

Available online at www.sciencedirect.com

JOURNAL OF Approximation Theory

Journal of Approximation Theory 146 (2007) 87-90

www.elsevier.com/locate/jat

An extremal property of Bernstein operators $\stackrel{\text{tr}}{\sim}$

Jesús de la Cal^{a,*}, Javier Cárcamo^b

^aDepartamento de Matemática Aplicada y Estadística e Investigación Operativa, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain

^bDepartamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Received 1 August 2006; accepted 17 October 2006

Communicated by Zeev Ditzian Available online 18 December 2006

Abstract

We establish a strong version of a known extremal property of Bernstein operators, as well as several characterizations of a related specific class of positive polynomial operators. © 2006 Elsevier Inc. All rights reserved.

MSC: 41A36; 26D15

Keywords: Bernstein operators; Positive linear operators; Convex functions

For n = 1, 2, ..., let \mathcal{L}_n^* be the class of all positive polynomial operators L acting on \mathcal{C} (the space of all real continuous functions on I := [0, 1]) and having the form

$$Lf(x) = \sum_{k=0}^{n} p_{n,k}(x) \int_{I} f \, d\mu_{n,k}, \quad f \in \mathcal{C}, \ x \in I,$$
(1)

where for $0 \le k \le n$, $p_{n,k}(x) := {n \choose k} x^k (1-x)^{n-k}$, and $\mu_{n,k}$ is a positive Borel measure on *I*, and let \mathcal{L}_n be the set of all $L \in \mathcal{L}_n^*$ that preserve the affine functions, that is, such that, for $0 \le k \le n$, $\mu_{n,k}$ is a probability measure fulfilling the condition

$$\int_{I} x \, d\mu_{n,k}(x) = k/n. \tag{2}$$

 ‡ Research supported by the Spanish MCYT, Proyecto MTM2005-08376-C02-02.

* Corresponding author.

E-mail addresses: jesus.delacal@ehu.es (J. de la Cal), javier.carcamo@uam.es (J. Cárcamo).

0021-9045/\$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jat.2006.10.003

It is clear that, for $L \in \mathcal{L}_n$, $\mu_{n,0}$ and $\mu_{n,n}$ always are the unit masses at 0 and 1, respectively. If, in addition, $\mu_{n,k} = \delta_{k/n} :=$ unit mass at k/n ($1 \le k \le n - 1$), we have the Bernstein operator

$$B_n f(x) = \sum_{k=0}^n p_{n,k}(x) f(k/n),$$

which can also be represented in the form

$$B_n f(x) = \int_{[0,n]} f(t/n) \, dv_{n,x}(t),$$

where $v_{n,x}$ is the binomial probability distribution with parameters n, x. Obviously, B_n is well-defined as a positive polynomial operator on \mathbb{R}^I .

In a recent paper [2], Bustamante and Quesada obtained the following theorem which improves an earlier result of Berens and DeVore [1].

Theorem 1. Let $n \ge 2$. If $L \in \mathcal{L}_n$, then

$$e_2 \leqslant B_n e_2 \leqslant L e_2,$$

where $e_2(x) := x^2$. Moreover, if $B_n e_2(x) = Le_2(x)$, for some $x \in (0, 1)$, then $B_n = L$.

Here, we establish a result stronger than Theorem 1 using a similar idea for its proof. We denote by C_{cx} (C_{cx}^*) the set of all convex (strictly convex) functions in C. Thus, $f \in C_{cx}^*$ means that f is continuous and fulfills the condition

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y), \quad 0 \le x < y \le 1, \ \lambda \in (0, 1),$$

which amounts to saying that the right derivative of f is strictly increasing in (0, 1).

Theorem 2. Let $n \ge 2$. If $L \in \mathcal{L}_n$, then

$$f \leqslant B_n f \leqslant L f, \quad f \in \mathcal{C}_{cx}. \tag{3}$$

Moreover, if $B_n f(x) = Lf(x)$, for some $f \in C^*_{cx}$ and some $x \in (0, 1)$, then $B_n = L$.

Proof. If $f \in C_{cx}$, we have by Jensen's inequality

$$\int_{I} f(x) d\mu_{n,k}(x) \ge f\left(\int_{I} x d\mu_{n,k}(x)\right) = f(k/n), \quad 0 \le k \le n,$$
(4)

as well as

$$B_n f(x) \ge f\left(\int_{[0,n]} (t/n) \, dv_{n,x}(t)\right) = f(x), \quad x \in I,$$

and (3) follows from the nonnegativity of the polynomials $p_{n,k}(\cdot)$. To get the conclusion in the second part, we only need to show that $\mu_{n,k} = \delta_{k/n}$, for $1 \le k \le n-1$. Fix $1 \le k \le n-1$, let *F* and *G* be the respective distribution functions of $\mu_{n,k}$ and $\delta_{n/k}$, and denote by f' the right derivative of

the function $f \in C_{cx}^*$ in the hypothesis of the second part of the theorem. By (4), the assumption on f and Fubini's theorem (or integration by parts), we have

$$0 = \int_{I} f(x) d(F(x) - G(x)) = \int_{0}^{1} f'(t)(G(t) - F(t)) dt$$

= $\int_{0}^{1} (f'(t) - f'(k/n))(G(t) - F(t)) dt + f'(k/n) \int_{0}^{1} (G(t) - F(t)) dt$
= $\int_{0}^{1} (f'(t) - f'(k/n))(G(t) - F(t)) dt$,

the last equality by (2). Since f' is strictly increasing in (0, 1), and G(t) - F(t) is nonpositive (nonnegative) for 0 < t < k/n (k/n < t < 1), we conclude that F = G a.e., and this entails F = G, by the right-continuity of F and G. This finishes the proof of the theorem. \Box

Remark 1. Property (3) actually characterizes the elements of \mathcal{L}_n within the class \mathcal{L}_n^* , since B_n preserves the affine functions on I, and we have $Lf = B_n f$, for each affine function f (because f is both convex and concave). Other characterizations giving further insights on the size of \mathcal{L}_n are provided in the following theorem. We denote by $L \circ M$ the composition of the operators L and M.

Theorem 3. Let $n \ge 1$ and let $L : \mathcal{C} \longrightarrow \mathbb{R}^{I}$ be a positive linear operator. Then, the following assertions are equivalent:

- (a) $L \in \mathcal{L}_n$.
- (b) $L = B_n \circ L^*$, for some positive linear operator $L^* : \mathcal{C} \longrightarrow \mathcal{C}$ preserving the affine functions on *I*.
- (c) $L = B_n \circ L^*$, for some positive linear operator $L^* : \mathcal{C} \longrightarrow \mathbb{R}^I$ preserving the affine functions on I.

Proof. Let $L \in \mathcal{L}_n$ be given as in (1), and define L^* in the following way:

$$L^*f(x) := \int_I f \, d\mu_x, \quad f \in \mathcal{C}, \ x \in I,$$

where $\mu_x := (k + 1 - nx)\mu_{n,k} + (nx - k)\mu_{n,k+1}$, if $k/n \le x \le (k + 1)/n$ ($0 \le k \le n - 1$). It is readily checked that L^* fulfills the requirements in (b), and this shows that (a) implies (b). It is trivially true that (b) implies (c). Finally, assume that (c) holds true. From the assumptions on L^* , we have, by the Riesz representation theorem,

$$L^*f(x) = \int_I f \, dv_x, \quad f \in \mathcal{C}, \ x \in I,$$

where for each $x \in I$, v_x is a probability measure on I having mean x, and we therefore have that L is given by (1), with $\mu_{n,k} = v_{k/n}$. This means that (a) also holds true, and the proof of the theorem is complete. \Box

Remark 2. It is clear from the proof that the preceding theorem remains true if \mathcal{L}_n is replaced by \mathcal{L}_n^* in (a) and the condition of preserving affine functions is dropped in (b) and (c).

References

- [1] H. Berens, R. DeVore, A characterization of Bernstein polynomials, Approximation Theory, vol. III, Academic Press, New York, 1980 pp. 213–219.
- [2] J. Bustamante, J.M. Quesada, On an extremal relation of Bernstein operators, J. Approx. Theory 141 (2006) 214–215.