to be the rigid limit Rlima Ua
0 of the rigid covers Ua

0-X a:

There is a canonical map from W0 to V0 ¼ lima Ua
0 :

Suppose for sake of induction that Wm and the map Wm-Vm have been defined

for mon: Thus there is a map ðcoskY
n	1 WÞn-ðcoskY

n	1 VÞn: Let x be a geometric

point of ðcoskY
n	1 WÞn; and let y be its image in ðcoskY

n	1 VÞn: Since ðcoskY
n	1 VÞn is

isomorphic to lima ðcoskX a

n	1 UaÞn; y gives compatible geometric points ya in each of

the schemes ðcoskX a

n	1 UaÞn: Each ya has a canonical lift za in Ua
n since each Ua is a

rigid hypercover. Moreover, these lifts are compatible since U is a diagram of rigid
hypercover maps. This means that they assemble to give a geometric point z of
Vn ¼ lima Ua

n ; and z is a lift of y:
Now define ðWnÞx to be the connected component of

Vn �ðcoskY
n	1 VÞn

ðcoskY
n	1 WÞn

containing z � x; and let z � x be the basepoint of ðWnÞx: This extends the definition

of W to dimension n:

Remark 38. To describe the degeneracy maps of W ; one must use a technical
argument similar to that given in Remark 35.

Proposition 39. Rigid limits of rigid hypercovers have the following universal property.

Suppose that U is a diagram of rigid hypercover maps, and let V be an arbitrary rigid

hypercover. Rigid hypercover maps from V to Rlim U are in one-to-one correspon-

dence with collections of rigid hypercover maps V-Ua such that for every map

Ua-Ub; the diagram

of rigid hypercover maps commutes.

Proof. This follows from Proposition 26 and induction. The degeneracy maps take
care of themselves because V ; each Ua; and lim U are all split by Proposition 33 (for
lim U ; one also needs Lemma 37). &
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Remark 40. As for rigid limits of rigid covers, rigid limits of rigid hypercovers have
the same kind of functoriality as ordinary limits. See Remark 27 for more details.

We use the notations
QR; �R ; and Rcoskn for rigid limits of rigid hypercovers

analogously to our use of these notations for rigid covers as in Section 5.2.

6.3. Cofinal functors of rigid hypercovers

For every simplicial scheme X and every nX0; there is a forgetful functor
HRRðX Þ-HRRðXnÞ taking a rigid hypercover U of X to the rigid hypercover Un;�
of Xn: These functors assemble to give a functor

HRRðX Þ-HRRðX0Þ �HRRðX1Þ �?�HRRðXnÞ:

The idea is that this functor forgets the face and degeneracy maps and only
remembers the objects Um;� for mpn:

Proposition 41. Let X be a simplicial scheme. The functor

HRRðX Þ-HRRðX0Þ �HRRðX1Þ �?�HRRðXnÞ:

is cofinal.

This proposition is closely related to [9, Corollary 4.6], which shows that the functor
HRRðXÞ-HRRðXnÞ is cofinal for every simplicial scheme X and every nX0:

Proof. For convenience, let I be the category

HRRðX0Þ �HRRðX1Þ �?�HRRðXnÞ:

Since each HRRðXmÞ is actually a directed set, so is I : The category HRRðX Þ is also
a directed set, so it suffices to show that if ðU0;�;U1;�;yUn;�Þ is any object of I ; then
there is an object V of HRRðX Þ and a rigid hypercover map Vm;�-Um;� over Xm for

every mpn: &

For each m; define Vm;� to be

Rlim
f : ½k�-½m�

kpn

Uk;�:

The idea is that Vm;� is a ‘‘rigid right Kan extension’’. The rigid limit is finite because

k is at most n:
The functoriality of rigid limits as expressed in Remark 40 assures us that V is in

fact a rigid hypercover of X : The projections

Vm;�-Um;�

are the desired maps.
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7. Realizations of pro-spaces

Let C be a simplicial category; this means that objects of C can be tensored and
cotensored with simplicial sets, and these operations satisfy appropriate adjoint-
ness conditions. We assume that C is complete and cocomplete. Our applica-
tion involves pro-spaces, which is a complete and cocomplete category [13,
Proposition 11.1].

Recall the definition of the realization of a simplicial object in C:

Definition 42. Given a simplicial object X in a simplicial category C; its realization

Re X is the coequalizer of the diagram

a
f : ½m�-½n�

Xn#D½m�4
a

n

Xn#D½n�;

where the upper arrow is induced by maps id#f
 : Xn#D½m�-Xn#D½n� and the
lower arrow is induced by maps f
#id : Xn#D½m�-Xm#D½m�:

The realization of X is a coend over D of the simplicial object X with the
cosimplicial object D½:�: The most important property of realization is that it is left

adjoint to the functor sending an object Y of C to the simplicial object YD½:�:

Remark 43. Rather than think of Re X as a coequalizer, we prefer to think of it as
the colimit of the following diagram. The diagram has one object Xn#D½n� for
each nX0 and one object Xn#D½m� for each f : ½m�-½n�: The maps of the diagram
are of two types. The first type is of the form id#f
 : Xn#D½m�-Xn#D½n�; and the

second type is of the form f
#id : Xn#D½m�-Xm#D½m�: The colimit of this
diagram is the realization Re X of X : Note that the diagram has no non-identity
endomorphisms. This fact makes the analysis of realizations of pro-spaces
simpler.

Realizations present some problems because they are colimits of infinite diagrams.
Sometimes only techniques involving finite colimits are applicable. Hence the
following definition is useful.

Definition 44. If X is a simplicial object in a simplicial category C; then the n-
truncated realization Ren X of X is the coequalizer of the diagram

a
f : ½m�-½k�

m;kpn

Xk#D½m�4
a
mpn

Xm#D½m�:

This is essentially the same construction as ordinary realization except that only
the objects Xm for mpn are considered. It can be described as a coend over Dpn of
skn X with the n-truncated standard cosimplicial complex Dpn½:�:
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Remark 45. As for realizations, we prefer to think of n-truncated realizations not as
coequalizers but as colimits of diagrams with no non-identity endomorphisms. See
Remark 43 for more details.

Like ordinary realization, n-truncated realization is also a left adjoint. Namely, it
is left adjoint to the functor sending an object Y of C to the simplicial object that is

the nth coskeleton of the simplicial object YD½:�:
There is a canonical map Ren X-Re X for every simplicial object X : Of course,

this map is not an isomorphism in general. However, for simplicial sets, it is an
isomorphism on low-dimensional simplices as stated in the next proposition.

Proposition 46. Let X be a simplicial space. Then the natural map

skn Ren X-skn Re X is an isomorphism.

Proof. We show that both functors skn Ren and skn Re have the same right adjoint.
The right adjoint of skn Re is the functor taking a space Y to the simplicial

space ðcoskn YÞD½:�: On the other hand, the right adjoint of skn Ren is the functor

taking a space Y to the nth coskeleton of the simplicial space ðcoskn YÞD½:�: For
formal reasons, this last simplicial space is isomorphic to the simplicial space

ðcoskn YÞsknD½:�: To show that ðcoskn YÞsknD½m� and ðcoskn Y ÞD½m� are isomorphic, use
adjunction and the fact that sknðX � ZÞ is isomorphic to sknðX � sknZÞ for every X

and Z: &

Corollary 47. Let X be a simplicial space. Then for every ion; the map

pi Ren X-pi Re X is an isomorphism.

Proof. When ion; the ith homotopy group of X only depends on skn X : Hence
Proposition 46 gives the result. &

Now we specialize the above ideas about realizations to the category of pro-
spaces.

Given any pro-space X ; apply skn to each Xs to obtain another pro-space skn X :
Define coskn X similarly. A straightforward computation shows that skn and coskn

are adjoint functors from pro-spaces to pro-spaces.
The following proposition is a direct analogue for pro-spaces of Proposition 46.

Proposition 48. Let X be a simplicial object in the category of pro-spaces. Then the

natural map skn Ren X-skn Re X is an isomorphism of pro-spaces.

Proof. The proof is basically the same as the proof of Proposition 46. One just needs
to check that the ingredients used there also apply to pro-spaces. &

Corollary 49. Let X be a simplicial object in the category of pointed pro-spaces. Then

for every ion; the map pi Ren X-pi Re X is an isomorphism of pro-groups.
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Proof. When ion; the ith homotopy pro-group of X only depends on sknX : Hence
Proposition 48 gives the result. &
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Tome 1–4, Publ. Math. IHES 20 (1964); 24 (1965); 28 (1966); 32 (1967).

[9] E.M. Friedlander, Etale Homotopy of Simplicial Schemes, in: Annals of Mathematics Stud., Vol.

104, Princeton University, Princeton, NJ, 1982.

[10] R. Hartshorne, Algebraic Geometry, in: Graduate Texts in Mathematics, Vol. 52, Springer, Berlin,

1977.

[11] P.S. Hirschhorn, Model categories and their localizations, in: Mathematical Surveys and

Monographs, Vol. 99, American Mathematical Society, Providence, RI, 2003.

[12] M. Hovey, Model categories, in: Mathematical Surveys and Monographs, Vol. 63, American

Mathematical Society, Providence, RI, 1999.

[13] D.C. Isaksen, A model structure for the category of pro-simplicial sets, Trans. Amer. Math. Soc. 353

(2001) 2805–2841.

[14] D.C. Isaksen, Calculating limits and colimits in pro-categories, Fund. Math. 175 (2002) 175–194.

[15] D.C. Isaksen, The pro-Atiyah–Hirzebruch spectral sequence, in preparation.

[16] J.F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987) 35–87.

[17] J.P. May, Simplicial Objects in Algebraic Topology, in: Van Nostrand Mathematical Studies, Vol. 11,

Van Nostrand, Princeton, 1967.

[18] J.S. Milne, Étale Cohomology, Princeton University Press, Princeton, NJ, 1980.

[19] F. Morel, Ensembles profinis simpliciaux et interprétation géométrique du foncteur T ; Bull. Soc.
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(SGA 4), in: Lecture Notes in Mathematics, Vol. 269, Springer, Berlin, 1972.

[25] G. Tamme, Introduction to Étale Cohomology, Springer, Berlin, 1994.

[26] V. Voevodsky, The Milnor conjecture, preprint.

ARTICLE IN PRESS
D.C. Isaksen / Advances in Mathematics 184 (2004) 37–63 63


	Etale realization on the A1-homotopy theory of schemes
	Introduction
	Organization
	Terminology

	Etale realizations
	Excision for the Õtale topological type

	Hypercover descent for the etale topological type
	Simplicial schemes
	Finite limits of schemes
	Simplicial schemes
	Skeleta and coskeleta

	Rigid covers
	Rigid pullbacks
	Rigid limits

	Hypercovers
	Rigid pullbacks
	Rigid limits
	Cofinal functors of rigid hypercovers

	Realizations of pro-spaces
	Acknowledgements
	References


