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Properties and regulation of ion channels in MDCK cells
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Madin-Darby canine kidney (MDCK) cells are a permanent cell
line derived from dog kidney with properties similar to distal
nephron [1—5]. The cells are widely used as a model cell line for
studies on epithelial polarization [6—9], formation and regulation
of tight junctions [10—12] epithelial transport [13—151, mecha-
nisms of infection [16—18], etc. Furthermore, the cells have
proven useful in the study of the properties and regulation of ion
channels. This review will focus on the latter aspect of MDCK
cells. After a brief synopsis of the transport systems encountered
in MDCK cells and of the basic electrical properties, the func-
tional characteristics and regulation of ion channels in MDCK
cells will be described.

Transport systems and electrical properties of MDCK cells

Transport systems
If grown to confluency on impermeable culture dishes, MDCK

cells display net ion and fluid transport from the apical to the
basolateral cell side, leading to the formation of domes, fluid filled
blisters between epithelial cell layer and culture dish [19—21]. On
the other hand, MDCK cells are capable of secreting H [22] and
CL [231. The following cellular transport systems are involved: at
the apical cell membrane, a Na/I-I exchanger [24—291 operates
in parallel to a HIK ATPase [30], a Cl7HC03 exchanger [26,
31], CL and K channels.

At the basolateral cell membrane, a Na,K,2CL cotransport
[4, 32, 33] operates in parallel to the Na/K ATPase [34—36], a
Na47Ca2 exchanger [37, 38], a Na/H exchanger [39—41], K
and probably Ca2 channels.

Similar transport processes are expressed in subconfluent
MDCK cells [42].

Further transport systems identified in confluent MDCK cells
include amino acid transporters systems A, ASC and L [43], Na
and CL dependent taurine transporter [44], a lactate, H co-
transporter [45], and a xenobiotic secretory transport system [46].

Electrical 7iroperties

The potential difference across the cell membrane (PD) of
MDCK cells is some —50 mV in both confluent [47, 481 and
subconfluent [49] MDCK cells. The input resistance, which com-
prises cell membrane resistance and gap junctional resistance, is
again similar (40 to 60 MIl) in confluent [47, 48] and subconfluent
[50] MDCK cells. Cable analysis in subconfluent MDCK cells [49]
allowed the calculation of the cell membrane resistance (2.0 0.2
kflcm2) and of the intercellular resistance (6.1 0.8 Mf). The
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cell membrane resistance displays slight rectification because it
decreases upon depolarizing currents [49]. The cell membrane is
mainly conductive to K [50] and to CL [511. Bicarbonate
influences the cell membrane potential mainly by modifying K
conductance; a step decrease of bicarbonate depolarizes the cell
membrane presumably by cellular acidification [501.

The confluent MDCK cell layers form tight junctions, which are
preferably permeable to Nat The transepithelial resistance may
vary from some 200 Item2 to 4000 Item2, depending on the cell
type studied [20, 47, 52, 53].

Properties of single ion channels in MDCK cells

K channels
Three intermediate conductance K channels (31 pS, 89 pS,

109 pS) and a maxi-K channel (220 pS) have been identified in
the apical cell membrane of confluent MDCK cells [54]. A further
intermediate conductance K channel (26 pS) has been found in
the basolateral cell membrane. In subconfluent cells, a maxi-K
channel (260 pS) and much more frequently an intermediate
conductance (60 pS) K channel have been described [42, 55—57].
The latter two channels are sensitive to intracellular Ca2 and are
thus activated by a number of hormones, which increase intracel-
lular Ca2 activity [42, 55, 56]. The activation of the K channels
does not require the participation of calmodulin [581. Instead, the
calmodulin antagonist itself leads to activation of the Ca2-
sensitive K channels and hyperpolarization of the cell mem-
brane, most likely due to its enhancing effect on intracellular Ca2
activity [58].

Anion channels

At the apical cell membrane of confluent MDCK cells, an anion
channel of 460 pS has been identified, which is activated upon
sudden changes of the potential difference across the cell mem-
brane patch [59]. At the basolateral cell membrane, on the other
hand, a 46 pS CL channel has been described [60]. In subconflu-
ent MDCK cells, no spontaneous CL channel activity could be
detected with single channel recording, even though conventional
electrophysiology points to the existance of CL conductance in
the cells [51]. However, an unselective anion channel of 30 to 60
pS appears following swelling of the cells, as detailed below.

Other channels

In confluent MDCK cells Na and Ca24 currents have been
found negligible [55]. Similarly, no evidence for Na or Ca21
conductance has been found in subconfluent MDCK cells [39].
However, the step reduction of extracellular Na lead to a
hyperpolarization of the cell membrane by reversal of the Nat
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Ca2 exchange, increase of intracellular Ca2 activity and subse-
quent activation of Ca2-sensitive K channels [38]. Nevertheless,
several mediators, such as epinephrine [61], nucleotides [38, 62]
or acetyicholine [63] as well as E. coli heat stable enterotoxin B
[641 stimulate the rapid entry of Ca2 into the cells, presumably
via receptor operated Ca2 channels.

Structure, function and regulation of 'Cm

Structure and function of ic,
Using mRNA extracted from MDCK cells a protein was cloned

that, when expressed in Xenopus laevis oocytes, leads to an
outwardly rectifying chloride current [65]. The cDNA coding for
the protein ('c) is 1579 bp long comprising a 71 bp 5' untrans-
lated region, an 803 bp 3' untranslated region and open reading
frame (ORF) of 705 bp coding for a 235 amino acid (AA) long
protein with an apparent molecular size of 40 kD in a
denaturing SDS gel. After injection of the mRNA coding for I,.
into oocytes and after a time period of approximately one to two
days, a current can be measured that reverses at —30 mV and
inactivates at potentials more positive than +40 mV. Using
substances known to impede chloride currents, such as DIDS or
NPPB, an inhibition of the expressed current can be measured.
However, nucleotides added to the extracellular fluid can, in
addition, block the current in a dose-dependent manner within
seconds, with cGMP, cAMP, ATP and ITP being most effective
[65]. A similar nucleotide sensitivity of chloride channels was
shown in tracheal, colonic and heart cells [66—68]. The AA
sequence and the deduced model of the 'Cm channel protein at
the predicted extracellular site revealed a glycine-repeat which
resembles a 'walker' motif for nucleotide binding [65]. Mutations
of this putative nucleotide binding region lead to a fully expressed
current, but with a marked reduction of nucleotide sensitivity (1
mM cAMP which led to a reduction of the wild type 'Gin current
to 30% had no effect in a mutation in which all three glycines
were mutated into alanines). Furthermore, the kinetics of the
mutated but fully expressed current was changed. The current no
longer showed inactivation at potentials higher than +40 mV but,
in contrast, impresses with a further activation with a Tof 100
ms at +40 mV.

Putting these data together the above-mentioned experiments
can be simply explained by 'Cm being the channel itself. However,
we cannot rule out 'Cm being a regulator of an inherent channel
protein. Interestingly, the 'Cm protein is found to be more
abundant in the cytosol rather than the membrane fraction of
MDCK cells and NIH 3T3 fibroblasts (U.O. Nagl and M. Paul-
michi, unpublished results). Similar results were obtained using
Xenopus laevis oocytes [69] and were taken as evidence that 'Cm
might be a regulating protein. However, it is known from other
water soluble proteins that they can be introduced into the plasma
membrane and form channels [70, 71] under native conditions.

Regulation ofIci,,

The kinetics of the current (inactivation at potentials more
positive than + 40 mV) resembles the chloride currents activated
after cell swelling. In addition to the kinetics the selectivity of the
'Gin current also corresponds to the swelling-induced chloride
current, with SCN being conducted best of the tested ions,
followed by 1, Br and Cl. The expressed channels are virtually
impermeable for gluconate [72]. The expressed 'Cm current in

oocytes is sensitive to changes of the proton concentration [73].
Reduction of the pH significantly increases the newly expressed
chloride current. This pH sensitivity of the 'Gin current could be
one of the mechanisms by which this protein becomes activated
after cell swelling. It has been shown that reduction of the
osmolarity leads to a significant acidification of the cytosol due to
an extrusion of HC03.

We investigated whether 'Gin is involved in the swelling-induced
activation of chloride channels. Because all the cells tested
expressed 'Cm at the protein level and showed a swelling-induced
chloride current an overexpression of on top of the endoge-
nous one did not seem to give a straightforward answer on how
and if at all 'Gin is involved in the swelling-induced activation of
chloride currents. Using antisense oligonucleotides against the
first nucleotides at the beginning of the ORF coding for 'Gin'we
showed that 'an is of paramount importance for the activation of
chloride currents after cell swelling [74, 75]. Using antibodies
against a fusion protein of 'Gin a similar conclusion was drawn
[69]. Under the influence of antisense oligonucleotides the 'Gin
protein seems to vanish, the swelling-induced current is dramati-
cally reduced, and the chloride flux measured with a chloride-
sensitive dye after cell swelling [76] is decreased. As previously
shown, reduction of the osmolarity by 50 mOsm (omitting man-
nitol) leads in MDCK cells to the activation of a chloride current
indistinguishable from that activated in NIH 3T3 fibroblasts [761.
MDCK cells are able to effectively regulate their cell volume after
swelling. From the experiments mentioned above it can be
deduced that 'Gin is the major protein involved in the swelling-
induced activation of chloride channels. It is believed that ion
channels are essential in the first step of volume regulation, and
that changes in the osmolyte concentration are responsible for the
long lasting regulatory effect. 'Gincould gain some interest if a link
to the volume-sensitive anion channels which are described to
mediate the efflux of inositol and taurine in swollen cells [77] were
established.

Regulation of ion channels in MDCK cells

Hormones
Transcellular transport in confluent MDCK cells is stimulated

by aldosterone [26, 30, 78, 79], antidiuretic hormone [4, 80],
prostaglandin E [4, 19, 52, 81], epinephrine [23, 80, 821, acetyl-
choline [83], kinins [84—86], ATP 24,83] and glucagon [4]. From
these hormones prostaglandin E, acetylcholine, epinephrine, bra-
dykinin and ATP lead to marked electrophysiological effects in
subconfluent MDCK cells; all mediators markedly hyperpolarize
the cell membrane. The hyperpolarizing effect of epinephrine [61,
87], acetylcholine [88] and ATP [62, 63] is sustained, and the
hyperpolarizing effect of prostaglandin E [89] and bradykinin
[90—92] is only transient. In addition, serotonin [93] hyperpolar-
izes the cell membrane transiently. A transient hyperpolarization
does not necessarily reflect a transient effect of the mediator, as
shown for bradykinin, which produces a sustained decrease of cell
membrane resistance [92]. Thus, bradykinin leads to a transient
activation of K* channels and to sustained activation of another
conductance, presumably an anion conductance.

The hyperpolarizing mediators enhance intracellular Ca2 ac-
tivity and activate Ca2-sensitive K channels [55—58, 91, 94—96].
Thus, at first glance, all mediators appear to exert their hyperpo-
larizing effects via a uniform cellular mechanisms, that is, activa-
tion of phospholipase C, formation of inositoltrisphosphate
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(InsP3) and inositoltetrakisphosphate (InsP4), stimulation of cel-
lular Ca2 relase and/or entry of Ca2 from the extracelluar
space. However, a closer analysis of the cellular mechanisms
involved revealed distinct differences between the hormones and
pointed to additional mechanisms involved in K channel activa-
tion by these hormones. The apparent gain of Ca2 increase per
InsP3 formed was different between the three hormones epineph-
rifle, ATP and bradykinin [97]. Furthermore, the hyperpolarizing
effects of serotonin and acetylcholine were abolished by pretreat-
ment of the cells with pertussis toxin, while the hyperpolarizing
effect of epinephrine was rendered transient and the effect of ATP
and bradykinin seemingly unaffected by the same treatment [98],
even though pertussis toxin markedly inhibited the stimulation of
InsP3 formation by the last three hormones [58, 87,91]. It must be
kept in mind that the electrophysiological experiments, the Ca2
measurements and the determinations of InsP3 could not be done
under strictly identical conditions and the comparison may suffer
from any difference in treatment. Nevertheless, the data strongly
suggest that additional mechanisms are involved in channel
activation by these hormones.

In contrast to the aforementioned hormones, progesterone
leads to a sustained depolarization of the cell membrane, paral-
leled by a decrease of K selectivity and an increase of cell
membrane resistance [99]. Thus, progesterone depolarizes the
membrane of MDCK cells by inhibition of K channels.

Very little is known about hormonal regulation of anion
channels in MDCK cells. The stimulation of Cl secretion is
thought to involve activation of Cl channels, which are presum-
ably activated by cAMP. In fact cAMP does depolarize the cell
membrane and increase its C1 selectivity [51], and cAMP shrinks
MDCK cells presumably by stimulating loss of KC1 [1001. The
channels involved have, however, not yet been characterized by
single channel analysis.

Gel! volume

Upon osmotic cell swelling, subconfluent MDCK cells respond
with a variable transient hyperpolarization followed by a sustained
depolarization of the cell membrane [101, 102]. The hyperpolar-
ization is due to transient activation of the Ca2 -sensitive inwardly
rectifying K channel of some 60 pS, the depolarization due to the
activation of an unselective anion channel of some 30 to 60 pS
[103, 104]. The K channel activation is probably secondary to
enhanced cellular Ca2 activity [105]. The anion channel, which in
confluent cells probably sits in the basolateral cell membrane is
more conductive to HCO3 than to Cl- (3:1) [103], and the cells
indeed lose HC03 during cell swelling [106]. Moreover, the
channel may allow the passage of other anions such as phosphate,
or even amino acids such as aspartate, glutamate and taurine [104,
1071, which are released upon cell swelling in parallel to KC1
[108—110].

Osmotic shrinkage of MDCK cells leads to an increase of cell
membrane resistance [1111, probably reflecting the inhibition of
both anion channels and K channels. The increase in cell
membrane resistance is paralleled by a mild hyperpolarization of
the cell membrane, indicating that the K channels are less
affected than depolarizing channels such as anion channels [111,
112]. The inhibition of the channels impairs transepithelial trans-
port [113]. The cells accumulate ions by activation of
Na*,K+,2CL cotransport, Na/H exchange [lii] and Na/K
ATPase [114] to achieve regulatory cell volume increase. The

inhibition of ion channels at the cell membrane [111] prevents the
loss of the ions thus accumulated. As a result, intracellular K
activity is enhanced and remains so for at least 16 hours [111].
Chronic exposure of the cells to hyperosmotic extracellular fluid
leads eventually to accumulation of osmolytes [44].

Other

Mercury, cadmium and cobalt ions hyperpolarize the cell
membrane of MDCK cells [49, 115—117]. The effect of mercury
ions is apparently independent from calcium, that is, it occurs at
mercury ion concentrations below those required to appreciably
increase intracellular Ca2 activity and it can be elicited in the
nominal absence of extracellular Ca2 [1171. In contrast, the
effects of cadmium and cobalt ions are probably mediated by
Ca2t In the nominal absence of extracellular Ca2, they lead to
an only transient hyperpolarization, which can be elicited only
once [115, 1161. This transient hyperpolarization is thought to
result from a release of Ca2 from cellular stores and subsequent
transient activation of Ca2 sensitive K channels [115, 116].

Amphotericin B has recently been shown to activate a TEA
inhibitable endogeneous K channel in MDCK cells [1181. Little
is known about the mechanism of activation. Furthermore, K
and Cl channels are apparently activated by mastoparan, a
tetradecapeptide [119].

The biosynthesis and/or insertion of K channels into the
MDCK cell membrane is impaired by inhibition of protein
synthesis with actinomycin D and cycloheximide, by inhibition of
exocytosis with chloroquine, by destruction of the actin network
with cytochalasin B and by depolymerization of microtubules with
colchicine. It is not appreciably affected by tunicamycin, which
inhibits glycosylation of nascent proteins. Chloroquine decreased
cell membrane surface area and K conductance in parallel, in
line with the presumed exocytotic incorporation of channels and
membrane into the cell surface. However, cytochalasin D did not
significantly reduce and colchicine significantly enhanced the
surface area of the cell membrane, pointing to a dissociation of
cell membrane and channel trafficking [120].

MDCK cells transformed by a "bicarbonate shock" have been
shown to display spontaneous oscillations of cell membrane
potential, secondary to oscillations of cytosolic Ca2 activity and
subsequent activation of the Ca2 sensitive intermediate K
channel [121—i 231. The Ca2 oscillations are inhibited by thapsi-
gargin, pointing to pulsatile release of Ca2 from cellular stores
[124]. Similar oscillations of intracellular Ca2, K channel
activity and cell membrane potential have been observed in
fibroblasts upon expression of ras oncogene [125], and it has been
suggested that these oscillations are critical for cell proliferation
[126, 127]. In MDCK cells, the activation of the K channels are
apparently required for migration of the cells [128].

Summary and conclusions

The MDCK cell has proven to be a useful model cell line for the
study of properties and regulation of renal epithelial ion channels.
Patch clamp studies disclosed the existance of several K channels
and of a Cl — channel, and their regulation by hormones, cell
volume, trace elements and drugs. Most hormones affect K
channels at least in part by increasing cytosolic Ca2. However,
indirect evidence points to additional mechanisms contributing to
K channel activation. Cell swelling activates both K channels
and unselective anion channels. 'Cn' a protein cloned from
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MDCK cells, is either a CL channel or a regulator of thereof. 'Cm
is up-regulated by cellular acidification and is crucial for rapid
regulatory cell volume decrease.
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