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Abstract

Eternity variables are introduced to specify and verify serializability of transactions of a dis-
tributed database. Eternity variables are a new kind of auxiliary variables. They do not occur in
the implementation but are used in speci5cation and veri5cation. Elsewhere it has been proved
that eternity variables in combination with history variables are semantically complete for proving
re5nement relations.

An eternity variable can be thought of as an unknown constant that is determined by the
behaviour (execution sequence). In the speci5cation of the database, one eternity variable is
used to enforce serialization. In the veri5cation, an additional eternity variable is needed for the
connection of the local data with the shared database.

The formalism is based on linear-time temporal logic, but the analysis of behaviours is com-
pletely reduced to the next-state relation together with progress arguments using variant functions.
Forward invariants (inductive predicates) are complemented with other, so-called backward, in-
variants. The proof has been veri5ed with the 5rst-order theorem prover NQTHM to give addi-
tional con5dence in the result and in the feasibility of the approach.
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1. Introduction

The 26th Lake Arrowhead Workshop, held in September 1987, was devoted to the
question: “How will we specify concurrent systems in the year 2000?” The participants
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were provided with an informal description of a serializable database interface and
invited to present a formal speci5cation at the meeting. The workshop resulted in
5ve papers published in Distributed Computing 6, 1992. Schneider [18] introduces the
setting and the informal description. There are three proposed solutions by Broy [4],
Kurki-Suonio [10], and Lam and Shankar [11]. Finally, Lamport [12] discusses the
solutions. He argues that veri5cation methods should allow for the prophecy variables
introduced by Abadi and Lamport in [1], since that is the way to get a semantically
complete method. Yet, the combination of history variables and prophecy variables
is proved to be complete in [1] only under certain 5niteness assumptions. Prophecy
variables are not very well known or often used.

Our approach to the database problem indeed asks for variables with some kind of
prescient capabilities. The prophecies needed are a choice of a value for the database
and of a transaction number. Since prophecy variables with in5nite choices are unsound
[1], application of prophecy variables would require to specify beforehand that the
state space of the database is 5nite. This is a heavy condition: since the state space is
constant, 5niteness of the state space implies boundedness. It would therefore require
not only that the database always has 5nite contents, but even that the number of objects
that can be stored is bounded. It would also require bounds on the transaction numbers,
while we would prefer to allow the database to support in5nitely many transactions.

We rejected the option to change the speci5cation in order to ease the proof of
correctness of the implementation. Instead of this, we invented another kind of auxiliary
variables with “prescient” behaviour, so-called eternity variables. In [7,8], we show
that the veri5cation method based on eternity variables in combination with forward
simulations is semantically complete, in a slightly stronger sense than the combination
of prophecy variables and history variables of [1].

There is nothing magical about eternity variables. An eternity variable is just an
auxiliary variable that is initialized nondeterministically and that is never modi5ed.
Eternity variables have two kinds of roles. In speci5cations, the value of the eternity
variable together with a supplementary property can be used to rule out unwanted
behaviours. In veri5cations of re5nement, its value is constrained by a relation with
the state, the so-called behaviour restriction, which can be used as an invariant provided
that it is satis5able for every behaviour of the program.

The behaviour restriction is responsible for the aspects that may seem prophetic
to the operationally reasoning programmer. The soundness of extension with eternity
variables is a rather easy consequence of the behaviour restriction. The complications
of the prophecy variables of [1] are mainly due to the choice to rely on KNonig’s lemma
rather than on something like a behaviour restriction. Indeed, the behaviour restriction
may look like a heavy and unmanageable condition, but in this paper we show that
it can be used ePectively to handle the classical practical problem of the serializable
database interface.
Overview: In Section 2, we develop the formal computational model. We generalize

(weaken) the concept of invariants and introduce backward invariants which in some
sense formalize the validity of prophecies. We introduce eternity variables to prove
re5nement relations between speci5cations. Section 3 contains an informal description
of the serializable database interface of [18]. In Section 4, we develop our formal
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speci5cation, using an eternity variable to formalize serializability. The implementation
of [18] based on locking objects is described in Section 5.

Section 6 contains the veri5cation of this implementation. Here, the eternity variable
of the speci5cation gets its value as a limit of a history variable. A second eternity
variable is introduced to prescribe the success and the order of the transactions of the
database. In Section 7, we describe the veri5cation of our proof with the 5rst-order
mechanical theorem prover NQTHM. We draw conclusions in Section 8. The new
results are in Sections 2, 4, 6, and 7.

2. The formal computational model

In this section, we present the formal model, which is a semantical version of Lam-
port’s TLA [1,13] without the syntactic restrictions and conventions. We generalize the
concept of invariance and introduce a new proof rule for so-called backward invariance.
We brieQy present the simulation theory we proposed at MPC 2002 [7]. The paper [7]
contains an error in the completeness result, which has been corrected in [8]. In the
present paper we only need and prove soundness of eternity extensions. This section
is rather heavy. We refer to [8] for a more balanced presentation of the theory with
more examples.

We use lists to represent consecutive states during computations. The elements of a
list xs are xsi for i¿0. If X is a set, we write X! for the set of in5nite lists over X . If
f is a function X → Y then f! : X! → Y! is the function lifted to in5nite lists. If s is
a 5nite list, s! stands for the list obtained by concatenating in5nitely many copies of s.

For in5nite lists xs and ys, we de5ne xs to be a stuttering of ys, iP xs is obtained
from ys by consecutive repetition of certain elements. For example, with X containing
a, b, and c, the in5nite list (aaabbbc)! is a stuttering of (abbc)!. A subset P of X!

is called a property [1] over X iP, whenever xs is a stuttering of ys, we have xs∈P
if and only if ys ∈ P.

For a subset P of X!, we write ¬P to denote its complement (negation). We write
Suf (xs) to denote the set of in5nite suRxes of an in5nite list xs. We de5ne P (always
P), and ✸P (sometime P) as the subsets of X! given by

xs ∈ ✷P ≡ Suf (xs) ⊆P,
✸ P = ¬✷¬P.

If P is a property then ¬P, ✷P, and ✸P are properties. For a subset U of X , we
de5ne the set [[U ]] to consist of the in5nite lists xs with initial element xs0 ∈U . The set
[[U ]] is always a property. For a binary relation A, regarded as a subset of X ×X , the
subset [[A ]] of X! consists of the in5nite lists xs with (xs0; xs1) ∈A. Usually, [[A ]] is
not a property. The set ✷[[A ]] is a property when A is reQexive (contains the identity
relation 1X of X ).

2.1. Speci;cations and invariants

A speci;cation in the sense of [1,7,8] is a tuple K = (X; Y; N; P) that consists of
a state space X , a subset Y ⊆X that holds the initial states, a reQexive relation
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N ⊆X × X , and a supplementary property P ⊆X!. It is required that P is, indeed, a
property.

The elements of X are called states. Relation N is called the next-state relation or
step relation. We de5ne an execution of K to be a list xs of states for which every pair
of consecutive elements belongs to N . ReQexivity of N serves to allow or eliminate
stuttering: if xs is an execution, any list ys obtained from xs by repeating elements of
xs and possibly removing duplicates from xs is an execution as well. An execution of
K is called initial iP xs0 ∈Y . Property P is intended to express fairness and progress
requirements. We de5ne a behaviour of K to be an in5nite and initial execution xs of
K with xs∈P. We write Beh(K) to denote the set of behaviours of K . We thus have

Beh(K) = [[Y ]] ∩ ✷[[N ]] ∩ P:

A state is called reachable iP it occurs in an initial execution. A set of states is called
a forward invariant iP it contains all reachable states. A state is called occurring iP
it occurs in some behaviour. A set of states is called an invariant iP it contains all
occurring states. Since every occurring state is reachable, every forward invariant is an
invariant.

The speci5cation is called machine closed [1] if every 5nite initial execution can
be extended to a behaviour (an element of Beh(K)). If the speci5cation is machine
closed, all reachable states are occurring and the concepts of invariant and forward
invariant are equivalent, and there is no reason to distinguish between them. In this
paper, however, we encounter speci5cations that are not machine closed. The following
example provides a simple case.

Example A. Consider the program (or rather speci5cation)

var n : Int := 0 ;
do n= 0 → choose n ∈ Int ;
[] n �= 0 → n := n − 2 od ;
prop: in5nitely often n= 6 .

This is modelled by the speci5cation K = (X; Y; N; P) with X =Z and Y = {0}. The
step relation N consists of the pairs (n; n′) with n= 0 or n′ = n− 2 or n′ = n (to allow
stuttering). The supplementary property is P =✷✸ [[ {6} ]], which consists of the lists
of natural numbers that contain in5nitely many numbers 6. Informally, it is obvious
that n must remain even (and nonnegative) in order to satisfy the property. Therefore,
the set D of the even integers is an invariant. It is not a forward invariant since it
does not contain the reachable states 3 and −1.

2.2. Proof rules for invariants

A set D of states is called a strong invariant (or inductive [15]) iP D contains the
initial set Y and satis5es x′ ∈D for every pair (x; x′) ∈N with x∈D. It is easy to
verify that a strong invariant contains all reachable states and is therefore a forward
invariant.

The theory is most easily formulated in terms of sets of states, but for programming it
is more convenient to use state predicates, i.e., boolean functions on the state space. We
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therefore identify a state predicate Q with the corresponding set (Q) = {x∈X |Q(x)}.
Predicate Q is called an invariant if and only if the set (Q) is an invariant.

Inspired by [15], we use the following notation to ease our calculations. Recall that
K = (X; Y; N; P) with Y ⊆X and N ⊆X × X . Let fst and snd be the two projection
functions from X × X to X . For any set Z and a state function g : X → Z , we de5ne
g0 = g ◦ fst : N → Z and g+ = g ◦ snd : N → Z . By convention, the superscript 0 is
omitted. It results that function g+ on N stands for the value of g in the post-state
whereas g itself stands for the pre-state value.

When E is some boolean function on a set W , we de5ne W |=E to mean that all
elements w∈W satisfy E(w). As a 5rst application, we see that a predicate Q is a
strong invariant iP Y |=Q and N |= (Q⇒Q+).

The classical way to prove that a family of predicates (Ji)i is a family of invariants
(e.g., see [5], or [5, 3.1]) is to prove

Y |= Jk for all k,
N |= (∀i :: Ji) ⇒ J+

k for all k.

Writing J = (∀i :: Ji), the 5rst condition implies that J holds initially. The second
condition implies that J is stable. It follows that J is a strong invariant, so that J and
all its conjuncts Ji are forward invariants. We shall use the following easy variation
of this rule.

Lemma 0. Let D be a predicate with Y |=D and N |= (D∧J ⇒D+) for some invariant
J. Then D is an invariant.

Proof. We have to prove that D(xsn) holds for every behaviour xs and every index n.
Let xs be given. We use induction on n. Since xs is a behaviour, D(xs0) holds because
of Y |=D. We have D(xsn) ⇒D(xsn+1) because of J (xsn) and N |= (D ∧ J ⇒D+).

The reader may also verify that, in this lemma, D is a forward invariant if J is a
forward invariant.

When forward invariants are not good enough, we need a proof rule for invariants
in which the supplementary property plays a role. We therefore de5ne a predicate A to
be an attractor iP Beh(K) ⊆✷✸[[A ]] or, equivalently, iP A(xsn) holds in5nitely often
for every behaviour xs.

Lemma 1. Let J0, J1, J2 be invariants. Let A be an attractor. Let Q be a predicate
such that

(a) X |= J0 ∧ A ⇒ Q ,
(b) N |= J1 ∧ J+

2 ∧ Q+ ⇒ Q.

Then Q is an invariant.

Proof. We have to prove that Q(xsn) holds for every behaviour xs and every index n.
Let xs and n be given. Since A is an attractor there is m¿n with A(xsm). Since J0 is
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an invariant, assumption (a) implies that Q(xsm) holds. Since J1 and J2 are invariants,
assumption (b) implies that Q(xsk)⇐Q(xsk+1) for every index k. Therefore Q(xsn)
follows from Q(xsm) by m − n backward steps.

In the applications of Lemmas 0 and 1, we often omit the components X |= and
N |= , since the state space and step relation are supposed to be self-evident.

Example A (continued). In the setting of example A, we have D = (Q) for the pred-
icate Q given by Q : nmod 2 = 0. We use the attractor A : n= 6. It is clear that
X |= (A⇒Q). Condition N |= (Q+ ⇒Q) is veri5ed in

(n= 0 ∨ n′ = n − 2 ∨ n′ = n) ∧ n′ mod 2 = 0 ⇒ n mod 2 = 0.

So, taking the invariants Ji = true, Lemma 1 implies that Q is an invariant.

Invariants obtained by the above lemma might be described as backward invariants,
but we attach no formal meaning to this since we impose no conditions on the kind
of invariance of J0, J1, J2. Condition 1(b) is called backward stability of Q.

Remark. It may be tempting to use or propose a mixed rule that would conclude
invariance of J and Q from the assumptions Y |= J , and X |= (A⇒Q) for some
attractor A, and

N |= (J ∧ Q⇒ J+) ∧ (J ∧ Q+ ⇒Q) .

This proposal is unsound! For example, consider the program

var n : Nat := 0 ;
do true → n := n + 1 od ;
prop: in5nitely often n¿9 .

This program is modelled by the speci5cation K = (X; Y; N; P) with X =N and Y = {0}.
Relation N consists of the pairs (n; n′) with n′ ∈ {n; n + 1}. Property P consists of the
lists of natural numbers that contain in5nitely many numbers ¿ 9. We use the attractor
A : n¿9, and the predicates J : n= 0 and Q : n¿9. The premises of the proposed rule
hold trivially, since both J ∧ Q and J ∧ Q+ are identically false, but of course neither
J nor Q is an invariant.

2.3. Implementation and simulation

Since we need to relate diPerent speci5cations, we introduce the notations states(K) =
X , start(K) =Y , step(K) =N , prop(K) =P for a speci5cation K = (X; Y; N; P).

A speci5cation becomes visible by giving a function to observe the states. In practice,
the set states(K) is usually a subset of a cartesian product V ×M , where V is spanned
by so-called visible variables and M is spanned by auxiliary variables. In that case,
the projection function fst : states(K) → V is used to observe the states. The auxiliary
variables that span M are called hidden. A hidden variable that may be initialized
nondeterministically and is never modi5ed thereafter, is called an eternity variable.
The following example shows that eternity variables can be used for speci5cation.
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Example B. Consider the program

var n : Int := 0 ; m : Int ;
do true → n := n + 1 od ;
prop: eventually always n = m .

This is modelled by the speci5cation K = (X; Y; N; P) with X =Z×Z and Y = {0}×Z.
The step relation N consists of the pairs ((n; m); (n′; m)) with n′ ∈ {n; n + 1}. The
supplementary property is P =✸✷[[ n= m ]]. This expresses that the program terminates
in a state with n= m. Let us assume that m is a hidden variable. Then, it is an eternity
variable. It serves here to specify termination.

It is useful to regard visibility in a more abstract way. A visible speci;cation is
de5ned as a pair (K; g) consisting of a speci5cation K and a function g on states(K)
that serves to observe the states. The visible behaviours of (K; g) are the in5nite lists
g!(xs) with xs∈Beh(K). Let (K; g) and (L; h) be visible speci5cations with g and h
mapping to the same set. We then de5ne (K; g) to implement (L; h) iP every visible
behaviour of (K; g) is a visible behaviour of (L; h), i.e., iP for every xs∈Beh(K) there
exists ys∈Beh(L) with g!(xs) = h!(ys).

This concept of implementation is inspired by the one of [1], but it is slightly
stricter: in [1] it is allowed that a visible behaviour of (K; g) only becomes a visible
behaviour of (L; h) after adding stutterings. We use simulations to prove implemen-
tation relations between visible speci5cations. There are several versions of diPerent
generality.

Let K and L be speci5cations. A function f : states(K) → states(L) is called
a re;nement mapping [1] from K to L iP f(x) ∈ start(L) for every x∈ start(K),
and (f(x); f(x′)) ∈ step(L) for every pair (x; x′) ∈ step(K), and f!(xs) ∈ prop(L) for
every xs∈Beh(K). Re5nement mappings form the simplest way to compare diPerent
speci5cations.

We de5ne a binary relation F between states(K) and states(L) to be a simulation
K −. L [7,8] iP, for every behaviour xs∈Beh(K), there exists a behaviour ys∈Beh(L)
with (xsn; ysn) ∈F for all n. Simulations are relevant for implementation because of
the following completeness result.

Theorem 2 (Hesselink [8]). Let (K; g) and (L; h) be visible speci;cations with g and
h mapping to the same set. Then (K; g) implements (L; h) if and only if there is a
simulation F : K −. L with F ⊆ {(x; y) | g(x) = h(y)}.

We only need the trivial part of this result, viz., that (K; g) implements (L; h) when
there is a simulation F : K −. L with F ⊆ {(x; y) | g(x) = h(y)}. See [8] for the proof
of the converse implication.

The easiest examples of simulations come from subspaces. Indeed, consider a spec-
i5cation K = (X; Y; N; P) and a set of states R⊆X . The subspace restriction KR of K
to R is de5ned as the tuple (R; Y ∩ R; N ∩ R2; P ∩ R!). It is easy to verify that KR is a
speci5cation and that the identity function 1R is a re5nement mapping from KR to K .
It is also easy to verify that the converse relation 1R is a simulation K −. KR if and
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only if R is an invariant. In that case, the simulation K −. KR is called the associated
invariant restriction.

2.4. Variable extensions

In programming practice, most simulations occur by extending some program with
auxiliary variables. Formally, a speci5cation L is called an extension (or variable ex-
tension) of speci5cation K with a variable of a type M iP states(L) is a subset
of the cartesian product states(K) × M . The second component of the states of L
is then regarded as the variable added. The projection function fst : states(L) →
states(K) is often a re5nement mapping, but this is usually irrelevant. The extension
is called a re;nement extension iP the converse relation cvf= cv(fst) is a simulation
K −. L.

The extension is called a history extension (or an extension with a history variable)
iP

(H0) For every x∈ start(K) there is m∈M with (x; m) ∈ start(L).
(H1) For every pair (x; m) ∈ states(L) and x′ with (x; x′) ∈ step(K) there is m′ ∈M

with ((x; m); (x′; m′)) ∈ step(L).
(H2) prop(L) consists of the lists ys with fst!(ys) ∈ prop(K).

It is easy to see that, if L is a history extension of K , relation cvf is a simula-
tion K −. L, e.g., [8]. So, every history extension is a re5nement extension. History
extensions go back to [17] where history variables are called auxiliary variables.

Eternity extensions, introduced in [7,8], are another kind of variable extensions. The
starting point is the trivial history extension K*M of K by M , in which the variable
added is never modi5ed and does not interact:

states(K*M) = states(K) × M ,
start(K*M) = start(K) × M ,
((x; m); (x′; m′)) ∈ step(K*M) ≡ (x; x′) ∈ step(K) ∧ m = m′ ,
ys∈ prop(K*M) ≡ fst!(ys) ∈ prop(K) .

So, the state space is extended with an unknown nondeterministic constant m∈M , in
other words with an eternity variable m.

A binary relation R between states(K) and M (i.e. a subset of states(K*M)) is
called a behaviour restriction between K and M iP, for every behaviour xs of K , there
exists an m∈M with (xsi; m) ∈R for all indices i :

(BR) xs∈Beh(K) ⇒ (∃ m :: (∀i :: (xsi; m) ∈R)) .

If R is a behaviour restriction between K and M , we de5ne the corresponding eter-
nity extension as the subspace restriction W = (K*M)R of the trivial history extension
K*M . So, we have states(W ) =R, and start(W ), step(W ), and prop(W ) are the natural
restrictions of start(K*M), step(K*M), and prop(K*M) to R or its liftings.

The soundness of eternity extensions is expressed in the following easy
result:
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Lemma 3 (Hesselink [8]). Let R be a behaviour restriction. Then relation cvf is a
simulation K −. W .

Proof. Let xs∈Beh(K). We have to construct ys∈Beh(W ) with (xs; ys) ∈ cvf !. By
(BR), we can choose m with (xsi; m) ∈R for all i. Then we de5ne ysi = (xsi; m). A
trivial veri5cation shows that the list ys constructed in this way is a behaviour of W
with (xs; ys) ∈ cvf!. This proves that cvf is a simulation.

We refer to [8] for a presentation of the theory with more examples. In [8], it is
also proved (using a slightly diPerent terminology) that the combination of history
extensions and eternity extensions is in a certain sense semantically complete: every
simulation that also “preserves quiescence” is a composition of a history extension, an
eternity extension and a re5nement mapping.

In Section 4 below, we use an eternity variable in a speci5cation. Backward invari-
ants and eternity extensions will be used in Section 6.

3. An informal description of a database interface

We come back to the database interface mentioned in the introduction. The following
description is extracted from [18], see also [4,10,11].

A database is a system of objects that can be read and written by a collection
of client processes. Each client process performs a sequence of transactions, where a
transaction consists of a sequence of reads and writes to database objects. Clients may
concurrently execute transactions. Transactions may be aborted either by the client or
by the database. The result of aborting a transaction is as if none of the reads and
writes of the transaction were executed. Serializability means that the values returned
by all the read operations from successful transactions are ones that could be obtained
by executing these transactions in some sequential order: an order in which all reads
and writes of one transaction are performed before any operation of the next transaction
is performed.

We also impose a weak restriction on the serialization order in terms of the temporal
order of the transactions: we require that for every behaviour it is possible to insert a
unique serialization event into every successful transaction such that the serialization
order corresponds to the temporal order of serialization events. The paper [18] does
not mention such a requirement and thus allows the implementor more freedom of
implementation. We don’t know whether this was intended.

A client accesses the database by the following procedure calls. It must wait for the
return of a call before issuing another call. DiPerent clients may issue concurrent calls.

Begin-T(): key or failed

Called to initiate a transaction. The value returned is a key to identify the transaction
in the other calls. The call may only fail because of some lack of resources.
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Read(key, object): value or abort

This returns the current value of the object in the database, unless the transaction is
aborted.

Write(key, object, value): ok or abort

Writes value to object and returns ok, unless the transaction is aborted.

End-T(key): ok or abort

Ends the transaction with ok, unless it is aborted by the database.

Abort(key)

Aborts the transaction; this is always successful.

We allow a key of a transaction that has been terminated or aborted to be reused. The
last four calls only occur with a key of an active transaction, i.e., one that has begun
more recently than it has been terminated or aborted (if ever).

The procedures Read, Write and End-T may only be aborted by the database if the
transaction accesses an object that is concurrently accessed in some other transaction.
It is assumed that, if a transaction is not aborted, the client will terminate it by a call
to End-T after a 5nite number of calls. Under this assumption, the database guarantees
that control eventually returns from each procedure call.

Remark. The successful transactions must be serialized while retaining the order of the
actions within each transaction. The order of actions from diPerent transactions may
be changed. Consider, for example, the following scenario where the database contains
an integer object x, initially x= 17. Client A has a private variable a and performs
the transaction that consists of a := x followed by x := a + 1. Client B performs the
transaction that consists of the single write action x := 8. When the transactions of A
and B overlap, the transactions may be aborted. When both transactions succeed, the
pair (a; x) in the 5nal state can be either (17; 8) or (8; 9).

4. The speci$cation of the database

In this section we develop a formal speci5cation. We begin with the introduction
of the main state variables and a discussion of the Qow of control in Section 4.1. We
model the clients of the database as a nondeterministic environment in Section 4.2.
The database is speci5ed by means of an abstract program in 4.3. We convert this
program in a relational speci5cation in 4.4. We justify the speci5cation in Section 4.5.

4.1. Main state variables and global control

The database to be implemented has an environment which we do not control. This
environment repeatedly submits invocations to the database that belong to some key.
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For simplicity and uniformity, we assume that Begin-T just chooses an unused key,
independently of the database system. We assume that Begin-T is called only when
such an unused key is available. It therefore never leads to immediate abort.

Even though keys can be reused, we allow the set of available keys to be in5nite. A
key becomes known when the environment starts using it. Initially, there are no known
keys. The set of known keys can only grow, but it remains 5nite.

The invocations for reading and writing are combined and potentially generalized in
a set Inv of ordinary invocations. We use additional symbols B, E, A for the special
invocations Begin-T, End-T, Abort. Similarly, Res is the set of results of ordinary
invocations. We introduce for each key k the variables

turn:k : {0; 1; 2; 3} ;
inv:k : Inv ∪ {B; E; A} ;
res:k : Res ∪ {B; E; A} ;
accessed:k : set of Obj .

The variables associated to key k are called the private variables of k. Indeed, we
can regard key k as a process identi5er. To distinguish private variables from shared
ones, we use slanted font for private variables and typewriter font for shared
variables.

The private variable turn:k holds the status of the key; turn:k = 0 means that the key
is (still) unknown; turn:k = 1 holds for keys that are known but not in a transaction;
turn:k ∈ {2; 3} means that the key is involved in a transaction, with turn:k = 2 when
the environment may submit a new invocation and turn:k = 3 when the database has
to respond to a current invocation. So, the database can modify turn:k only when it
equals 3 and the environment can modify it only when it diPers from 3. Once a key
k is known, i.e., turn:k �= 0, the environment and the database will never reset turn:k
to zero. The transitions of turn are described in the following diagram.

unknown: 0

idle: 1
❄ ✲
✛ 3:

2:

respond

active

❄
✻

The database must be fair: it has the obligation eventually to treat every invocation,
i.e., to enable the environment in5nitely often by setting turn:k to a value �= 3. This is
formalized in the condition that turn:k always eventually diPers from 3, as expressed
in the temporal formula

Fdat: ✷✸ (turn.k �= 3) .
The private variable inv:k holds the current invocation at key k, whereas res:k holds the
latest result at this key. The private variable accessed:k holds the set of objects accessed
in the current transaction with key k. We use the convention that accessed:k = ∅ for
unknown keys k. The visible variables are inv:k, res:k, turn:k. The variables accessed:k
and all variables introduced below only serve in the speci5cation.
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4.2. Modelling the environment and its expectations

In order to specify the database we model the clients by a very nondeterministic
environment that may submit new invocations when turn �= 3. Such a new invocation
is B when there is no current transaction and �= B otherwise. The speci5cation uses a
number of auxiliary variables (both shared and private) that need not be implemented
but only serve to constrain the visible behaviours of the system.

In order to ensure that all transactions terminate, we specify that, at the start of a
transaction of key k, the environment chooses an upper bound evf for the number of
nontrivial invocations in the transaction. Of course, the database will not be allowed
to inspect or modify evf.

Every key gets a private integer variable nr to hold the number of the current suc-
cessful transaction in the serialization ordering. It gets its value at some moment during
the transaction. This moment is called the serialization event. By convention nr:k = 0
when the current transaction of key k is not successful or before the serialization event.
Every key gets a private boolean variable sysAb to indicate that the database is allowed
to abort the current transaction. We thus introduce the private variables

evf; nr : Int ;
sysAb : Boolean .

Since serialization may occur at any time during a transaction, even before the database
has answered the invocation B, the environment at k initializes nr:k := 0 when it creates
invocation B. Variable sysAb is initialized at this point for the same reason.

We write |inv| for the set of objects to be accessed in invocation inv. In the setting of
Section 3, the sets |inv| contain never more than one object. The component command
for the environment at key k is given by:

Env:k : whenever turn= 0 → res := A ; turn := 1
[] turn = 1 →

choose evf¿0 ; nr := 0 ; sysAb := false ;
inv := B ; turn := 3

[] turn = 2 →
evf := evf − 1 ;
choose inv∈ Inv ∪ {E; A} with (evf6 0 ⇒ inv∈ {E; A}) ;
accessed := accessed ∪ |inv| ; turn := 3

end .

In this guarded command notation, each alternative is regarded as an atomic step that
can be taken whenever its guard holds. The command expresses a part of the next-state
relation N in the sense of the formal model of Section 2. We use the keyword whenever
to emphasize that these steps can be repeated in5nitely often. When all guards are false,
the component has to wait until (possibly) some other component makes some guard
true again. We do not use the do od notation, since that would suggest termination
when all guards are false.

Command Env:k expresses the steps the environment at key k can take, when
turn:k = 0, 1 or 2. When turn:k = 3, the environment at key k is disabled and has
to wait for the database to make some guard true.
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In these component programs, we suppress the index k for all private variables of
key k. When an unknown key is initialized, its 5eld res is set to A to indicate that it
has no previous transaction that delivered meaningful results.

The environment program Env is the parallel composition (||kEnv:k) of the en-
vironment programs of all keys. Here, parallel composition is de5ned as the union
(disjunction) of the corresponding next-state relations, i.e., by interleaving semantics.
The environment Env is not subject to implementation.

4.3. Modelling the abstract database

In this section, we develop the logical database as an abstract program, as a stage
towards the relational speci5cation in Section 4.4. We abstract from the objects in the
database and their individual values as much as possible. We introduce a set DbVal
for the set of states of the total database with the element db0∈DbVal as the initial
state. We assume that calls are speci5ed by a function

DbF : Inv × DbVal → Pow(Res × DbVal) ,

where (r; w) ∈DbF(i; v) means that invocation i in database state v may return re-
sult r and transform the database state into w. We assume that the set DbF(i; v) is
nonempty for every pair i, v. Since we want the speci5cation not to impose any re-
strictions on the results of failing transactions, we model the database state of a failing
transaction by ⊥ =∈ DbVal and extend function DbF to DbVal ∪ {⊥} by de5ning
DbF(i;⊥) = {(r;⊥) | r ∈Res} for all i∈ Inv.

We turn to the development of an abstract database program Adb. The implementor
of the database has to provide a concrete program Cdb such that every execution of the
parallel composition (Env||Cbd), when projected to the visible elements inv:k, res:k,
and turn:k for all keys k, is also the projection of some execution of (Env||Adb) for
the abstract program Adb. Notice that both parallel compositions are subject to the
supplementary property Fdat.

We specify the responses of the database as liberally as possible and yet enforce
serializability. We do this by prescribing a highly nondeterministic next-state command,
which leads to a deadlocked key when some choices do not 5t. The supplementary
property Fdat will eliminate executions with deadlocked keys. This means that the
abstract speci5cation will not be machine closed, i.e., that there are 5nite executions
that cannot be extended to acceptable behaviour since Fdat cannot be satis5ed.

In order to specify serializability, i.e., to enforce some conceptual serialization, we
introduce a shared counter gnr and a shared array etMem declared by

gnr : Nat := 0 ;
etMem : array Nat of DbVal .

It is the intention that successful transaction n transforms etMem[n − 1] into etMem[n]
and that gnr holds a number of a recent successful transaction. We number the suc-
cessful transactions from 1 and assume that etMem[0] holds the initial state db0 of the
database. The other elements of etMem are initialized nondeterministically. More pre-
cisely, the speci5cation allows all behaviours for which there exists a consistent value
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for etMem. Therefore, etMem is an eternity variable. The identi5er etMem is chosen to
reQect this fact. If a behaviour contains only a 5nite number of successful transactions,
the unused tail of etMem is irrelevant (it may stutter, but need not do so).

Every key gets private variables start and val to hold the initial and current database
states during successful transactions. By convention start and val can be ⊥ during fail-
ing transactions. Comparison of start:k and val:k with etMem[nr:k−1] and etMem[nr:k]
for the acting key k will serve to enforce serialization. We thus introduce the private
variables

start; val : DbVal ∪ {⊥}.

We introduce a state function conBict to denote that key k is concurrently accessing a
common object with some other key (m):

conBict(k) = (∃ m :: m �= k ∧ accessed:m ∩ accessed:k �= ∅).

When conBict(k) holds, the database is allowed to abort k’s current transaction. This
can be recorded in the private boolean variable sysAb:k.

The next-state command Adb of the abstract database program is the parallel com-
position (||kAdb:k) of the component commands for all keys:

Adb:k :
(B) whenever turn = 3 ∧ inv = B →

choose val ∈ DbVal ∪ {⊥} ; start := val ;
res := B ; turn := 2

(I) [] turn = 3 ∧ inv ∈ Inv →
choose (res; val) ∈ DbF(inv; val) ; turn := 2

(A) [] turn = 3 ∧ nr = 0 ∧ (inv = A ∨ sysAb) →
accessed := ∅ ; res := A ; turn := 1

(E) [] turn = 3 ∧ inv = E ∧ nr ¿ 0
∧ start = etMem[nr − 1] ∧ val = etMem[nr] →

accessed := ∅ ; res := E ; turn := 1
(S) [] turn ∈ {2; 3} ∧ nr = 0 →

gnr := gnr + 1 ; nr := gnr
(C) [] conBict(k) → sysAb := true

end .

As before, we omit references to key k for all private variables. Note that the guards
are not mutually exclusive. Any alternative with a true guard can be chosen as a single
atomic step.

The 5rst alternative (B) is the response of the database to a beginning invocation.
This starts with the guess whether the beginning transaction will be successful and,
if so, of the initial database state of the new transaction. This initial value is copied
into start. Furthermore, result value B is generated and the environment is enabled by
setting turn to 2.

The second alternative (I) is the ordinary invocation. If val= ⊥, the results are
nondeterministic and val remains ⊥ because of the de5nition of DbF(i;⊥).
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Alternative (A) allows a failing transaction to abort either upon the client’s request
or because of concurrent object access during the transaction. It can only happen when
the current transaction has not yet been serialized (nr= 0). Alternative (E) is the
conclusion of a successful transaction together with tests of the initial and 5nal state
of that transaction. It can only occur after serialization, i.e. with nr¿0.

Alternative (S) is the serialization event: the choice of a sequence number during a
presumably successful transaction. Alternative (C) is the observation that the database
is allowed to abort the current transaction. The variable sysAb is introduced to al-
low some delay in the abortion. In fact, it may happen that conflict(k) only holds
while turn:k = 2; then sysAb:k can be set, so that the database is allowed to abort at
the next turn. Notice that the guards of (S) and (C) both imply that the key is in a
transaction.

4.4. The relational speci;cation

Command Adb speci5es the database, but does not provide a convenient test to
decide whether or not some proposed implementation is correct. We therefore replace
Adb by a relational speci5cation STEP. The above development of Adb only serves
as a heuristic justi5cation of STEP.

Command Adb describes the new values of certain variables, while other variables
have to remain constant since they are not mentioned. At this point, Adb as developed
above is over-speci5c. So, for the sake of abstractness, we note that the value of res:k is
irrelevant while turn:k ∈ {0; 3}. Similarly, the transaction variables start:k, val:k, nr:k,
and sysAb:k are irrelevant while turn:k ∈ {0; 1}. To allow for maximal Qexibility, we
can therefore add an arbitrary nondeterministic choice of a variable whenever turn gets
or has a value where that variable is irrelevant.

In the relational speci5cation, we use the following conventions. Recall from Sec-
tion 2.2 that, for a variable v, we use v for the value of v in the pre-state and v+ for
its value in the post-state [15]. Inspired by the speci5cation language Z, we write 0
followed by a list of variables v for the conjunction of equalities v= v+. As before, we
omit the index k for the private variables of key k. We use Lamport’s TLA convention
to add an initial ∧ operator to a list of conjunctions separated by newlines.

As noted in [2], we have to distinguish between actions of the environment and
actions of the database. For this purpose, we introduce a shared variable actor which
is set to ENV by every action of the environment and to DB by every action of the
database. We regard these modi5cations of actor as part of the formal setting. So,
they need not be included in the speci5cations.

Since the environment is given and not subject to implementation, we develop a
next-state relation STEP for actions of the database, which allows arbitrary actions of
the environment.

STEP ≡ (actor+ = DB ⇒ (∃ k :: adb:k)) ,

where adb:k is the next-state relation for key k. The antecedent actor+ = DB means
that the step is taken by the database. Relation adb:k only allows modi5cations of the
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shared variables and the private variables of key k. It is speci5ed by

adb:k ≡
∧ 0(etMem; evf; inv)
∧ (SpB:k ∨ SpI:k ∨ SpA:k ∨ SpE:k ∨ SpS:k ∨ SpC:k) .

Here, we require that the database leaves etMem, evf, and inv unchanged since etMem is
an eternity variable and the changes of evf and inv are left to the environment. Relation
adb:k is further subdivided into relations SpB, SpI, SpA, SpE, SpS, and SpC, which
represent the alternatives (B), (I), (A), (E), (S), (C) of command Adb:k, respectively.
The begin (B) of a transaction is characterized by

SpB:k ≡
∧ turn = 3 ∧ turn+ = 2 ∧ 0(gnr; accessed; nr; sysAb)
∧ inv = B = res+ ∧ start+ = val+ .

An ordinary invocation (I) is characterized by

SpI:k ≡
∧ turn = 3 ∧ turn+ = 2 ∧ 0(gnr; accessed; nr; sysAb; start)
∧ inv ∈ Inv ∧ (res+; val+) ∈ DbF(inv; val) .

Abortion (A) is characterized by

SpA:k ≡
∧ turn = 3 ∧ turn+ = 1 ∧ nr = 0 ∧ 0(gnr)
∧ (inv = A ∨ sysAb) ∧ res+ = A ∧ accessed+ = ∅ .

Successful termination (E) is characterized by

SpE:k ≡
∧ turn = 3 ∧ turn+ = 1 ∧ nr ¿ 0 ∧ 0(gnr)
∧ start = etMem[nr − 1] ∧ val = etMem[nr]
∧ inv = E = res+ ∧ accessed+ = ∅ .

Serialization (S) is characterized by

SpS:k ≡
∧ turn ∈ {2; 3} ∧ nr = 0 ∧ gnr+ = nr+ = gnr + 1
∧ (turn = 3 ∨ 0(res))
∧ 0(turn; accessed; start; val; sysAb) .

Alternative (C) of Adb:k is combined with the possibilities for silent steps in

SpC:k ≡
∧ ((¬ sysAb ∧ conBict(k)) ∨ 0(sysAb))
∧ (turn = 3 ∨ 0(res))
∧ 0(gnr; turn; accessed; start; val; nr) .

Both SpS and SpC allow the database to modify res gradually while turn = 3.
An implementation Cdb of the database satis5es the speci5cation if and only if it can

be extended with actions on the ghost variables gnr, etc., such that every behaviour
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of its parallel composition (Env||Cdb) with program Env, that starts in an initial state
with gnr= 0 and etMem[0] = db0 and turn:k = 0 for all k, satis5es ✷ [[STEP ]] and
the fairness property Fdat.

4.5. Justi;cation of the formal speci;cation

This section is devoted to the question whether the speci5cation of Section 4.4
indeed speci5es the informal description of Section 3. In particular, whether it speci5es
serializability and does not impose undue restrictions on implementations. Of course,
the correspondence of a formal speci5cation with an informal description cannot be
proved formally. So we cannot give a proof, we can only give convincing arguments.

We use the term history for a sequence of actions in terms of the informal descrip-
tion. We 5rst show that every acceptable history corresponds to a behaviour of the
speci5cation. Secondly, we indicate why a behaviour of the speci5cation corresponds
to a history that is acceptable for the informal description.

4.5.1. Informal satis;es formal
Firstly, assume that we have an acceptable history. We have to show that this history

can occur in the speci5cation. By assumption, the initial state of the history 5ts the
initial state of the speci5cation. The history is a 5nite or in5nite system of terminating
transactions. The failing transactions of the history correspond to transactions of the
speci5cation where val and start are chosen as ⊥. The speci5cation allows that they
have all kinds of intermediate results. The successful transactions can be serialized in
some order.

Let m∈N∪ {∞} be the number of successful transactions of the history. Following
[14, Section 13.1], we interpret serializability to mean that these transactions can be
numbered Tn with 16n6m such that the history corresponds to sequential execution
of T1;T2;T3; : : : and that, for every n, successful transaction Tn contains a unique
serialization event (S; n) that occurs after its beginning event and before its termination
event, in such a way that (S; i) happens before (S; j) whenever i¡j.

It follows that there exists a sequence of states (vn)n of the database such that, for
all n6m, state vn−1 is the initial state of Tn and vn is the 5nal state of Tn. Clearly,
v0 = db0, the initial state of the database.

We now describe the construction of a matching execution of STEP. First, we ini-
tialize array etMem by choosing etMem[n] = vn for all n6m. We proceed by inspecting
the history. Whenever a key k begins a failing transaction in the history, the new val-
ues start := ⊥ and val := ⊥ are chosen in SpB:k. Key k then continues the transaction
with steps of the form SpI:k, which can return arbitrary meaningless results, until it
fails by execution of SpA:k with res+ = A. If it aborts because of a conQict during the
transaction, at some point sysAb is made true in alternative SpC:k.

Whenever a key k starts a successful transaction, say with number n in the history,
SpB:k chooses values start:k and val:k equal to vn−1. The key then proceeds with
the transaction, possibly interleaved by transactions at other keys. All intermediate
invocations of key k lead to results res and modify the global state according to
relation DbF, as speci5ed in SpI:k.
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At the moment of the serialization, we take the step SpS:k for the key k that is
executing transaction Tn. Using induction, we have gnr= n−1 as a precondition of this
step and, in this step, key k sets gnr and nr:k equal to n. After the assignment to nr
and due to the choice of etMem[n] = vn, the terminating invocation of the transaction in
the history indeed has a corresponding step SpE:k in the speci5cation. This concludes
our argument that the informal description satis5es the speci5cation.

4.5.2. Formal satis;es informal
Conversely, consider a behaviour of speci5cation STEP. Every invocation by the

environment is eventually answered by the database because of property Fdat. Relation
adb shows that the invocations E and A are answered by E or A. Using decrementation
of evf, it follows that every transaction of the behaviour terminates.

The transactions with 5nal result E can clearly be pasted together according to the
sequence numbers to form an acceptable sequential history of the database with etMem
as sequence of global database states. Since they started with database values val:k �= ⊥,
they yielded results consistent with sequence etMem. These transactions moreover
have chosen consecutive sequence numbers nr during their lifetime. This proves
serializability.

Finally, a transaction of key k is only aborted by the database if the last invocation
was A or if sysAb:k holds which implies that the transaction accessed an object that
was also accessed concurrently by another key.

4.5.3. Formal deadlock must be avoided
As announced earlier, the speci5cation is not machine closed: there are 5nite exe-

cutions that cannot be extended to acceptable behaviour since fairness property Fdat
cannot be satis5ed. We need not be concerned about this. In fact, by specifying Fdat,
we force the implementor to avoid such executions.

More explicitly, a state where turn:k = 3 holds, has a path to a state with turn:k �= 3
only if it satis5es

inv:k = A ⇒ nr:k = 0 ,
inv:k = E ∧ nr:k ¿ 0

⇒ start:k = etMem[nr:k − 1] ∧ val:k = etMem[nr:k] .

Indeed, if either of these predicates is false, the process of key k is blocked forever,
which implies violation of property Fdat. It follows that, in the proof of correctness
of any implementation, the choice of the ghost variable start requires prescience (i.e.
knowledge of a later invocation). In Section 6, we show how this can be done.

5. Implementation by locking objects

The implementation proposed in [18] is based on locking objects. So, now the
database consists of a set of objects Obj with values in a certain set Value.

DbVal = array Obj of Value
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We assume that an invocation consists of an object and some command concerning the
object, that the result of the invocation only depends on the command and the value of
the object, and that it can only modify this value. So, there is a set ObInv to specify
the commands at a given object and the set Inv introduced in 4.1 is henceforth the set
of pairs Inv=Obj×ObInv. We assume the responses of the database at all objects to
be speci5ed by a function

ObN : ObInv × Value → Pow(Res × Value) ,

where (r; t) ∈ObN(i; u) means that command i for an object with value u may return
result r and change the value of the object into t. We assume that ObN(i; u) is always
nonempty and that the global next-state function DbF is expressed in terms of ObN
by

(r; w) ∈ DbF((o; i); v) ≡
(r; w[o]) ∈ ObN(i; v[o]) ∧ (∀ p : p �= o : v[p] = w[p]) .

The set of objects accessed in invocation (o; i) ∈ Inv is naturally de5ned by |(o; i)| =
{o}. The invocations inv∈ {B; E; A} access no objects and have |inv| = ∅. The set Value
has a default element null and the initial database value db0 satis5es db0[o] = null
for all objects o. These assumptions are more speci5c than the general setting of
Section 4, but general enough for the setting of [18] as exposed in Section 3. Since
every invocation can modify at most one value in the database, there are always at
most 5nitely many objects with values �= null, even though the set Obj is allowed to
be in5nite.

According to [18], the implementation processes interact with the physical database
through the following procedures.

procedure Acquire-L(ob : Obj) : Boolean .

The lock is granted iP the procedure returns true; otherwise it is rejected. The lock
of one object is never granted to more than one key at the same time. It becomes
available again when the owner process calls:

procedure Release-L(ob : Obj) .

A call of Release-L may be issued for an object only after the lock has been granted
for that object, in which case the call will eventually return. It is guaranteed that, if
every granted lock is eventually released, every call to Acquire-L eventually returns.

We formally specify Acquire-L and Release-L by means of a shared variable

owner : array Obj of Key ∪ {⊥} ,

with the initial values owner[o] = ⊥ for all objects o.
Apart from 5nite waiting, the meaning of Acquire-L is captured by

procedure Acquire-L(ob) : Boolean =
〈 if owner[ob] = ⊥ then

owner[ob] := self ; return true
else return false $ 〉

end .
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Here, self refers to the acting key. The angled brackets mean that the enclosed command
is executed atomically. Note that Acquire-L allows the database to wait for some time
when the object is unavailable. Indeed, atomicity does not require immediate execution.

We model that a lock can only be released by its owner by de5ning

procedure Release-L(ob) =
〈 assert(owner[ob] = self) ; owner[ob] := ⊥ 〉

end .

The assert means that the programmer must prove that the argument holds.
We use these primitives in the following implementation of the database. The phys-

ical database is declared by

db : DbVal := db0 .

The concrete program for the database for key k is given by

Cdb:k : whenever turn = 3 →
if inv = B → beginTrans()
[] inv ∈ Inv → if owns() then handle() else aborting() $
[] inv = A → aborting()
[] inv = E → endTrans()
$

end.

The simplest auxiliary procedure is

procedure beginTrans () =
res := B ; turn := 2

end .

For every key, we declare the private variables

ownset : set of Obj := ∅ ;
pridb : DbVal .

We use ownset to hold the objects for which the key holds the locks. The current
value of such an object ob is kept in pridb[ob] as long as the lock is kept.

Procedure owns serves to verify or guarantee that this key has exclusive access to
the object of the invocation. Indeed, since Inv is a cartesian product, we assume that
inv = (iob; iv) whenever inv ∈ Inv. In other words, iob and iv are aliases of the two
components of inv.

procedure owns () : Boolean =
if iob ∈ ownset then return true
elsif Acquire-L(iob) then

ownset := ownset ∪ {iob} ; pridb[iob] := db[iob] ;
return true ;

else return false $
end .
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Procedure handle works on the private copies:

procedure handle () =
choose (res; w) ∈ ObN(iv; pridb[iob]) ;
pridb[iob] := w ; turn := 2

end .

Procedure endTrans commits the modi5cations to the database:

procedure endTrans () =
for all o ∈ ownset do db[o] := pridb [o] od ;
releaseAll() ; res := E ; turn := 1

end .

Here we use a new procedure releaseAll to release all locks that the key owns, to
preserve the invariant concerning ownset, and to transfer control to the environment:

procedure releaseAll () =
for all o ∈ ownset do Release-L(o) od ;
ownset := ∅ ;

end .

This procedure is also used when aborting:

procedure aborting () =
releaseAll() ; res := A ; turn := 1

end .

It is easy to see that the body of Cdb:k always terminates with turn:k �= 3. So, if key
k acts often enough, the program indeed satis5es the fairness constraint

Fdat : ✷✸(turn:k �= 3).

At this point the question is: does this program indeed implement the abstract speci-
5cation of Section 4? In order to answer this question, we formally de5ne the word
“implements” in terms of the observable behaviours of the program and of its speci-
5cation. A behaviour of a program or speci5cation is an in5nite execution sequence
that satis5es the fairness constraints. In our case, the observable behaviour is the re-
striction (projection) of the behaviour to the visible variables inv:k, res:k, and turn:k.
The question is then whether every observable behaviour of the program is also some
observable behaviour of the speci5cation. We prove this with the new technique of
eternity extensions and backward invariants presented in Section 2.

6. Veri$cation of the implementation

In order to verify that the code of Section 5 implements the speci5cation of Section 4,
we add auxiliary variables to it, both history variables and eternity variables, in a
layered manner. The aim is to arrive at a speci5cation that allows an easy projection
to the abstract program STEP. We do this by recognizing or inserting components of
Env and Adb in the concrete program.
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We shall thus again encounter the shared ghost variables gnr and etMem, and the
private ghost variables evf, start, val, nr, sysAb, with the same types and initializations
as before. We introduce some more ghost variables to guide the choice of the eternity
variables.

6.1. Eternity approximated by history

The speci5cation of Section 4.4 requires, for every behaviour of the implementation,
some value for etMem that satis5es the equalities in SpE:k whenever key k successfully
terminates. The implementation of Section 5 does not directly provide a suitable value
for etMem. Since etMem is an in5nite array, we need not determine etMem all at once,
but can determine its elements one by one. So, in order to approximate array etMem,
we introduce the shared history variable

hiMem : array Nat of DbVal ,

with hiMem[0] = db0 initially. For every successful transaction, we let the resulting
database state be recorded instantaneously in array hiMem at the moment procedure
endTrans is called. The pre5xes hi and et refer to history and eternity. The idea of
“approximation” will be formalized in Section 6.2 below.

A second problem with the speci5cation is that the invocations B are answered in
SpI:k by a nondeterministic choice of val or start, which equals ⊥ if and only if the
starting transaction will eventually fail. This seems to ask for a prophecy variable.
Since our formalism does not provide prophecy variables, we introduce, for every key
k, a private eternity variable

etSno : array Nat of Nat,

such that etSno[i] = n means that the ith transaction of the key is the nth successful
transaction of the system; etSno[i] = 0 means that the ith transaction of the key is
not successful. In order to approximate etSno, we give each key the private history
variables

hiSno : array Nat of Nat;
cnt : Nat := 0 ;

where cnt counts the transactions the key has been involved in.
Procedure endTrans is extended to:

procedure endTrans () =
Commit ;
while tlist �= ∅ do

〈 remove some o from tlist ; db[o] := pridb [o] 〉 od ;
releaseAll() ; res := E ; turn := 1

end .

Here, tlist is a new private variable to hold the objects o for which db[o] has yet to be
updated. Commit is a big atomic command that only modi5es auxiliary variables. With
respect to the implementation, it just adds one stuttering. It determines new values of
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hiMem, cnt, and hiSno. Since the computation of hiMem is somewhat involved, it uses
a private ghost variable ldb, which is not used elsewhere. We also choose this point to
include the serialization event SpS:k that increments gnr and copies the result to nr:

Commit :
ldb := hiMem[gnr];
for all o ∈ ownset do ldb[o] := pridb[o] od;
hiMem[gnr + 1] := ldb;
gnr := gnr + 1 ; nr := gnr;
cnt := cnt + 1 ; hiSno[cnt] := gnr ;
tlist := ownset .

The abortion of a transaction is recorded in hiSno by

procedure aborting () =
cnt := cnt + 1 ; hiSno[cnt] := 0 ;
releaseAll() ; res := A ; turn := 1

end .

Here, hiSno[cnt] becomes 0 since the latest transaction failed.

6.2. Behaviour restrictions and prophecies

The intention that the history variable hiMem approximates the eternity variable
etMem is formally expressed by postulating the behaviour restriction

Rq0 : i 6 gnr ⇒ hiMem[i] = etMem[i] .

Here, we universally quantify over the free variable i, which ranges over the natu-
ral numbers. Similarly, the relationship between hiSno and etSno is expressed in the
behaviour restriction

Rq1 : i 6 cnt:k ⇒ hiSno:k[i] = etSno:k[i] .

Extension with eternity variables is only sound when every behaviour allows at least
one value for the eternity variable for which the behaviour restriction is satis5ed, see
condition (BR) in Section 2.4, and [7,8]. Since gnr and hiMem are modi5ed only in
endTrans, the elements of hiMem are written only once and the written elements are
those with index 6gnr. This implies satis5ability for Rq0. Apart from the fact that
hiSno:k and cnt:k are private variables of key k, the argument for Rq1 is similar.

We use etMem and etSno to guide the choice of val when the database answers
invocation B. So, on top of the eternity extension, we now introduce private history
variables val, start, and mnr, which are modi5ed in the private command

Prophecy :
mnr := etSno[cnt + 1] ;
val := (mnr ¿ 0 ? etMem[mnr − 1] : ⊥ ) ;
start := val .
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Here, we use a conditional expression ( ? : ) as in the language C. Note that, formally,
mnr and start are history variables, but that they serve as prophecy variables. For
instance, etSno[cnt+1] holds the value of hiSno[cnt+1] that has not yet been written.
One could say that, when the prophet can read eternity, his prophecies become history.

6.3. The state machine

In order to formulate and verify invariants, we have to pin down the atomic com-
mands precisely. We therefore number them and indicate the Qow of control by goto
commands. As usual, absence of goto means a jump to the next command. Note that
every label stands for a single atomic command that may range over several lines. In
the invariants, we use a private variable pc as the program counter that holds the label
of the next atomic command.

The environment has three atomic commands that it executes repeatedly. In principle,
unknown keys cannot have private variables. We model them however with pc= 0. It
is also convenient to initialize the ghost variables of unknown keys by

turn = cnt = nr = mnr = 0 ,
start = val = ⊥ .

An unknown key becomes known and is initialized by executing the command at
pc= 0. We initialize tlist := ∅ for convenience in the invariants. The states with turn= 1
and 2 are represented as the locations with pc= 10 and 15, respectively. The environ-
ment’s activity is thus represented by

0 res := A ; ownset := ∅ ; tlist := ∅ ;
turn := 1 ; goto 10 ;

10 choose evf ¿ 0 ; nr := 0 ; sysAb := false ;
inv := B ; turn := 3 ; goto 20 ;

15 evf := evf − 1 ;
choose inv ∈ Inv ∪ {E; A} with (evf6 0 ⇒ inv ∈ {E; A}) ;
accessed := accessed ∪ |inv| ; turn := 3 ; goto 20 .

The database distributes the invocations at 20 and handles invocation B at 21.

20 if inv = B then goto 21
elsif inv = A then goto 40
elsif inv = E then goto 50
else goto 30 $ ;

21 Prophecy ; (see Section 6.2)
res := B ; turn := 2 ; goto 15 .

In the ordinary invocations of a successful transaction, we treat the speci5cation variable
val as a copy of the implementation variable pridb. The justi5cation of this will be the
most diRcult part of the veri5cation. In accordance with alternative (C) of Adb, the
speci5cation variable sysAb is set when Acquire-L fails. We thus combine the code
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of owns and handle in

Modify
30 (iob; iv) := inv ; if iob ∈ ownset then goto 33 $ ;
31 if owner[iob] = ⊥ then owner[iob] := self

else sysAb := true ; goto 40 $ ;
32 ownset := ownset ∪ {iob} ;

pridb[iob] := db[iob] ;
33 choose (res; w) ∈ ObN(iv; pridb[iob]) ;

pridb[iob] := w ; if val �= ⊥ then val[iob] := w $ ;
turn := 2 ; goto 15 .

The conditional modi5cation of val in 33 is motivated by speci5cation SpI:k in 4.4
and the de5nition of DbF(i;⊥).

We duplicate the calls of releaseAll in aborting and endTrans. For the ease of the
invariants, we replace the for loops that cannot be regarded as atomic with while loops.
The while commands 41, 51 and 52 below are the atomic commands to execute the
body once and go back to the start of the loop if the guard holds, and to go to the
next command if the guard is false.

40 cnt := cnt + 1 ; hiSno[cnt] := 0 ;
41 while ownset �= ∅ do

remove some o from ownset ; owner[o] := ⊥ od ;
42 res := A ; accessed := ∅ ; mnr := 0 ;

start := ⊥ ; val := ⊥ ; turn := 1 ; goto 10 .

After incorporation of releaseAll, procedure endTrans becomes:

50 Commit ; (see Section 6.1)
51 while tlist �= ∅ do

remove some o from tlist ; db[o] := pridb[o] od ;
52 while ownset �= ∅ do

remove some o from ownset ; owner[o] := ⊥ od ;
53 res := E ; accessed := ∅ ; mnr := 0 ;

start := ⊥ ; val := ⊥ ; turn := 1 ; goto 10 .

In 42 and 53, the set accessed is made empty in accordance with speci5cations SpA:k
and SpE:k in 4.4. We also reset the ghost variables mnr to 0 and start and val to ⊥.
This is allowed by the speci5cations and convenient for the veri5cation.

The level of atomicity is justi5ed by two observations. Firstly, although the environ-
ment and the database component at any key are diPerent processes that share several
private variables, they do not interfere since they are controlled by a single program
counter pc. Secondly, the only non-auxiliary variables shared by all keys are db and
owner, which are accessed only in 31, 32, 41, 51, and 52. The double access of owner
in 31 is justi5ed by the atomicity postulated for Acquire-L. The accesses in 32, 41, 51,
and 52, are single and can therefore be regarded as atomic. Alternatively, the atomicity
of the accesses of db in 32 and 51 can also be justi5ed by proving (with the invariants
Nq1 and Nq5 in 6.7 below) that the key holds the lock of the object.
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At this point, the reader should have veri5ed that the state machine, when projected
to the implementation variables db, owner, inv, turn, res, ownset, and pridb, faith-
fully represents program of Section 5 and that its commands 0, 10, and 15 represent
command Env of the environment (see 4.2). In the next subsection, we deal with the
question whether it satis5es the speci5cation of 4.4.

We 5rst investigate the state machine’s fairness properties. The only backward jumps
in this code are those from 21, 33, 42, and 53 to 10 or 15. The loops in 41, 51 and 52
are bounded by the sizes of the 5nite sets tlist and ownset. All other commands end
with a forward jump or are followed by a next command. It follows that, for every key
k with pc:k =∈ {0; 10; 15}, the database process at k needs to do only a bounded number
of steps to establish pc:k ∈ {10; 15}. This justi5es the concrete fairness assumption

Fconc0 : ✷✸(pc:k ∈ {0; 10; 15}) .

In a transaction, the environment eventually chooses all invocations equal to E or A
because of evf. Since these invocations are answered by termination of the transaction,
it follows that all transactions eventually terminate, i.e.

Fconc1 : ✷✸(pc:k ∈ {0; 10}) .

In the mechanical proof, this argument requires more attention.

6.4. The global proof and derived proof obligations

At this point we have rewritten the program of Section 5 and decorated it with
actions on ghost variables in such a way that it can be compared with the speci5cation
of Section 4. We now reduce the correctness of the program to seven proof obliga-
tions Dq0; : : : ;Dq6. The obligations Dq0 and Dq1 are easily settled. The obligations
Dq2; : : : ;Dq6 are treated in Sections 6.5 up to 6.8.

To summarize what we have done so far, let K0 be the parallel composition of
the environment Env with the implementation Cbd of Section 5. In Section 6.1, we
extended K0 with history variables gnr, hiMem, cnt, hiSno to a speci5cation K1,
with a history extension K0 −. K1. By adding eternity variables etMem and etSno
with behaviour restrictions Rq0 and Rq1, we got a speci5cation K2 with an eternity
extension K1 −. K2. Note that, according to the de5nition in Section 2.4, all states of
K2 satisfy the behaviour restrictions Rq0 and Rq1. So, these predicates are invariants,
even tautologies. We 5nally extended K2 with history variables start, val, nr, accessed,
sysAb, mnr, and actor, say to speci5cation K3. The composition yields a re5nement
extension K0 −. K3.

Now let L be the abstract speci5cation with next-state relation STEP of Section 4.4.
In order to compare K3 with L, we form the forgetful function fg : states(K3) →
states(L) that removes all variables that do not occur in L, viz. db, owner, hiMem, pc,
iob, iv, pridb, ownset, tlist, evf, cnt, hiSno, etSno, and mnr. Suppose for the moment
that fg is a re5nement mapping from K3 to L. It would follow that the composition
of the re5nement extension K0 −. K3 with the re5nement mapping fg would be a
simulation K0 −. L. This composition treats the visible variables inv:k, res:k, turn:k
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as the identity relation. Therefore, Theorem 2 would imply that the concrete program
K0 implements speci5cation L.

Unfortunately, fg is not a re5nement mapping, since K3 has states that can do
steps that do not correspond via fg to steps in L. We claim that these states do not
occur in behaviours of K3. We can therefore save the argument by constructing an
invariant D of K3 such that the restriction of fg to D is a re5nement mapping from the
restricted speci5cation K3D to L. Since the invariant yields a simulation K3 −. K3D,
the previous argument suRces to prove that K0 implements the abstract speci5cation
L. It thus remains to construct an invariant D of K3 such that the restriction of fg to
D is a re5nement mapping from K3D to L.

The state space states(L) is spanned by the visible variables inv:k, res:k, and turn:k,
and the speci5cation variables gnr, etMem, accessed:k, start:k, val:k, nr:k, and sysAb:k.
Since these variables are initialized in K3 and L in the same way, fg maps start(K3)
to start(L).

We now verify that fg maps steps of K3 to steps of L. It is easy to see that the
instructions at 20, 30, 32, 40, 41, 51, 52 correspond to stuttering steps of L. The
instructions 0, 10, 15 are executed by the environment. Therefore, it remains to prove
that the instructions at 21, 31, 33, 42, 50, 53 are mapped to steps of L. We show that
these instructions are mapped to steps of L because of certain invariants Dq0; : : : ;Dq6.
Most of these invariants are not proved here, but only announced as proof obligations
to be dealt with later.

Predicate STEP of Section 4.4 has the constituent predicates SpB, SpI, SpA, SpE,
SpS, and SpC. Several of these predicates contain the conjunct turn= 3. We therefore
observe that our system has the easy invariant

Dq0 : pc:k ¿ 15 ⇒ turn:k = 3 .

The step at 21 corresponds to alternative SpB:k because of Dq0 and the easy
invariant

Dq1 : pc:k = 21 ⇒ inv:k = B .

Instruction 31 is mapped to a stuttering step if owner[iob:k] = ⊥. Otherwise it contains
an assignment to sysAb, which corresponds to the alternative SpC:k if we have the
invariant

Dq2 : pc:k = 31 ∧ owner[iob:k] �= ⊥ ⇒ conBict(k) .

We claim that instruction 33 corresponds to alternative SpI:k. This gives us the obli-
gation to prove that (res; val)+ ∈DbF(inv; val) holds at instruction 33. If val= ⊥ then
val+ = ⊥ and hence (res; val)+ ∈DbF(inv; val) because of the de5nition of DbF(i;⊥).
Since inv= (iob; iv), the de5nition of DbF in terms of ObN implies that it suRces to
prove that, if val �=⊥, instruction 33 satis5es

(res+; val+[iob]) ∈ ObN(iv; val[iob])
∧ (∀ p : p �= iob : val[p] = val+[p]) .
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This would follow from val[iob] = pridb[iob]. It therefore suRces to prove the invariant
Dq3 : pc:k = 33 ⇒ inv:k = (iob:k; iv:k)

∧ (val:k = ⊥ ∨ val:k[iob:k] = pridb:k[iob:k]) .

Instruction 42 satis5es SpA:k (abortion) if we have the invariant

Dq4 : pc:k = 42 ⇒ nr:k = 0 ∧ (inv:k = A ∨ sysAb:k) .

Instruction 50 corresponds to SpS:k (serialization) if we have the invariant

Dq5 : pc:k = 50 ⇒ nr:k = 0 .

Instruction 53 corresponds to SpE:k (termination) if we have the invariant

Dq6 : pc:k = 53 ⇒ inv:k = E ∧ nr:k ¿ 0
∧ start:k = etMem[nr:k − 1] ∧ val:k = etMem[nr:k] .

Let D be the universal quanti5cation over all keys k of the conjunction of Dq0 up
to Dq6. Function fg maps every step of speci5cation K3 that starts in a state of D to
a step of the abstract speci5cation L. Every behaviour of K3 is therefore mapped to
an initial execution of L. Every behaviour of K3 satis5es property Fconc0 and hence
Fdat because of Dq0, and is therefore mapped to a behaviour of L. This implies that
fg is a re5nement mapping from the restricted speci5cation K3D to L.

The easy invariance of Dq0 and Dq1 was noticed above. In the next sections we
prove that Dq2, Dq3, Dq4, Dq5, Dq6 are indeed invariants. We 5rst apply standard
techniques that yield forward invariants and prove Dq2, Dq4, and Dq5. The remain-
ing cases Dq3 and Dq6 need the behaviour restrictions and backward invariants, i.e.,
applications of Lemmas 0 and 1 of Section 2.2.

As sketched in Section 7 below, the claim that the above proof obligations Dq0 up to
Dq6 together imply that the state machine of Section 6.3 satis5es speci5cation STEP
of Section 4.4 is mechanically proved in Part 3 of the mechanical proof sdi.events
[9].

6.5. The forward invariants

In this section we settle the proof obligations Dq2, Dq4, Dq5, and prove some
invariants needed for Dq3 and Dq6. All invariants mentioned in this section are forward
invariants, proved by standard techniques. For simplicity in the invariants, we use the
convention that ownset:k and tlist:k are empty for unknown keys. The results of this
subsection are mechanically proved in Part 4 of sdi.events [9].

Predicate Dq2 asserts the existence of a conQict when some key, say q, is at 31
and r = owner:(iob:q) is a genuine key (r �= ⊥). We prove this conQict by showing
that iob:q is a common element of accessed:q and accessed:r and that q �= r. The 5rst
assertion follows from the invariants

Jq0 : pc:k ∈ {31; 32; 33} ⇒ iob:k ∈ accessed[k] ,
Jq1 : owner[o] = k �= ⊥ ⇒ o ∈ accessed[k].
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Note that in such invariants we universally quantify over all free variables (here k and
o). The inequality q �= r follows from the easy invariants

Jq2 : pc:k ∈ {31; 32} ⇒ iob:k =∈ ownset:k ,
Jq3 : owner[o] = k �= ⊥ ∧ o =∈ ownset:k ⇒ pc:k = 32 ∧ o = iob:k .

Indeed, Dq2 follows from Jq0, Jq1, Jq2, and Jq3. It therefore remains to prove that
these predicates are invariants. They hold initially, since then pc:k = 0 and owner[o] =
⊥. Predicate Jq0 is preserved at 30 because of the easy invariant

Jq4 : pc:k ∈ {20; 30} ∧ inv = (o; i) ⇒ o ∈ accessed[k] .

Jq1 is preserved at 31 because of Jq0. Its preservation at 42 and 53 follows from
Jq3 together with the easy invariant that ownset is empty outside and at the end of
transactions:

Jq5 : pc:k ∈ {0; 10; 42; 53} ⇒ ownset:k = ∅ .

Preservation of Jq2 and Jq3 is straightforward. This concludes the proof of Dq2.
We turn to the proofs of Dq4 and Dq5. With respect to nr, it is easy to see the

invariance of

Kq0 : pc:k =∈ {0; 10; 51; 52; 53} ⇒ nr:k = 0 .

Since a key can only arrive at 40 from 20 or 31, we also have the easy invariant

Kq1 : pc:k ∈ {40; 41; 42} ⇒ inv:k = A ∨ sysAb:k .

Clearly, Dq4 follows from Kq0 and Kq1, while Dq5 follows from Kq0.
It remains to consider Dq3 and Dq6. For Dq3, it is easy to prove the invariants

Kq2 : pc:k ∈ {30; 31; 32; 33} ⇒ inv:k ∈ Inv ,
Kq3 : pc:k ∈ {31; 32; 33} ⇒ inv:k = (iob:k; iv:k) .

Preservation of Kq3 at 30 follows from Kq2. We postpone the treatment of the second
conjunct of Dq3, since it involves the variable val.

The easy part of Dq6 consists of the two easy invariants

Kq4 : pc:k ∈ {50; 51; 52; 53} ⇒ inv:k = E ,
Kq5 : pc:k ∈ {51; 52; 53} ⇒ nr:k = hiSno:k[cnt:k] ¿ 0 .

It remains to analyse the values of start and val at 33 and 53 for Dq3 and Dq6.

6.6. Reduction of the proof obligations

In this section, we settle the remaining proof obligations under assumption of one
postulated invariant Yq0. The assertions in this subsection have been formally proved
in Part 5 of sdi.events [9].

Since start is modi5ed less often than val, we begin with the analysis of start.
Variable start gets its value at 21 by means of mnr. We therefore 5rst prove
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the straightforward invariants

Lq0 : start:k = (mnr:k = 0 ? ⊥ : etMem[mnr:k − 1]) ,
Lq1 : pc:k ∈ {15; 30; 31; 32; 33; 40; 50} ∨ (pc:k = 20 ∧ inv:k �= B)

⇒ mnr:k = etSno:k[cnt:k + 1] ,
Lq2 : pc:k ∈ {41; 42; 51; 52; 53} ⇒ mnr:k = etSno:k[cnt:k] .

Preservation of Lq2 at 40 and 50 follows from Lq1.
At this point, we use behaviour restriction Rq1 which says that etSno:k

[i] = hiSno:k[i] for all i6cnt:k. Together with the invariants Lq2 and Kq5, this implies
the derived invariant

Aq0 : pc:k ∈ {51; 52; 53} ⇒ mnr:k = nr:k .

Clearly, Lq0, Aq0, and Kq5 together imply

Aq1 : pc:k ∈ {51; 52; 53} ⇒ start:k = etMem[nr:k − 1] .

This is the assertion about start in Dq6. Below, we also need that start diPers from
⊥ at these locations. Since behaviour restriction Rq0 gives etMem[i] = hiMem[i] for
i6gnr, we note the easy invariants

Lq3 : nr:k 6 gnr ,
Lq4 : i 6 gnr ⇒ hiMem[i] �= ⊥ .

Using Aq1 together with Rq0, Lq3, and Lq4, we thus obtain

Aq2 : pc:k ∈ {51; 52; 53} ⇒ start:k �= ⊥ .

The key to the analysis of val for Dq3 and Dq6 is the invariant

Yq0 : o ∈ ownset:k ∧ val:k �= ⊥ ⇒ val:k[o] = pridb:k[o] .

The proof of this invariant will require backward invariants and is therefore postponed
to the next subsection. It is clear that Dq3 follows from Yq0, Kq3, and the easy
invariant

Lq5 : pc:k = 33 ⇒ iob:k ∈ ownset:k .

On the other hand, Dq6 is easily seen to follow from Kq4, Kq5, Aq1, and the postulate

Yq1 : pc:k ∈ {52; 53} ⇒ val:k = etMem[nr:k] .

Invariance of Yq1 is threatened only at 51. It is preserved at 51 because of the derived
invariant

Aq3 : pc:k = 51 ⇒ val:k = etMem[nr:k] .

Predicate Aq3 is proved by considering the values of the separate objects in the
databases. We 5rst claim the invariants

Mq0 : val:k = ⊥ ≡ start:k = ⊥ ,
Mq1 : start:k �= ⊥ ∧ o =∈ ownset:k ∧ pc:k =∈ {41; 42; 52; 53}

⇒ val:k[o] = etMem[mnr:k − 1][o] .



W.H. Hesselink / Science of Computer Programming 51 (2004) 47–85 77

Preservation of Mq0 is easy. Preservation of Mq1 at 33 follows from Lq5.
We now observe that Mq0, Mq1, Yq0, and Aq2, together imply

pc:k = 51
⇒ val:k[o] = (o ∈ ownset:k ? pridb:k[o] : etMem[mnr:k − 1][o]) .

On the other hand, we have the complicated but straightforward invariant

Mq2 : pc:k = 51
⇒ hiMem[nr:k][o] = (o ∈ ownset:k ? pridb:k[o] : hiMem[nr:k − 1][o]) .

Indeed, Mq2 precisely expresses the assignment to hiMem in 50.
Now Aq3 follows by comparison with Mq2, using Aq0, Rq0, Kq5, and Lq3. At this

point, we use that the databases val:k and etMem[nr:k] are functions on objects which
are equal if (and only if) they yield the same values for every object argument. This
concludes the proof of Aq3 and thus of Yq1 and Dq6.

6.7. Preparation of the proof of Yq0

In preparation of the proof of Yq0, we note that pridb gets its values from the
shared variable db. So, we need to relate db with the ghost variables. The assertions
in this subsection have been formally proved in Part 6 of sdi.events [9]. We claim
the invariant

Nq0 : o =∈ tlist:(owner[o]) ⇒ db[o] = hiMem[gnr][o] .

Here, we introduce the convention that tlist:k and ownset:k are always empty for the
non-existing key ⊥. So, if object o has no owner, Nq0 asserts db[o] = hiMem[gnr][o].
Predicate Nq0 holds initially, since then tlist:k is empty and db= db0= hiMem[0] and
gnr= 0. Predicate Nq0 is preserved in 50, 41, and 52 because of the invariants

Nq1 : o ∈ ownset:k ⇒ owner[o] = k ,
Nq2 : tlist:k = ∅ ∨ pc:k = 51 .

It is preserved at 51 because of the invariants

Nq3 : tlist:k ⊆ ownset:k ,
Nq4 : pc:k = 51 ∧ o ∈ ownset:k ⇒ pridb:k[o] = hiMem[gnr][o] .

Predicate Nq1 justi5es the assert in Release-L of Section 5. It is an invariant since it
is preserved at 32 because of

Nq5 : pc:k ∈ {32; 33} ⇒ owner[iob:k] = k .

Preservation of Nq2 is easy. Preservation of Nq3 at 41 and 52 follows from Nq2.
Predicate Nq4 is preserved at 50 because of Nq1. Predicate Nq5 is preserved at 30,
41, and 52 because of Nq1.

In the proof of Yq0, we also need two other relatively easy invariants. Firstly, as a
variation and consequence of Jq5, we have

Pq0 : pc:k = 21 ∨ (pc:k = 20 ∧ inv:k = B) ⇒ ownset:k = ∅ .
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As a variation of Kq5 we have the invariant

Pq1 : pc:k ∈ {41; 42} ⇒ hiSno:k[cnt:k] = 0 .

If pc:k ∈ {41; 42}, then Lq2, Rq1, and Pq1 imply that mnr:k = etSno:k[cnt:k] =
hiSno:k[cnt:k] = 0. By Lq0, this gives us start:k = ⊥, thus proving the derived in-
variant

Aq4 : pc:k ∈ {41; 42} ⇒ start:k = ⊥ .

The mechanical proof for the backward invariants below requires progress. This is
based on the invariant

Pq2 : pc:k = 15 ⇒ evf:k ¿ 0 .

Preservation of Pq2 at 21 and 33 follows from Dq1, Kq2 and the easy invariant

Pq3 : pc:k =∈ {0; 10} ∧ evf:k = 0 ⇒ inv:k ∈ {E; A} .

To summarize, using the star * as a wild card, all predicates Dq0, Dq1, Dq2, Dq4, Dq5,
Jq*, Kq*, Lq*, Mq*, Nq*, Pq* are forward invariants, independently of the behaviour
restrictions Rq0 and Rq1. The behaviour restrictions and the unproved invariant Yq0
have only been used in the proofs of the derived invariants Aq* and in the proof of
invariance of Yq1.

6.8. Backward invariants

We turn to the proof of Yq0. We leave the comfortable realm of forward invariants.
So, all invariants introduced in this section are not forward invariants. The results of
this subsection are mechanically proved in Parts 7 and 9 of sdi.events [9].

The invariance of Yq0 is proved by means of Lemma 0 of Section 2.2, but the
auxiliary invariant needed will be proved with Lemma 1. Predicate Yq0 holds initially
since then ownset is empty. It is preserved at 21 because of Pq0. Preservation of Yq0
at 32 follows from Mq0 and the new postulate

Aq5 : pc:k = 32 ∧ start:k �= ⊥ ⇒ val:k[iob:k] = db[iob:k] .

The left-hand side of the consequent of Aq5 equals etMem[mnr:k − 1][iob:k] because
of Jq2 and Mq1. The right-hand side equals hiMem[gnr][iob:k] because of Nq0, Nq2,
and Nq5. Therefore, Aq5 is equivalent to the predicate

Qz0 : pc:k = 32 ∧ start:k �= ⊥
⇒ etMem[mnr:k − 1][iob:k] = hiMem[gnr][iob:k] .

This predicate is not a forward invariant, but it is an invariant. This is proved by
means of Lemma 1. Indeed, it is implied by the attractor of Fconc0, since that implies
that always eventually pc:k �= 32. Backward stability is veri5ed by means of the second
backward invariant

Qz1 : start:k �= ⊥ ∧ o ∈ ownset:k ∧ pc:k =∈ {51; 52}
⇒ etMem[mnr:k − 1][o] = hiMem[gnr][o]
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and the implication

(B0) Qz0+ ∧ Qz1+ ∧ Nq1 ∧ Nq5 ⇒ Qz0 .

Implication (B0) is proved as follows. Assume that Qz0 does not hold and that key p
does a step that establishes Qz0, while Qz1 also holds in the postcondition. First, as-
sume p �= k. Then pc:k = 32 and p must execute 50 to modify hiMem[gnr][iob:k]. This
implies iob:k ∈ ownset:p. Then Nq1 and Nq5 together imply p= owner[iob:k] = k. It
remains to assume p= k. Then the step modi5es pc:k and establishes Qz0. This implies
that k executes 32 in a state with start:k �= ⊥ while the consequent of Qz0 is false.
Since this step adds iob:k to ownset:k, we see that Qz1 is false in the postcondition,
contradicting the assumption. This proves (B0).

To prove that Qz1 is a backward invariant, we 5rst note that it is implied by the
attractor of Fconc1 because of Jq5: since pc:k ∈ {0; 10} holds in5nitely often, ownset
is in5nitely often empty, and then Qz1 holds, for given k and o. Backward stability
of Qz1 is expressed by the implication

(B1) Qz1+ ∧ Rq1+ ∧ Rq0 ∧ Jq5 ∧ Lq1 ∧ Nq1 ∧ Pq0 ∧ Aq4
⇒ Qz1 ,

which is proved as follows. Given k and o, suppose Qz1 is false and is established
by a step of key p. First assume p �= k. Then the antecedent of Qz1 holds in the pre-
condition and in the postcondition, and key p executes 50 to modify hiMem[gnr][o].
It follows that object o is in ownset:k and in ownset:p. Now Nq1 implies p= k.
Therefore, assume p= k. Since Qz1 is false in the precondition, the antecedent of
Qz1 then holds. By Jq5 and Pq0, this implies that pc:k =∈ {0; 10; 21; 42; 53}. Also,
pc:k =∈ {51; 52}, and pc:k �= 41 by Aq4. It remains to consider pc:k = 50. The precon-
dition has mnr:k = etSno:k[cnt:k + 1] by Lq1. In terms of the precondition, command
50 sets hiSno:k[cnt:k + 1] to gnr + 1. Using that Rq1 holds in the postcondition, we
see that the precondition satis5es mnr:k −1 = gnr. Since etMem[gnr] = hiMem[gnr] by
Rq0, this shows that Qz1 holds in the precondition, a contradiction that proves (B1).

So, by Lemma 1, the predicates Qz0 and Qz1 are both invariants. Consequently, Aq5
and Yq0 are also invariants. This concludes the correctness proof of the algorithm.

7. The mechanical proof

In order to illustrate the feasibility of the approach and to verify the validity of the
results, I undertook the construction of a mechanical proof with the theorem prover
NQTHM 1992 of [3]. Actually, I 5rst used it as the standard tool to verify invariants,
and I stopped at the emergence of eternity variables since I mistakenly thought that
eternity variables would require a higher-order logic not available in NQTHM. At
MPC’02, Ernie Cohen convinced me, however, that it could and should be done with
the same prover.

The resulting mechanical proof [9] serves as a witness for the soundness and fea-
sibility of our approach. It also sheds light on some of the formal details of the
argument.
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We use the set-up for concurrency veri5cation that we described in [6]. This set-up
had to be extended at several points. Since the values of the eternity variables depend
on the speci5c behaviour, we need the behaviour to construct the values of the eternity
variables and we need these values to construct the behaviour. For humans, this raises
the danger of circular reasoning, but one cannot fool a sound theorem prover like
NQTHM.

7.1. A behaviour and its extension

To avoid circular reasoning, we distinguish three levels for the variables in the
system. The level Le0 of the concrete implementation has the shared variables db and
owner, and the private variables inv, res, turn, pc, evf, pridb, iob, iv, ownset, tlist.

The second level Le1 is the history extension with the shared variables gnr and
hiMem and the private variables cnt and hiSno, which serve to approximate the eternity
variables etMem and etSno. In the mechanical theory, we regard these eternity variables
not as part of the state space, but as constants or rather, since they are in5nite arrays,
as externally given functions.

The third level Le2 is again a history extension, now with the remaining ghost
variables accessed, sysAb, nr, mnr, start, val, and actor.

The 5rst extension of our set-up for the theorem prover was to include the possibility
to project a program and its state space to a subset of the spanning variables when
the modi5cations of retained variables only depend on retained variables, and then to
prove that the program steps project correspondingly. It is easy to prove that the three
levels are correct extensions: the modi5cations of variables in level Le:i only depend
on variables in Le:i.

We postulate some scheduling function round : N→Keys with the property that
every occurring key is scheduled in5nitely often. This means that, for every n∈N, the
set of indices i with round(i) = round(n) is in5nite. We then construct a corresponding
behaviour xs of the system of level Le1 such that xs0 is the initial state of Le1 and that
state xsn+1 is obtained from xsn by a step of key k = round(n+1). For the ease of the
proof of progress, the modelling ensures that this step is nonstuttering unless pc:k = 10.

In order to de5ne the eternity variables etMem and etSno, we prove, for all numbers
i, m, n and keys k,

i 6 gnr(xsm) ∧ i 6 gnr(xsn) ⇒ hiMem[i](xsm) = hiMem[i](xsn) ,
i 6 cnt:k(xsm) ∧ i 6 cnt:k(xsn) ⇒ hiSno:k[i](xsm) = hiSno:k[i](xsn) .

Here, we regard these program variables of level Le1 as state functions, which are
applied to the states xsm and xsn. These implications imply that we can de5ne func-
tions etMem and etSno:k on the natural numbers such that, for all numbers i, m and
keys k,

Rq0(xsm) : i 6 gnr(xsm) ⇒ hiMem[i](xsm) = etMem(i) ,
Rq1(xsm) : i 6 cnt:k(xsm) ⇒ hiSno:k[i](xsm) = etSno:k(i) .

In other words, for given behaviour xs, there exist values for etMem and etSno that
satisfy the behaviour restrictions Rq0 and Rq1. Actually, this step requires application
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of a form of the axiom of choice, the soundness of which we cannot prove with the
theorem prover NQTHM.

The functions etMem and etSno obtained in this way are now used in the system
of level Le2. Let ys be the behaviour of this system obtained by the same scheduling
and the same nondeterministic choices as xs. It is easy to see that, for every n, state
xsn is the projection of ysn to the state space of Le1.

7.2. The relational speci;cation satis;ed

As in our previous mechanical proofs, the state machine of Section 6.3 is treated
as an essentially deterministic automaton, but for the occurrence of a hidden variable
oracle that is consulted and modi5ed whenever a nondeterministic choice has to be
made, e.g. see [6, 1.5]. This is more convenient than a relational representation since
with this set-up the veri5cation of invariants is a matter of rewriting. It also makes it
relatively easy to verify that the algorithm used in the prover correctly represents the
algorithm discussed here.

In order to mechanize the argument given in Section 6.4, we develop a method to
express the speci5cation of Section 4.4 syntactically, in such a way that it can be
interpreted by the prover. For this purpose, we de5ne an NQTHM function eval2
that can interpret relations between the state space and the new state space and that
can interpret function symbols unchanged for 0, and or for ∨, and and for ∧, of
arbitrary arity. This function is specialized to a function interpret for the local view
of a single process (key).

The speci5cation STEP of Section 4.4 is represented by the de5nition of a syntac-
tic constant sdi-spec with constituents for the six predicates SpB up to SpC. For
example, predicate SpB is represented by

(defn sp-begin ()
’(and (equal turn 3)

(equal (new turn) 2)
(unchanged gnr accessed nr sysAb)
(equal inv ’begin)
(equal (new res) ’begin)
(equal (new start) (new val)) ) )

The new-state operator, used in turn+, res+, etc., is represented by the function symbol
new. The symbol B is represented by ’begin. The semantic function that relates the
old state x with the new state y as seen from process q is de5ned by

(sdinext q x y) = (interpret (sdi-shared) (sdi-spec) q x y)
where sdi-shared is the list of shared variables db, owner, gnr, hiMem, and actor.

Part 3 of the mechanical proof sdi.events in [9] proves that the proof obligations
Dq0 up to Dq6 are enough to prove that the implementation of Section 6.3 satis5es
step relation sdinext.

7.3. Analysis of steps

The standard methods of concurrency veri5cation, see e.g. [5,6,13,15,17], easily yield
that all states ysn of the behaviour ys satisfy the forward invariants of Section 6.5, and
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in particular the proof obligations Dq0, Dq1, Dq2, Dq4, and Dq5. Actually, we had
to use some new techniques to allow for unboundedly many keys, but these were not
very surprising and, presumably, comparable to those used in [16].

Standard techniques were also suRcient to prove the two backward stability asser-
tions (B0) and (B1) of Section 6.8. Apart from the implicit dependence via the eternity
variables, all these results are independent of the particular behaviour.

7.4. Progress formalized with expanding functions

The next step is the application of Lemma 2 of Section 2.2. With a higher-order
prover, e.g., as PVS, it would be preferable to prove Lemma 2 5rst and then apply it.
With NQTHM, however, we prefer to prove the particular application directly, since the
existential quanti5cation hidden in the condition Beh(K) ⊆✷✸[[A ]] must be expressed
constructively. Our constructive formalization is based on expanding functions, de5ned
as follows.

A function f : N→N is called expanding iP n6f(n) for all n. It is called strictly
expanding iP n¡f(n) for all n. Most of our progress properties are proved with

Theorem. Let functions P, Q : N→B and g, vf : N→N be given such that g is
expanding and

(a) P(n) ⇒ P(n + 1) ∨ Q(n + 1),
(b) P(n) ⇒ vf(n) ¿ vf(n + 1),
(c) P(n) ∧ P(g(n)) ⇒ vf(g(n)) ¿ vf(g(n + 1)).

Then there is an expanding function G with P(n) ⇒ Q(G(n)), which can be con-
structed explicitly.

This theorem is mathematically fairly obvious and can also be readily proved with
NQTHM.

The requirement that, for every n∈N, the set of indices i with round(i) = round(n)
is in5nite, is formalized by postulating the existence of a strictly expanding function
h : N→N with round(h(n)) = round(n) for all n.

For any key k, the fairness condition Fconc0: ✷✸(pc:k ∈ {0; 10; 15}) is formalized
by means of an expanding function H with the property pc:k(ysH (n)) ∈ {0; 10; 15} for
all numbers n. This is proved by a direct application of the above theorem with
vf(n) = vfk(ysn) where the state function vfk is given by

vfk = ( pc:k ∈ {20; 50} ? 2 · (#ownset:k) + 60 − pc:k
: pc:k = 51 ? #ownset:k + #tlist:k + 60 − pc:k
: pc:k ∈ {30; 31; 40; 41; 42; 52; 52} ? #ownset:k + 60 − pc:k
: pc:k ∈ {32; 33} ? 60 − pc:k
: pc:k ∈ {0; 10; 15} ? 0 ) .

It is clear that vfk remains constant when some key �= k takes a step and that it decreases
when pc:k =∈ {10; 15} and key k itself takes a step.
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For any key k, the fairness condition Fconc1: ✷✸(pc:k ∈ {0; 10}) is formalized and
sharpened by constructing an expanding function K with the property

pc:k(ysn) �= 0 ⇒ pc:k(ysK(n)) = 10 .

The mechanical proof of this result is based on the above theorem, the previous result,
and the ghost variable evf that is decremented by instruction 15. The invariant Pq2
implies that it can be used to construct a variant function.

In order to prove validity of backward invariants, we prove the following constructive
version of Lemma 2.

Theorem. Consider functions Q, R : N→B such that Q(n+1) ⇒ Q(n) and R(n) ⇒ Q
(n) for all n. Let g be an expanding function such that ¬R(n) ⇒ Q(g(n)) for all n.
Then Q(n) holds for all n∈N.

This theorem is used in conjunction with (B0) and (B1) to prove that all states ysn
satisfy the predicates Qz0 and Qz1. Using standard arguments we 5nally obtain that all
states ysn satisfy the other invariants mentioned in Section 6.8 and the proof obligations
Dq3 and Dq6. This completes the proof that behaviour ys satis5es the speci5cation of
Section 4.4.

7.5. Overview of the proof

The proof consists of two NQTHM event 5les newprelude and sdi. Such event
5les are written by the human veri5er and veri5ed by NQTHM. They contain all hints
the prover needs for the veri5cation. So, a human reader with access to the prover can
easily inspect all details of the proof. The 5le newprelude is the prelude for shared-
variable concurrency. It has about 800 lines, mainly devoted to extension with history
variables. The 5le sdi has about 4960 lines.

The 5rst 800 lines of sdi are devoted to the algorithm and its two behaviours as
discussed in Section 7.1. Roughly 600 lines are needed for the semantic lemmas that
describe how each variable is modi5ed in every step. The syntactic form of the al-
gorithm is easy to compare with the description in this paper. The semantic lemmas
make the veri5cations of invariants much faster and much more convenient. Another
500 lines are devoted to the speci5cation as described in Section 7.2. This part culmi-
nates in the seven proof obligations Dq*.

The main ePort is in the standard analysis described in Section 7.3. It takes 400 lines
to construct and prove the forward invariants of Section 6.5, Section 6.6 requires around
350 lines. The treatment of Section 6.7 together with the construction and initialization
of one global strong invariant requires 870 lines. The proof of Yq0 and the implications
(B0) and (B1) of Section 6.8 require roughly 500 lines. We 5nally need another 700
lines to prove progress and 200 lines for the validity of the backward invariants as
discussed in Section 7.4. This part concludes with the 5nal correctness assertion that
the nth step of behaviour ys as induced by the acting key (round (add1 n)) is
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conform the speci5cation:
(sdinext (round (add1 n)) (ys n) (ys (add1 n)))

Indeed, we count the states from 0 and the steps from 1.
NQTHM’s veri5cation of the complete events 5le takes less than nine minutes on

a Pentium 4. After that, minor modi5cations of the proof can be veri5ed or falsi5ed
much faster.

8. Conclusions

For the veri5cation of re5nement in concurrency, eternity variables form an important
and viable mechanism. In our case, the main burden is still done with history variables
and (standard) forward invariants, but critical parts are veri5ed with eternity variables.
Here safety can rely on progress arguments via backward invariants.

We needed eternity variables in the speci5cation of serializability since serializability
is expressed in terms of complete behaviours. It is therefore not surprising that we also
needed eternity variables in the proof. A second array of eternity variables etSno was
needed, however, to connect private data with the shared database.

The feasibility of the approach and the validity of the results are witnessed by the
mechanical veri5cation [9] with the 5rst-order theorem prover NQTHM.
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