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Abstract

We establish a strong version of a known extremal property of Bernstein operators, as well as several
characterizations of a related specific class of positive polynomial operators.
© 2006 Elsevier Inc. All rights reserved.
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For n = 1, 2, . . . , let L∗
n be the class of all positive polynomial operators L acting on C (the

space of all real continuous functions on I := [0, 1]) and having the form

Lf (x) =
n∑

k=0

pn,k(x)

∫
I

f d�n,k, f ∈ C, x ∈ I, (1)

where for 0�k�n, pn,k(x) := (
n
k
)xk(1 − x)n−k , and �n,k is a positive Borel measure on I , and

let Ln be the set of all L ∈ L∗
n that preserve the affine functions, that is, such that, for 0�k�n,

�n,k is a probability measure fulfilling the condition∫
I

x d�n,k(x) = k/n. (2)
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It is clear that, for L ∈ Ln, �n,0 and �n,n always are the unit masses at 0 and 1, respectively. If,
in addition, �n,k = �k/n := unit mass at k/n (1�k�n − 1), we have the Bernstein operator

Bnf (x) =
n∑

k=0

pn,k(x)f (k/n),

which can also be represented in the form

Bnf (x) =
∫

[0,n]
f (t/n) d�n,x(t),

where �n,x is the binomial probability distribution with parameters n, x. Obviously, Bn is well-
defined as a positive polynomial operator on RI .

In a recent paper [2], Bustamante and Quesada obtained the following theorem which improves
an earlier result of Berens and DeVore [1].

Theorem 1. Let n�2. If L ∈ Ln, then

e2 �Bne2 �Le2,

where e2(x) := x2. Moreover, if Bne2(x) = Le2(x), for some x ∈ (0, 1), then Bn = L.

Here, we establish a result stronger than Theorem 1 using a similar idea for its proof. We denote
by Ccx (C∗

cx) the set of all convex (strictly convex) functions in C. Thus, f ∈ C∗
cx means that f is

continuous and fulfills the condition

f (�x + (1 − �)y) < �f (x) + (1 − �)f (y), 0�x < y�1, � ∈ (0, 1),

which amounts to saying that the right derivative of f is strictly increasing in (0, 1).

Theorem 2. Let n�2. If L ∈ Ln, then

f �Bnf �Lf, f ∈ Ccx . (3)

Moreover, if Bnf (x) = Lf (x), for some f ∈ C∗
cx and some x ∈ (0, 1), then Bn = L.

Proof. If f ∈ Ccx , we have by Jensen’s inequality

∫
I

f (x) d�n,k(x)�f

(∫
I

x d�n,k(x)

)
= f (k/n), 0�k�n, (4)

as well as

Bnf (x)�f

(∫
[0,n]

(t/n) d�n,x(t)

)
= f (x), x ∈ I,

and (3) follows from the nonnegativity of the polynomials pn,k(·). To get the conclusion in the
second part, we only need to show that �n,k = �k/n, for 1�k�n− 1. Fix 1�k�n− 1, let F and
G be the respective distribution functions of �n,k and �n/k , and denote by f ′ the right derivative of
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the function f ∈ C∗
cx in the hypothesis of the second part of the theorem. By (4), the assumption

on f and Fubini’s theorem (or integration by parts), we have

0 =
∫

I

f (x) d(F (x) − G(x)) =
∫ 1

0
f ′(t)(G(t) − F(t)) dt

=
∫ 1

0
(f ′(t) − f ′(k/n))(G(t) − F(t)) dt + f ′(k/n)

∫ 1

0
(G(t) − F(t)) dt

=
∫ 1

0
(f ′(t) − f ′(k/n))(G(t) − F(t)) dt,

the last equality by (2). Since f ′ is strictly increasing in (0, 1), and G(t) − F(t) is nonpositive
(nonnegative) for 0 < t < k/n (k/n < t < 1), we conclude that F = G a.e., and this entails
F = G, by the right-continuity of F and G. This finishes the proof of the theorem. �

Remark 1. Property (3) actually characterizes the elements of Ln within the class L∗
n, since Bn

preserves the affine functions on I , and we have Lf = Bnf , for each affine function f (because
f is both convex and concave). Other characterizations giving further insights on the size of Ln

are provided in the following theorem. We denote by L ◦ M the composition of the operators L

and M .

Theorem 3. Let n�1 and let L : C −→ RI be a positive linear operator. Then, the following
assertions are equivalent:

(a) L ∈ Ln.
(b) L = Bn ◦ L∗, for some positive linear operator L∗ : C −→ C preserving the affine functions

on I .
(c) L = Bn ◦L∗, for some positive linear operator L∗ : C −→ RI preserving the affine functions

on I .

Proof. Let L ∈ Ln be given as in (1), and define L∗ in the following way:

L∗f (x) :=
∫

I

f d�x, f ∈ C, x ∈ I,

where �x := (k + 1 − nx)�n,k + (nx − k)�n,k+1, if k/n�x�(k + 1)/n (0�k�n − 1). It is
readily checked that L∗ fulfills the requirements in (b), and this shows that (a) implies (b). It is
trivially true that (b) implies (c). Finally, assume that (c) holds true. From the assumptions on L∗,
we have, by the Riesz representation theorem,

L∗f (x) =
∫

I

f d�x, f ∈ C, x ∈ I,

where for each x ∈ I , �x is a probability measure on I having mean x, and we therefore have
that L is given by (1), with �n,k = �k/n. This means that (a) also holds true, and the proof of the
theorem is complete. �

Remark 2. It is clear from the proof that the preceding theorem remains true if Ln is replaced
by L∗

n in (a) and the condition of preserving affine functions is dropped in (b) and (c).
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