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Abstract

We consider higher order corrections to thdactor of a bound proton in hydrogen atom and their consequences for a
magnetic moment of free and bound proton and deuteron as well as some other objects.
0 2003 Published by Elsevier B.V. Open access under CC BY license.
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Investigation of electromagnetic properties of particles and nuclei provides important information on
fundamental constants. In addition, one can also learn about interactions of bound particles within atoms and
interactions of atomic (molecular) composites with the media where the atom (molecule) is located. Since the
magnetic interaction is weak, it can be used as a probe to learn about atomic and molecular composites without
destroying the atom or molecule. In particular, an important quantity to study is a magnetic moment for either a
bare nucleus or a nucleus surrounded by electrons.

The Hamiltonian for the interaction of a magnetic momgmith a homogeneous magnetic fidddhas a well
known form

Hmagn=—n - B, @
which corresponds to a spin precession frequency
nw
hl)spinz YB, (2)

where ! is the related spin equal to eithey2lor 1 for particles and nuclei under consideration in this Letter.
Comparison of the frequencies related to two different objects allows to exclude the magnetiB fiedch
equations and to determine the ratio of their magnetic moments with an accuracy sometimes substantially higher
than that in the determination of the applied magnetic field.
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Fig. 1. SublevelEmagn(F, F;) of the hyperfine structure in the ground state of hydrogen atom in a homogenous magnefic field

To measure the magnetic moment of a given nucleus one has to compare it with a value of some probe magnetic
moment, which should be known or determined separately. For a significant number of most accurate measurements
the probe value is related to the magnetic moment of a free or bound proton and a crucial experiment on its
determinationis related to a proton bound in hydrogen atom [1,2]. Nuclear magnetic moments are usually presented
in units of nuclear magnetomy) [3,4], which is related to the proton magnetic moment via the relation

1
Hp = Z8pIN- 3

whereg,, is the protorg factor anduy = efr/2m .

The spin precession frequency was studied not only for a free proton, but also for the one bound in atoms or
molecules located in gaseous or liquid media. The magnetic moment agdati®r of a bound proton differ from
their free values (see, e.g., [5,6]). The purpose of this Letter is to re-evaluate in part available experimental data for
light atoms and in particular to determine thiéactor of a free protong,) and a proton bound in the ground state
of hydrogen atomg,,(H)) from experiment [2]. We also study the consequences of re-evaluaggnasfd similar
experiments for deuterium [7] and muonium [8].

The most accurate determination of ghéactor of a free proton was performed studying the hyperfine structure
of the hydrogen atom in the homogeneous magnetic field. The dependence of hyperfine sublevels of the ground
state in the hydrogen atom on the value of the magnetic Beliitected along the axis is shown in Fig. 1 (see,
e.g., [6]). The energies of hyperfine componeiisg( F, F;) of the Is state are described by

1 1 1 > 1
EmaglL,+D = 5(Ee — Ep)+ ZBnis. EmaglL,0)= 5/ (Ee + Ep)2+ Efyg— 7 Buts
1 1 1 1
Emagr(1, —1) = _E(Ee —Ep)+ ZEhfs, Emagr(0,0) = _E\/(Ee +Ep2+ Erz,fs— ZEhfs, 4)

whereE, = g.(H)upB andE, = g,(H)uy B are related to precession frequencies of electron and proton, and
up = eh/2m, is the Bohr magneton. The energy splittifigss is related to the hyperfine interval in the hydrogen
ground state known with high accuracy in frequency units.

The experiment [2] devoted to a measurement of splitting and shift of the hyperfine sublevels in hydrogen atom
due to the magnetic field led to the following result{1]

pe®) _ e n _ 6ea510705866), )

pnp(H) — gp(H) un

1 Here and further we ignore the direction of spin and magnetic moment and thus the sign gffsaees and ratios of magnetic moments.
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The result for the related ratio of the free magnetic moments derived in the experiment [2] and quoted in Ref. [1]
was based on a theoretical expression which contained relativistic and recoil corrections up to the third order in
either of three parameters, such as the free QED paramétgpearing due to the anomalous magnetic moment
of electron), the strength of the Coulomb poten#ial and the recoil parameter,. /m ,. All these terms are of pure
kinematic origin and were derived before (see, e.g., Ref. [9]).gfextors in hydrogen atom in terms of the free
g factors of the electron [10]

ge =2.002319304 37) (6)
and the protong),) are

_ (Za)? 3m, a(Za)?

ge(H)—ge'{l_ 3 |:1_§m_pi|+ - }, (7)
_ _a(Zot) _me 3+4a,

gp(H)—gpo{l 3 |:1 2m,, 1+ap:|} (8)

where for the anomalous magnetic moment of the proton we set 1.792847.... This value is taken from
Ref. [1]. It enters only small corrections (see, e.g., Eq. (8)) and any re-evaluation which can shift thegproton
factor on level of a part in Towill not affect those corrections.

These expressions applied to evaluations in Refs. [1,2] include only the terms up to the third order. However,
for the determination of the ratio of the magnetic moments at the level of a parf im@®igher order corrections
should be taken into account as well. The fourth order corrections are in part nuclear-spin-dependent. E.g., in the
case of hydrogen atoni & 1/2) the expression for higher-order terms corrections reads (cf. Ref. [11])

B (Za)2(L+ Z) ( me \?  5a(Za)? m, a?(Za)2  (Za)t
me\°( 1 Z3—4a,\ 97 3
sep® =gy {olzm (5 ) (-5~ G Tral) ~ mee @} o

After a proper substitution for,, g, anda,, the results for the leading terms in Egs. (7) and (8) can be applied
to any hydrogen-like atoms, while the higher-order corrections in Egs. (9) and (10) can be used only in the case of
the nuclear spin 2 (e.g., for the tritium atom and a hydrogen-like helium-3 ion). For the deuterium dtesi
the results for the higher-order terms differ from Eqgs. (7) and (8) and have to be properly corrected. E.g., following
Ref. [12], we obtain

B (Za)2(11Z +12) (m.\?  5a(Za)? m, a?(Za)2  (Za)t
Age(D)—ge' {_l—S(m_d) - Tm—d —(0289) X 77:2 - 12 }, (11)
me\2( 1 Z2-2a5\ 97 3
Aga(D)=gq- {a(za)<m—d> <—§ T3 1tay ) - 1—0801(201) }, (12)
where
h
ta = gapun = (1+ ad)e— (13)
mq

anday ~ —0.142987... .

There is only a single experiment [13] where the recoil part of the higher-order terms in Egs. (9) and (11) is
important. In this experiment the electron magnetic moments of hydrogen and deuterium [13] were compared. In
contrast, the non-recoil higher-order terms in Egs. (9) and (11) are not important for this isotopic comparison. The
accuracy of a similar experiment on hydrogen and tritium [14] was not high enough to be sensitive to the recoil
corrections in Eg. (9).
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An opposite situation appears in the experimental comparison of the nuclear magnetic moment and the electron
magnetic moment while studying, e.g., the hydrogen energy levels in Eq. (4). We note that only one higher-order
correction for eacly factor can contribute at a level close to a part iff 10

7 4
Ag.(H) = _( 10[2) ‘- 8e» (14)
97 3

The former equation owing a small numerical coefficientA is related to a smaller effechAg,./g. ~ —2.4 x
1019). It has been known for a while [5] and was an only fourth-order term included into evaluation in Ref. [1],
while the latter correctionfg,/g, ~ —2.6 x 10~9) was obtained recently [11,15,16]. Thus, the higher-order recoil
effects can be neglected and that is fortunate because the remaining terms in Eqgs. (14) and (15) are nuclear-spin:
independent.

Combining Egs. (6), (7) and (9) we find for the hydrogen atom

1 — te(H)
B

Ege(H)
where the uncertainty is below a part in*2@nd can be neglected in further considerations.
Applying the results for the higher-order corrections from Egs. (15) and (16) to the experimental data in Eq. (5)
[1,2], we deduce

=1.0011419263 (16)

H
“r®™) _ 5 0015210052305, (17)
KB
Er _ 0.001521032 207L5) (18)
“B
and
Kr _ 658210685 966). (19)
e

To interpret the results in units of the nuclear magneton, we have to apply an accurate value of the conversion
factor

Ke _Mp (20)

MUN me
The proton-to-electron mass ratio was recently determined from an experimentgfatiier of a bound electron
in hydrogen-like carbon [17] and the result [18,19] is more accurate, being slightly different from the one based
on comparison of cyclotron frequencies of electron and proton [1,20]. We note that this new approach to the
determination of the electron-to-proton mass ratio [18,21] was confirmed by a measuremeng ¢dd¢he of a
bound electron in the hydrogen-like oxygen [22], as suggested in Ref. [23]. The experimental result [22] is in fair
agreement with theory [11,19,23]. Other less accurate results on the proton-to-electron mass ratio are overviewed
in Ref. [11].

The values of the electron-to-proton mass ratio deduced from experiment [17] are slightly different from

evaluation to evaluation, and here we use the one found in Ref. [11] (see also discussion in Ref. [19])

HB _"r _ 1836152673613). (21)

MUN me
Using a value for the magnetic moment of a bound proton from Eq. (17) we arrive to the following results for the
protong factor

goH) _ ppH)

=2.79279782(298) (22)
2 UN
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and
8p _ Fp
2w
For further application we also need a value of the electron magnetic moment in hydrogen atom in units of the
nuclear magneton. Combining Egs. (16) and (21), we obtain

=2.792847 35828). (23)

ne(H) = 1838249424 §13) . (24)

Similar analysis can be performed for experiments with the deuterium atom. The experimental result for
deuterium [7] reads

D
1e®) _ 514302356523), (25)
wa(D)
Taking into account higher-order corrections in Egs. (14) and (15), we obtain
D
200 =11®) _ 6857423017 194) (26)
UN
and
Hd
g4 = — =0.85743823384). (27)
UN

Let us consider some consequences of correcting faetor of a free proton and magnetic moments of a proton
and electron bound in the hydrogen atom. E.g.,dHactor of a shielded proton in water was measured [24] in
comparison with the magnetic moment of an electron bound in hydrogen atom (24). The corrected results for the
proton magnetic moment are

W, (H20)
e

— 0.001520993 1277 (28)

and

g,(H20)  p,(H20)
2 UN
where shielding is denoted by prime. These results are related to a spherical sample of pure water at a temperature
t = 25°C. The values for other forms and temperatures of the sample can be recalculated (for detail see Ref. [1]
and references therein).

The corrections for a bound proton in water is shifted by approximately 30% from the original result, however,
the difference between the results from Ref. [1] and ours has been reduced since the former evaluation included
a result from [25] which is ten times less accurate and about two standard deviations off from the more accurate
value [24]. Here, we consider only most accurate results while the other data and in particular the result [25] have
been dismissed from our consideration.

A determination of the magnetic moment of the proton in water is important because it has been used as a probe
in a number of measurements and in particular to determine a value of the magnetic moment of a shielded helion,
a nucleus of théHe atom [26]

=2.79277560033), (29)

' (3He
1RO 676178613183, (30)
w,(H20)
With a corrected value for the magnetic moment of the shielded proton in Eq. (29) the helion result now reads
' (3He
#iCHe) =2.12749772(25). (31)

N
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The magnetic momem;l(3He) is related to a helion bound in a neutral atom and studied in a low pressure
helium-3 gas. To the best of our knowledge, no theoretical calculations are available for the higher-order correction
to theg factorg,, (3He) similar to thex (Z«)2 in Eq. (15) for hydrogen. The single-electron contribution for helium
should be doubled (because of the presence of two electrons) and could receive some enhancement since the
effective charge for each electron is somewhat bigger than unity. There should also be some essentially two-
electron relativistic effects. We expect that the uncertainty of any theoretical calculation (see, e.qg., [27]), ignoring
the higher-order relativistic effects in orde¢Z«)3, cannot be below a part or even a few parts if. Because of
the unclear status of the uncertainty of theoretical calculations of the screening effects, we do not consider here a
determination of the free nuclear magnetic moment of helion.

We have also considered data related to the muon magnetic moment. The result

i _ 8890596 9642) (32)
UN

is a weighted average of two values:

e The first one g, /uy = 8.890597 0%106)) is obtained from the measurement [8] of the transitions between
hyperfine components of the ground state in muonium (cf. Fig. 1) in the magnetic field calibrated by measuring
precession of a free proton. The value was slightly corrected in [11] because of higher-order corfections;

e The other resulty,, /iy = 8.890596 9%46)) is found from a value of the hyperfine splitting in the muonium
ground state measured for zero magnetic field [8] and compared with theory [28]. Note that the fine structure
constant used for the calculations here s = 137.035 998 7652) [29].

The less accurate data on the muon magnetic moment have been overviewed in Ref. [11] in terms of a related
guantity
me 1 Humn

my B 1+a, pun UB

(33)

They are statistically not important and have not been taken into account while calculating the muon result above.
To summarize our consideration, we present the corrected values gffttieors of electron (bound), proton

(free and bound), deuteron (free and bound) and helion (bound) in Table 1. We compare our results with those

in Ref. [1] which seems to be the only paper where a systematic consideration on theory and experiment in light

Table 1
Magnetic moments ratios of electron, muon, proton, deuteron and helion. The CODATA results are taken fBDATA Recommended
values—1998 [1] and thecorrected results are discussed in our Letter. We restore here signs of magnetic moments

Value CODATA [1] Corrected
WB/IUN 1836152667%39) 1836152673613
e/ LN —1838281966Q39) —1838281972113)
we(H) /1y —1838249418739) —1838249424613)
Mu/N —8.8905977027) —8.8905969642)
Hp/UN 2.79284733729) 2.79284735828)
wpH)/un 2.79279781129) 2.79279782(28)
/lp (HO)/un 2.79277559731) 2.79277560033)
/N 0.857438228094) 0.85743823384)
na(D)/un 0.857423014494) 0.857423017194)
1, CHe) /1y —2.12749771825) —2.12749772(25)

2 We note that the2(Za)m/M term in Eq. (9) of Ref. [11] is to be corrected and it now read6Za)/127m /M.
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simple atoms is done. We resume that higher-order corrections are somewhat bigger than it was expected in Ref. [1]
but still do not exceed the uncertainty. In particular, the corrections to the proton, deuteron and helion magnetic
moments ¢ factors) are slightly below the uncertainty, which is for all these quanitites on level of a paft in 10
fractional units. However the corrections are important because they produce a systematic effect on deduced values
of all discussed nuclear magnetic moments at a level of an essential part of uncertainty. A shift of the value of the
nuclear magnetic moments listed in Table 1 typically varies from 30 to 60% of the value of their uncertainties.
Note, that in the case of the magnetic moment of the proton in water and a related value of the helion magnetic
moment the shift is still on a level of 30% of the uncertainty, but it corresponds to a result of the most accurate
experiment [24], while the CODATA resultin Table 1 is related to an average value (see discussions after Eq. (29)).
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