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In my department, I have a group of persons doing research on the 
qualitative theory of ordinary differential equations (ODES). We are 
especially interested in the global structure of the phase portrait of quadratic 
differential systems, stability theory, dynamical systems on two manifolds, 
etc. The purpose of this paper is to give a summary of some of our research 
work on the first topic over the past years. 

The system to be considered is 

dx 
~ = P,(x, v), 
dt $ = Q&G ~1, 

where P, and Q2 are polynomials (in general, nonhomogeneous) of second 
degree with real constant coefficients, and x, y, t are also considered to be 
real. 

A quadratic differential system (QDS, for abbreviation) in two dimensions 
is the simplest nonlinear ODE which is, in general, nonintegrable. Just as 
professor M. L. Cartwright had said in [ 11: “It is best to tackle a really 
difficult problem first in its simplest form,” the study of (*) will reveal many 
new. phenomena and raise many new problems for autonomous ODE in the 
plane. 

As QDS appear more and more in applied mathematics and engineering, 
one wants to know the global stability of critical points, existence or nonex- 
istence of limit cycles and also the global topological structure of the phase- 
portrait of such QDS. 

Let E(2) denote the maximal number of limit cycles for a QDS. Petrovskii 
and Landis (see Coppel [2] for reference) asserted that E(2) = 3, but, as we 
shall mention later, it is now known that E(2) > 4. Even if it can be shown 
that E(2) = 4, say, by usig the methods of complex variables similar to those 

* This is a lecture delivered at the University of California, Berkeley, on October 28, 1980. 
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of Petrovskii and Landis, this result is similar to the fundamental theorem of 
Gauss on the number of zeros of a polynomial. The result cannot be used to 
examine any given QDS with real variables and real coefficients or to 
determine the existence and number of limit cycles. On the other hand, in 
order to find the maximum number of real roots of all algebraic equations 
with real coefficients and of a fixed degree, we can use differential calculus 
or a Sturm sequence without knowing Gauss’ theorem. Hence, there is no 
reason to say that in order to find the maximum number of limit cycles of all 
QDS(*), one must carry x, y from real variables into complex variables at 
the very beginning. It also makes the situation complicated. Nevertheless, it 
seems to me that at a suitable time the use of complex analysis may be 
helpful. 

My work in 1957 and that of Tung in 1958 about possible and impossible 
relative positions of limit cycles of (*) can be found in detail in a survey 
paper written by professor W. A. Coppel 121. This paper also contains 
several applications of QDS. 

Since 1958, I have classified those systems (*) which may have periodic 
orbits into three typical types [3], 

dx dy 
-=-y+6x+Ix2+mxy+ny2=P2(x,y), dt=x) dt 

dx 
~ = P,(x, Y). 

dv 
dt z=x(l + ax), 

dx 
- = PAX, Y), 

dy 
dt z=x(l +ax+by), b # 0, 

and began to examine each of these systems in detail. Up to 1966, I, and 
some of my students, solved the problem for system (I) completely, at least 
from the qualitative point of view (see [4-71). A part of our results appeared 
in my book entitled “The Theory of Limit Cycles” (1965) (see MR 34 
(1967), #3007). But this book is now completely out of date, since many 
new and important results have been discovered in the last 15 years. I am 
rewriting this book and hope that the revised edition will be published at the 
end of 1982. 

Our results about system (I) are as follows: 

THEOREM A. (i) If 6 = 0, m(Z + n) = 0, then (I) has a center at (0,O). 
Zf 6 = 0, m(l + n) # 0, then (I) has no periodic orbit (1962). 

(ii) Zf &n(l + n) > 0, then (I) has no periodic orbit. 
(iii) If 6m(l+ n) < 0 and 0 < 161 < 6* =f(Z, m, n), where f is a 

definite function of 1, m, n, then (I) has one and only one limit cycle, which 
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grows as 16 1 increases and becomes a singular cycle (homoclinic orbit) when 
161= 6*. IfIS1 > 6*, then (I) has no periodic orbit (1962-1966)’ 

From Theorem A, three problems arise: 

(a) How can one determine the function 6* =f(l, m, n)? Is it 
algebraic or transcendental? 

(b) In the proof of (ii) and (iii) of Theorem A, we used not only the 
generalized theory of rotated vector fields of Duff (8, 291 but also the 
uniqueness theorem of limit cycles of Chang Chi-fen [9]. This is due to the 
fact that, in Duffs theory, a semi-stable limit cycle may appear suddenly and 
then split into two. Hence, if we can prove that for this special family (I) 
with 6 as a parameter, no such semi-stable limit cycle can occur when 6 
varies, then there will be no need to use the theorem of Chang. The answer 
is, of course, in the affirmative, since the uniqueness of limit cycles had 
already been proved in Theorem A. It remains only to find a proof. 

Therefore, in my opinion, concerning the theory of rotated vector fields, a 
two-sided problem exists. On the one hand, we need to strengthen Duff’s 
condition in some manner so that semi-stable cycles will not appear. On the 
other hand, we must enlarge the object, but not strengthen the condition, and 
begin to investigate the theory of half plane rotated vector fields to see if a 
periodic orbit has points in both half planes, and what will happen when the 
parameter varies. By half plane rotated vector fields, we mean that there 
exists an unbounded curve, which divides the plane into two infinite parts, 
such that, when the parameter varies, vectors in one half plane all rotate 
clockwise while vectors in another half plane all rotate counterclockwise. We 
have frequently encountered such vector fields. 

(c) In order to apply Chang’s uniqueness theorem, we have made 
several changes of variables, both linear and nonlinear, until system (I) 
becomes a system of the Lienard type. It is seen that the ultimate system is 
much more complicated than the original system (I). Hence, it is interesting 
to ask: How can we prove the uniqueness of limit cycles of (I) without 
making these changes of variables? 

Before discussing system (II), let us first examine a special case of (III), 
i.e., 

dx 
~ = -y + 6x + Ix2 + mxy + ny2, 

dv 
dt 

;7;=x(l + by). m,=, 

This system differs from (I) in two respects. It has an integral line 

’ The uniqueness of limit cycles of (I) has been proved independently also by two Russian 
mathematicians; see 130, 3 11. 
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1 + by = 0, and, aside from (0, 0), it may have a second focus (0, l/n) for 
certain values of the parameter. Nevertheless, Theorem A applies to (III),=, 
as well. 

In proving Theorem A(i) for (I),=, or (III),= 6 zO, we found a very 
interesting fact: integrating factors’ for the center case m(l + n) = 0 can be 
used to prove the nonexistence of periodic orbits for the case m(l+ n) # 0 
through the well-known Bendixson-Dulac theorem. Thus for (1)6=0 we can 
take a Dulac function3 

B,(x, y) = e(mn-21)y(x - nay + ay, 

where a is a positive root of n2a2 -ma - 1 = 0, and the line 
x - nay + a = 0 is a tangent line of a separatrix at the saddle point (0, l/n). 
Then it is easily seen that 

g (BlP2) + $ (B, Q,) = am(f + n) x2(x - nay + a)m”m’ ecmnam2’jy 

from which we obtain immediately Theorem A(i) for (I)s=O. 
As for (III),=,=,, in 1964, N. D. Chu (now deceased) of the Mathematics 

Institute found another Dulac function 

B,(x, Y) = (1 + bY) (llb)(mnO-b-21)(nf+ _ x _ eye, 

where 8 is a real root of the equation n(n + b) e2 - mf? - 1 = 0. However, B, 
can be used to prove Theorem A(i) only under the condition 
m2 + 4n(n + b) > 0. 

It is interesting to note that three Russian mathematicians published two 
papers [ 10, 111 in 1967 (five years later than our’s), using another method to 
prove Theorem A(i) for (I)B=O. And then in 1970, another Russian 
mathematician, L. A. Cherkas, used their method to prove Theorem A(i) for 
(III),,,,, without any condition. Nevertheless, recently, another student of 
mine, L. S. Chen, now working in the Mathematics Institute in Beijing, 
found a third Dulac function 

B,=(l +by)- 
2llb-l~(2m/o~tg~‘[-~2n~n+b~lo~l-nq’~~x-mlol 

3 

where CJ = l--m - 4n(n + b)]“*, quite different from B,. But B, can be used 
to prove Theorem A(i) for (111),=8=, just under the condition 

2 Strictly speaking, the functions Bi below are not definite; they vary with the coefficients of 
the QDS considered. 

’ By a Dulac function we mean the function used by H. Dulac in his extension of the 
famous Bendixson criterion on the nonexistence of closed orbits of a plane autonomous 
system; see 132, Chap. V, Sect. 91. 
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m2 + 4n(n + b) < 0. Furthermore, B, can be transformed into a BT through 
the well-known formula 

and B: can be used instead of B,, to get the same result for the case 
m2 + 4n(n + b) > 0. In other words, in order to prove Theorem A(i) for 
(III),=,=, the Dulac function method is available as well. And it is just 
because of this fact that we hope that perhaps the theory of complex 
variables can be used in such a typical question of real analysis. 

About (III),=,, I should like to mention at last that, in China, 
Theorem A(iii) was proved only for some special cases before 1966, and it 
was proved completely after 1970 in two papers of Russian mathematicians 
[ 12, 13 ] by using a more complicated theorem on the uniqueness of limit 
cycles. The theorem of Chang does not seem to be applicable to this case. 

Now, let us turn to system (II). In 1962 we analysed a very special case, 
namely,4 

dx & -= 
dt 

-y - y2 + mxy, z=x(l +ax), m f 0, (II),=,=, 

which can be proved easily to have no periodic orbit. But, in general, this 
system has two foci and two saddles and, therefore, there are eight 
separatrices, four of them go into the saddles, and another four go out. Here 
arises the question as to the relative positions of certain pairs of separatrices 
passing through different saddles, say, L, and L,, L, and L,, L, and L,, L, 
and L, in Fig. 1. 

In the (m, a) parameter plane, we obtained six bifurcation curves (Fig. 2): 

1. m=-a (R=N), 

2. 27a = 4m3 (two infinite critical points coincide), 

3. m = l/a - a (L, = L, and become a straight line), 

4. c, (L, = L4)r 

5. c, (L, =a 
6. C, (L, = L4). 

The existence of the latter three, C,, C, , C, , was only proved qualitatively 
(see [28]), and hence each of them may not consist of only one branch, but 
may have also an odd number of branches, or even contain interior points. 
Therefore, the question arises as to the equations and number of branches of 

’ Similar work has been done in 1141 concerning the system (III),=,_,,,_~,, but the 
situation is much more complicated. 
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FIGURE 1 

each of the curves C,, C, and C,. Of course, such questions will happen 
frequently in the analysis of other QDS; and, if limit cycles can appear, we 
will have other kinds of bifurcation curves. 

We may transform the above question into the nonlinear eigenvalue 
problem 

dy x(1 + ax) -= 
dx -y-y*+mxy Y(O) = -1, y -f =-a-m. 

i 1 a 

I do not know whether this latter problem is easier to discuss. 
After my work on (11),=1=,, in 1964, two of my studients investigated the 

more complicated system, 

dx 
- = -.V + 6x - y* + mxy, 

& 
dt x=x(l+ax), a-CO, m#O, (W-0 

for the existence of limit cycles [ 151. This system can be proved to have no 
periodic orbit if mc? < 0 or m(m - 6) < 0. But it certainly will have a limit 
cycle around (0,O) if ma > 0 and 0 < 16 1 < 1, or, in some cases, around 
another focus if rnd > 0 and 0 < ] m - 61 < 1. Hence, the problem arises of 
the co-existence of limit cycles around two different foci. This is again a new 
type of problem for autonomous differential systems in the plane. We have 
here 

THEOREM B. For (II),=, (a < 0, m # 0): 
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m 

FIGURE 2 

(i) If m > -a > 0, then co-existence of cycles appears. 

(ii) If 0 < m < l/a - a, then, for 6 in a certain interval I,, there can 
appear at least 2 cycles around (0,O); and, for 6 in another interval I,, there 
can appear at least 2 cycles around another focus. But we do not know the 
relationship between I, and Iz, nor the possibility of co-existence of cycles. 

(iii) If a < m < 0, then co-existence is impossible. 

(iv) If m <a, then, around the focus on 1 + ax = 0, no cycles can 
appear. 

Later, in 19751978, other methods have been discovered by three 
Chinese mathematicians in order to solve the co-existence problem of cycles 
for the general QDS, see, e.g., [ 161. But even the problem in Theorem B(ii) 
remains open. 

As to the problem of the existence of two and just two limit cycles around 
the same critical point, very few results can be found in the literature. Only 
in recent years, RiEkov [ 171, Chang Chi-fen [ 181 and Wang Kezhen [ 191 
have obtained some results in this direction. At the end of my book, I conjec- 
tured that the system 

dx 
-=-y-tny2+6x+fx2, 
dt 

dv -=x(1 +ax) 
dt 

has at most two cycles around (0,O). Notice that here d(y) = -y + ny2, 
g(x) = x( 1 + ax) are not monotone, different from the usual assumption for a 
system of Lienard type. But this problem still remains open, too. 
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Then in 1976, L. S. Chen made a conjecture as follows: 
Limit cycles of a QDS having at least a fine focus must be nested around 

one focus. 5 
The general form of such QDS can be written as 

dx 
- = -y + Ix2 + mxy + ny2, dy 
dt 

z=x(I +ax+by) W),:, 

for which (0,O) is a tine focus. 
Another student of mine, Wang Minshu, helped him to solve this 

conjecture [21]. But the answer is as follows: 

1. If, in addition to the two foci already existing, there exists at least a 
third critical point, then Chen’s conjecture is true. This is again proved by 
using the Dulac function method. We see now the importance of Dulac 
functions in the qualitative investigation of QDS, just as that of Liapunov 
functions in stability theory. Is there some interrelation between them? 

2. If (III),=, has the two foci as its only critical points, then coun- 
terexamples can be given. For example, the system 

dx 
-= 
dt 

-y - 3x2 + xy + y2, $x(1 +4x-3y) 

has at least two cycles, one round (0, 0), the other around (0, 1). This can be 
proved easily by using the well-known Poincare-Bendixson theorem on the 
upper or lower Poincare sphere. 

After that, Wang tried to make (0,O) more fine and obtained the system6 

dx dy -= 
dt 

-y - 3x2 + xy + y*, ;i; = x( 1 -I- $x - 3y). (4 

Here (0,O) is already a line focus of the second order, and, as before, around 
each focus there is a cycle, say, r, and r,, respectively. 

’ If, for a focus of a differential system, the linear part of the system has a pair of purely 
imaginary eigenvalues, then we call it a fine focus. Similarly, if for a saddle point, the linear 
part of the system has two real eigenvalues 1, # 0 and I, = -I,, then we call it a fine saddle. 

6 For the focus (0,O) of a QDS, we may define its order of fineness by the following 
formula of Bautin 1201: 

P-Po=Po[2&w, +~,y/,P~+B,W5P~+~,W,P~I. 

If A, # 0, (0,O) is not fine; if ,I, = 0, Cj # 0, it is called a tine focus of order 1; if 1, = 6, = 0. 
8, # 0, it is of order 2; if I, = B, = 8, = 0, B, # 0, it is of order 3. Thus, any focus of a QDS 
is of order <3. 
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Then it is easily seen from the technique of Bautin [20], that the perturbed 
system 

dx 
-=-y-~*x-3x2+(1-6,)xyty*, $=x(lt$x-3y), 
dt 

where 0 < 6, + 6, < 1, will have two more cycles r, c I’3 (c r,) in the small 
neighborhood of (0, 0), since (0,O) has changed its stability twice after 
adding to system (A) first the perturbed term -6,xy and then the perturbed 
term -6,x. It is just in this way that Wang got a counterexample to the 
incorrect conclusion of Petrovskii and Landis, which is a (3, 1) distribution 
of cycles, three cycles around one of the foci and one around the other. For 
the details, see [21]. 

Independent of Wang’s result, Shi Son-ling, a graduate student of 
professor Chin Yuan-xun, produced another counterexample, 

dx & -=~x-y-10xZt(5t~)xy+y2,z=x+x2t(-25t8~-9d)xy, 
dt 

where 0 < -A 6 --E < -6 < 1. The cycles of this system are also a (3, 1) 
distribution, but it has (0,O) as a line focus of the third order when A = E = 
6 = 0. For the proof, see [22]. 

Now, three problems arise: 

1. Are (4,O) and (2, 2) distributions of -limit cycles possible for a 
QDS? 

2. We have already proved that E(2) > 4. What is the exact value of 
E(2)? Is it finite? 

3. We see, e.g., in Shi’s system that if A remains zero, i.e., the charac- 
teristic roots of the linear part of this system remain always purely 
imaginary, we can vary only the coefficients of the second degree terms, so 
that at least two cycles will appear in the neighborhood of (0,O). What will 
happen when E and 6 grow larger and larger independently? Notice that, 
neither E nor 6 can be considered as a parameter of a rotated vector field in a 
region containing (0,O) in its interior. It seems tht no such problem has been 
studied up to now. 

As for the possibility of the (2, 2) distribution, early in 1964 I conjectured 
at the end of my book that system (II),=, might have, for a certain value of 
6, two semi-stable cycles, each around a focus, such that when 6 increases, 
one of them disappears, while the other splits into two cycles, but when 6 
decreases, the disappearance and splitting phenomenon reverses. This still 
remains a conjecture; no one has either proven or disproven it. Anyhow, if, 
for any QDS of type (II) or (III), this phenomenon takes place, then we may 
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take it as an example of a (2, 2) distribution, because just like a multiple root 
of an algebraic equation, a semi-stable cycle can be considered as a multiple 
cycle as well. 

On the other hand, some results obtained recently in China reveal that the 
(4,O) distribution might be impossible for QDS. For example, Wang Minshu 
and also Zai Shui-ling of Chekiang University have independently proven 
(not yet published) that if (III),,0 has a tine focus (0, 0) of order 3, so that, 
in this case, it must take the form 

g = -y + ix* + xy, 
dy 
z=x(l + fx + 3Zy), 

then no periodic orbit can exist around (0,O). At this time they are 
attempting to prove the same conclusion for the case n # 0. 

At last, let us enumerate some of the main interesting results already 
proven for QDS (*). Some of them are geometrical, some are topological, 
and some are dynamical in nature. 

1. Any periodic orbit must be a strictly convex oval [23 1. 

2. A limit cycle and a center cannot exist for the same system. 

3. Periodic orbits must be nested around one or two foci or centers, 
the relative positions @ and ,-:I, being impossible [23]. 

4. Inside any limit cycle, there is one and only one critical point, 
which must be a focus (24). 

5. If the system has an ellipse or a circle as its limit cycle, then it 
must be the unique cycle of this system, and it is a simple cycle [25]. 

6. If the system belongs to type (I), then limit cycle must be unique, if 
it exists (Theorem A). 

7. If the system has a fine focus and a straight line integral, then no 
limit cycle can exist (Theorem A(i) for (III),=,). 

8. If the system has a straight line integral, then limit cycle must be 
unique, if it exists (Theorem A(ii), (iii) for (III),=,). 

9. If the system has two fine foci, or two line saddles, or one fine 
focus and one line saddle, then no limit cycle can exist 1261. 

10. If the system has two straight lines as its integral lines, then no 
limit cycle can exist (trivial). 

11. If the system has two fine foci, then each fine focus must be of 
order 1 (Ye and Wang, not yet published). 

12. There are also many interesting properties concerning singular 
cycles (homoclinic orbits) of QDS (*), discovered by Tung (see 1271). 
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It is doubtless that more and more interesting and important properties of 
the phase-portrait of QDS (*) will be found. Nevertheless, all of these facts 
so far are just like much data obtained by experimental physicists. There 
must be something more profound and not yet visible which lies behind the 
subject. 

I am sure that in the future some excellent mathematicians, standing at a 
high level and having deep insight, will discover all the secrets in this 
fantastic field of mathematics and this will certainly propel the history of 
ODE forward by a long step. 
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Note added in prooJ The non-coexistence of limit cycles in case (ii) of Theorem B was 
proved recently by Mr. Z. J. Lian of Mid-China Normal University, but the same problem for 
the case l/a - a < m < -a (the only gap in the range of m) still remains open. 
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