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Abstract

A new family of commutative semifields with two parameters is presented. Its left and middle nucleus
are both determined. Furthermore, we prove that for different pairs of parameters, these semifields are not
isotopic. It is also shown that, for some special parameters, one semifield in this family can lead to two
inequivalent planar functions. Finally, using a similar construction, new APN functions are given.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

A semifield S is an algebraic structure satisfying all the axioms of a skewfield except (possibly)
associativity. In other words, it satisfies the following axioms:

• (S, +) is a group, with identity element 0;
• (S \ {0}, ∗) is a quasigroup;
• 0 ∗ a = a ∗ 0 = 0 for all a;
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• The left and right distributive laws hold, namely for any a, b, c ∈ S,

(a + b) ∗ c = a ∗ c + b ∗ c,

a ∗ (b + c) = a ∗ b + a ∗ c.

• There is an element e ∈ S such that e ∗ x = x ∗ e = x for all x ∈ S.

A finite field is a trivial example of a semifield. Furthermore, if S does not necessarily have a
multiplicative identity, then it is called a presemifield. A semifield is not necessarily commutative
or associative. However, by Wedderburn’s Theorem [34], in the finite case, associativity implies
commutativity. Therefore, a non-associative finite commutative semifield is the closest algebraic
structure to a finite field.

In the earlier literature, semifields were also called division rings or distributive quasifields.
The study of semifields was initiated by Dickson, see [22], shortly after the classification of finite
fields. Semifields have become an attracting topic in many different areas of mathematics, such
as difference sets, coding theory and finite geometry.

Dickson constructed the first non-trivial semifields in [22]. In [29], Knuth showed that the
additive group of a semifield S is an elementary abelian group, and the additive order of the
nonzero elements in S is called the characteristic of S. Hence, any finite semifield can be
represented by (Fpn , +, ∗). Here (Fpn , +) is the additive group of the finite field Fpn and
x ∗ y = ϕ(x, y), where ϕ is a mapping from Fpn × Fpn to Fpn .

On the other hand, there is a well-known correspondence, via coordinatization, between
semifields and projective planes of Lenz–Barlotti type V.1; see [28]. In [2], Albert showed that
two semifields coordinatize isomorphic planes if and only if they are isotopic (isotopism can also
be defined between presemifields):

Definition 1. Let S1 = (Fpn , +, ∗) and S2 = (Fpn , +, ⋆) be two presemifields. If there exist
three bijective linear mapping L , M, N : Fn

p → Fn
p such that

M(x) ⋆ N (y) = L(x ∗ y)

for any x, y ∈ Fpn , then S1 and S2 are called isotopic, and the triple (M, N , L) is an isotopism
between S1 and S2. Furthermore, if there exists an isotopism of the form (N , N , L) between S1
and S2, then S1 and S2 are strongly isotopic.

Let P = (Fpn , +, ∗) be a presemifield, and a ∈ P. If we define a new multiplication ⋆ by the
rule

(x ∗ a) ⋆ (a ∗ y) = x ∗ y,

we have (a∗a)⋆(a∗x) = a∗x and (x ∗a)⋆(a∗a) = x ∗a, namely (Fpn , +, ⋆) is a semifield with
unit a ∗ a. There are many semifields associated with a presemifield, but they are all isotopic.

Let S = (Fpn , +, ∗) be a semifield. The subsets

Nl(S) = {a ∈ S : (a ∗ x) ∗ y = a ∗ (x ∗ y) for all x, y ∈ S},

Nm(S) = {a ∈ S : (x ∗ a) ∗ y = x ∗ (a ∗ y) for all x, y ∈ S},

Nr (S) = {a ∈ S : (x ∗ y) ∗ a = x ∗ (y ∗ a) for all x, y ∈ S},

are called the left, middle and right nucleus of S, respectively. It is easy to check that these
sets are finite fields. The subset N (S) = Nl(S) ∩ Nm(S) ∩ Nr (S) is called the nucleus of S. In
some papers, not N (S) but Nm(S) is called the nucleus of S. It is easy to see, if S is commutative,



Y. Zhou, A. Pott / Advances in Mathematics 234 (2013) 43–60 45

then Nl(S) = Nr (S) and Nl(S) ⊆ Nm(S), therefore Nl(S) = Nr (S) = N (S). In [28], a geometric
interpretation of these nuclei is discussed.

Next, we give the definition of planar functions, which was introduced by Dembowski and
Ostrom in [21] to describe affine planes possessing a collineation group with specific properties.

Definition 2. Let p be an odd prime. A function f : Fpn → Fpn is called a planar function, or
perfect nonlinear (PN), if for each a ∈ F∗

pn , f (x + a) − f (x) is a bijection on Fpn .

For p = 2, if x0 is a solution of f (x + a)− f (x) = b, then x0 + a is another one, hence there
do not exist planar functions over F2n .

Definition 3. A function f : F2n → F2n is called almost perfect nonlinear (APN), if for each
a, b ∈ Fpn , a ≠ 0, f (x + a) − f (x) = b has at most 2 solutions.

For example, x3 is an APN function over F2n for any integer n > 0. APN functions have
important applications in cryptography, for recent surveys, see [13,25].

Note that (Fpn , +) is also an n-dimensional vector space Fn
p over Fp. Throughout this paper,

we will use this identification of the field and the vector space. In particular, any linear mapping
on Fn

p can be described by a polynomial of the form
n−1

i=0 ci x pi
, which is called linearized

polynomial; see [31]. A Dembowski–Ostrom (DO) polynomial D ∈ Fpn [x] is a polynomial

D(x) =

n−1
i, j=0

ai j x pi
+p j

.

Note that D(0) = 0 and

D(x + a) − D(x) − D(a) =

n−1
i, j=0

ai j (x pi
a p j

+ a pi
x p j

)

=

n−1
i=0

x pi
n−1
j=0

(ai j + a j i )a
p j

,

which is a linearized polynomial. It can be proved that a planar DO polynomial is equivalent
to a commutative presemifield with odd characteristic; see [17]. In fact, if ∗ is the presemifield
product, then the corresponding planar function is f (x) = x ∗x ; when the planar DO polynomial
f is given, then the corresponding presemifield product can be defined as

x ∗ y =
1
2
( f (x + y) − f (x) − f (y)). (1)

Up until now, all the known planar functions are DO polynomials, except for the family found by
Coulter and Matthews in [20], which defines planes of Lenz–Barlotti class II, but not semifield
planes.

A function from a finite field Fpn to itself is affine, if it is defined by the sum of a constant and
a linearized polynomial over Fpn . There are several equivalence relations of functions for which
the planar property is invariant:

Definition 4. Two functions f and g : Fpn → Fpn are called

• extended affine equivalent (EA-equivalent), if g = l1 ◦ f ◦ l2 + l3, where l1, l2 and l3 are affine
functions, and where l1, l2 are permutations of Fpn . Furthermore, if l3 is the zero mapping,
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then f and g are called affine equivalent; if l1 and l2 are both linearized, and l3 is the zero
mapping, then f and g are called linear equivalent;

• Carlet–Charpin–Zinoviev equivalent (CCZ-equivalent or graph equivalent), if there is some
affine permutation L of F2n

p , such that L(G f ) = Gg , where G f = {(x, f (x)) : x ∈ Fpn } and
Gg = {(x, g(x)) : x ∈ Fpn }.

Generally speaking, EA-equivalence implies CCZ-equivalence, but not vice versa, see [10].
However, if planar functions f and g are CCZ-equivalent, then they are also EA-equivalent
[11,30]. Moreover, it is easy to prove the following (see also Corollary 3 in [11]):

Lemma 1. Let f and g be both planar DO functions from Fpn to Fpn . Then f and g are EA-
equivalent if and only if f and g are linear equivalent.

Proof. Since linear equivalence is a special case of EA-equivalence, we only need to prove the
contrary statement. Now assume that f and g are EA-equivalent, i.e. there is affine functions
l1, l2 and l3 such that

g = l1 ◦ f ◦ l2 + l3, (2)

where l1 and l2 are both permutations. Notice that if f is a planar DO function, there exists a
presemifield multiplication ∗ such that, f (x) = x ∗ x . Let li (x) = l̄i (x) + ai , where l̄i (0) = 0
for i = 1, 2. Then the right side of (2) becomes:

l1 ◦ f (l̄2(x) + a2) + l3 = l1

l̄2(x) ∗ l̄2(x) + 2l̄2(x) ∗ a2 + a2 ∗ a2


+ l3

= l̄1

l̄2(x) ∗ l̄2(x)


+ 2l̄1


l̄2(x) ∗ a2


+ l̄1(a2 ∗ a2) + a1 + l3.

According to the distributivity of a presemifield, l̄1(l̄2(x) ∗ l̄2(x)) is also a DO function, namely
a quadratic form, and the rest part of the equation above is affine. However, as the right side of
(2) is a planar DO function, we have

g(x) = l̄1

l̄2(x) ∗ l̄2(x)


= l̄1 ◦ f ◦ l̄2(x),

which means that f and g are linear equivalent. �

Furthermore, because of the correspondence between commutative presemifields with odd
characteristic and planar functions, as we mentioned above, the strong isotopism of two
commutative presemifields is equivalent to the linear equivalence of the corresponding planar
DO functions, which we call directly the equivalence of planar DO functions.

To end this section, we list all the commutative semifields of order pn that are known. For any
odd p, there are:

1. The finite fields.
2. Albert’s commutative twisted fields [1].
3. Dickson’s semifields [22].
4. The Budaghyan–Helleseth semifields [11], with n even (also discovered independently by Zha

and Wang in [37]).
5. The Zha–Kyureghyan–Wang semifields [36], with n = 3k.
6. Bierbrauer’s semifields [6], with n = 4k.

Remark 1. In [11], Budaghyan and Helleseth present two families of planar functions, but in [5],
Bierbrauer proves that one of them belongs to the other. Therefore, we consider them as one
family. There are more constructions [5], but it has been recently shown [32] that they are isotopic
to Budaghyan–Helleseth semifields.
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For p = 3, there are:

7. The Coulter–Matthews–Ding–Yuan semifields [20,23], with n odd.
8. The Cohen–Ganley semifields [15], with n odd.
9. Ganley’s semifields [26], with n odd.

Sporadic examples (for Nos. 13, 14 and 15, we only give the corresponding planar functions):

10. The Coulter–Henderson–Kosick semifield [18], with p = 3 and n = 8.
11. The Penttila–Williams semifield [33], with p = 3 and n = 10.
12. x90

+ x2 on F35 [35].
13. x162

+ x108
− x84

+ x2 on F35 [19,35].
14. x50

+ 3x6 on F55 [19,35].

2. Semifield family with two parameters

In [15], Cohen and Ganley made significant progress in the investigation of commutative
semifields of rank 2 over their middle nucleus. Here “rank 2” means that if the size of semifield
is p2m , then its middle nucleus is of size pm . Let a, b, c, d ∈ Fpm , n = 2m. Cohen and Ganley
defined a binary mapping ∗ from Fpn × Fpn to Fpn as follows:

(a, b) ∗ (c, d) = (ac + ϕ1(bd), ad + bc + ϕ2(bd)), (3)

where ϕ1 and ϕ2 are linearized polynomials. They considered under which condition ∗ defines
the multiplication of a semifield. Some sufficient and necessary conditions were derived,
see [3,15] for details. Finite fields, Dickson’s semifields, the Cohen–Ganley semifields and the
Penttila–Williams semifield are all of this form.

Observe that the multiplication of Fpm is used in the multiplication ∗ defined by (3), which
is basically a linear combination of ac, bd, ad and bc. Hence, one natural question arises: Is it
possible to construct some semifields or presemifields, if we replace some of these finite field
multiplications by semifield or presemifield multiplications? Our first candidate is naturally the
multiplication of Albert’s twisted fields, and it turns out to work quite well.

Theorem 1. Let p be an odd prime, and let m, k be positive integers, such that m
gcd(m,k)

is odd.

Define x ◦k y = x pk
y + y pk

x. For elements (a, b), (c, d) ∈ F2
pm , define a binary operation ∗ as

follows:

(a, b) ∗ (c, d) = (a ◦k c + α(b ◦k d)σ , ad + bc), (4)

where α is a non-square element in Fpm and σ is a field automorphism of Fpm . Then,
(Fp2m , +, ∗) is a presemifield, which we denote by Pk,σ .

Proof. It is routine to check the distributive law of Pk,σ . Hence, to prove Pk,σ is a presemifield,
we only need to prove that

(a, b) ∗ (c, d) = 0 if and only if a = b = 0 or c = d = 0.

Assume that (a, b) ∗ (c, d) = 0, then we have

a ◦k c + α(b ◦k d)σ = 0, (5)

ad + bc = 0.

When d = 0, we have a ◦k c = 0 and bc = 0, which means c = 0 or a = b = 0 since ◦k is
Albert’s presemifield multiplication on Fpm .
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When d ≠ 0, we have a = −
bc
d . If b = 0, then a = 0. If b ≠ 0, then eliminating a in (5), we

have

α(bpk
d + d pk

b)σ = cpk
+1


b

d
+


b

d

pk
,

which means that

α = (cpk
+1(d−σ )pk

+1)


b

d
+


b

d

pk1−σ

.

However, the equation cannot hold, since α is a non-square in Fpm . Therefore, we get
a = b = 0. �

To analyze the properties of Pk,σ , we need the following well-known results:

Proposition 1. Let p be an odd prime, and let m, k be positive integers, such that m
gcd(m,k)

is odd.
Then

1. gcd(pm
− 1, pk

+ 1) = 2, which means that x pk
+1 is a 2–1 mapping on Fpm ;

2. x pk
+ x is a permutation on Fpm .

It is easy to see that different α generate isotopic semifields, because

(a ◦k c + α(βb ◦k βd)σ , a(βd) + c(βb)) = (a ◦k c + αβ(pk
+1)σ (b ◦k d)σ , β(ad + bc)),

and the image set of (·)pk
+1 are all the squares in Fpm . In the remaining part, we assume that the

non-square α is an element of Fpk ∩Fpm = Fpl , l = gcd(k, m). Furthermore, the planar function
that corresponds to Pk,σ is

(x, y) → (2x pk
+1

+ 2α(y pk
+1)σ , 2xy).

Dividing by 2, we have

(x, y) → (x pk
+1

+ α(y pk
+1)σ , xy).

If there exists some u such that pk
+ 1 = pu(ps

+ 1) mod pm
− 1, then Pk,σ is isotopic to Ps,σ ,

since

(x, y) → (x pk
+1

+ α(y pk
+1)σ , xy),

is equivalent with

(x, y) → ((x pu
)ps

+1
+ α((y pu

)ps
+1)σ , (x pu

y pu
)p−u

),

which is also equivalent with

(x, y) → (x ps
+1

+ α(y ps
+1)σ , xy).

For different σ but the same k, the same result can also be derived. Hence, in the rest of this
paper, we always let 0 ≤ k, r ≤ ⌊

m
2 ⌋ and k ≠ 0, where σ(x) = x pr

.
To get a semifield Sk,σ from our presemifield, we can define the multiplication ⋆ of Sk,σ as

follows:

((a, b) ∗ (1, 0)) ⋆ ((c, d) ∗ (1, 0)) := (a, b) ∗ (c, d). (6)
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Let L(a, b) = (a, b)∗ (1, 0) = (a +a pk
, b), which is a linearized mapping and a permutation on

Fp2m by Proposition 1. For convenience, when σ is the identity mapping on Fpm , we will denote
our presemifield and semifield by Pk and Sk .

If L(β) = y ∈ Fp2m is in the middle nucleus of Sk,σ , then for any x, z ∈ Fp2m we have

(x ⋆ L(β)) ⋆ z = x ⋆ (L(β) ⋆ z).

Since L is a permutation, this is equivalent to

(L(x) ⋆ L(β)) ⋆ L(z) = L(x) ⋆ (L(β) ⋆ L(z)),

which is also

L−1(x ∗ β) ∗ z = x ∗ L−1(β ∗ z).

Furthermore, we can precisely determine the middle nucleus of Sk,σ :

Theorem 2. Let Sk,σ be the semifield with multiplication ⋆ defined on Fp2m as in (6), with
α ∈ Fpl , α ≠ 0 and l = gcd(m, k).

(a) If σ is the identity mapping, then the middle nucleus Nm(Sk) is isomorphic to Fp2l .
(b) If σ is not trivial, then the middle nucleus Nm(Sk,σ ) is isomorphic to Fpl .

Proof. Let c, d ∈ Fpm , such that L(c, d) ∈ Nm(Sk,σ ). Then we have

L−1((a, b) ∗ (c, d)) ∗ (e, f ) = (a, b) ∗ L−1((c, d) ∗ (e, f )), (7)

for any (a, b), (e, f ) ∈ F2
pm . For given a, b ∈ Fpm , there is a unique u ∈ Fpm such that

u + u pk
= a ◦k c + α(b ◦k d)σ , (8)

since x pk
+ x is a permutation on Fpm . We obtain

L−1((a, b) ∗ (c, d)) ∗ (e, f ) = L−1(a ◦k c + α(b ◦k d)σ , ad + bc) ∗ (e, f )

= L−1(u + u pk
, ad + bc) ∗ (e, f )

= (u, ad + bc) ∗ (e, f ) (using the definition of L)

= (u ◦k e + α( f ◦k(ad + bc))σ , u f + (ad + bc)e). (9)

Similarly, for given e, f ∈ Fpm we define v by

v + v pk
= c ◦k e + α(d ◦k f )σ , (10)

and the right side of (7) is

(a, b) ∗ L−1((c, d) ∗ (e, f )) = (a ◦k v + α(b ◦k(c f + de))σ , vb + a(c f + de)). (11)

By comparing the second component of the two sides of (7), we have

u f + bce = vb + ac f.

For f = 0 but b ≠ 0, we have ceb = vb, which means that v = ce. Eliminate v in (10), we have

ce + (ce)pk
= cpk

e + cepk
,
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for any e ∈ Fpm . That means c = cpk
, namely,

c ∈ Fpl . (12)

Furthermore, for f ≠ 0, we have

u +
bce

f
=

b

f
· v + ac,

by eliminating u using (8) and (10), we have

(a pk
+ a)c + α(bpk

d + bd pk
)σ + c


b

f
· e +


b

f
· e

pk

=
b

f
v +


b

f

pk

(c ◦k e + α(d ◦k f )σ − v) + ac + (ac)pk

=
b

f
v +


b

f

pk

(c(e + epk
) + α(d ◦k f )σ − v) + c(a + a pk

).

By cancelling the same terms on both sides, we have

α


(b ◦k d)σ − (d ◦k f )σ


b

f

pk
+


b

f
−


b

f

pk
(ce − v) = 0. (13)

If σ is the identity mapping, then
b

f
−


b

f

pk
(α f d pk

+ ce − v) = 0.

Since the equation above should hold for any b and f ≠ 0, we have

v = α f d pk
+ ce,

which means that

v + v pk
= (epk

+ e)c + α( f pk
d p2k

+ f d pk
),

since α ∈ Fpl = Fpk ∩ Fpm . Together with (10), we have

d f pk
+ f d pk

= f pk
d p2k

+ f d pk
,

for any f ≠ 0, which means that d = d pk
. Therefore, if (c, d) ∈ Nm(Sk), then c, d ∈ Fpk ∩

Fpm (= Fpl ). Since the middle nucleus of a finite semifield is isomorphic to a finite field, Nm(Sk)

is isomorphic to a subfield of Fp2l . Conversely, it is routine to check that (c, d) ∈ Nm(Sk), for
c, d ∈ Fpl . Therefore we proved Claim 1.

If σ is not trivial, then it is also routine to check that (c, 0) ∈ Nm(Sk,σ ), for c ∈ Fpl , namely
Fpl is a subfield of Nm(Sk,σ ). Next, we prove d = 0. We separate this proof into two steps, first
let us prove that d ∈ Fpl . Let L(c, d) ∈ Nm(Sk,σ ), which means that c ∈ Fpl , see (12), and

L(c, d) ⋆ L(c, d) = (c, d) ∗ (c, d) = (2c2
+ 2αdσ(pk

+1), 2cd).

Notice that the middle nucleus is a finite field in the semifield, hence we have c2
+αdσ(pk

+1)
∈

Fpl , which means that d pk
+1

∈ Fpl . Since l = gcd(m, k), we have d pk
+1

= d p2k
+pk

, hence
d ∈ Fpk ∩ Fpm = Fpl . This shows that Nm(Sk,σ ) is isomorphic to a subfield of Fp2l .
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Now we show that d = 1 is impossible. The case of d ≠ 0, 1 is similar and left to the reader.
Assume that d = f = 1 and e = 0. Then (10) shows that v = α, and (13) becomes

α((bpk
+ b)σ − 2bpk

) − α(b − bpk
) = 0,

which means that

(bpk
+ b)σ = (bpk

+ b),

holds for all b ∈ Fpm . Thus xσ
= x for all x ∈ Fpn , and so σ is trivial, contradicting the σ ≠ id

assumption. Hence d has to be 0. �

Noticing that Nl(Sk,σ ) = Nr (Sk,σ ) = N (Sk,σ ), since Sk,σ is commutative, the nucleus of
Sk,σ can also be derived:

Theorem 3. Let Sk,σ be the semifield with multiplication ⋆ defined as in (6) on Fp2m , then its

(left, right) nucleus N (Sk,σ ) is isomorphic to Fpt , where xσ
= x ps

and t = gcd(m, k, s).

Proof. By using the same notations as in the proof of Theorem 2, assume that (a, b) is an element
in N (Sk,σ ). Since N (Sk,σ ) ⊆ Nm(Sk,σ ), by Theorem 2, we have a ∈ Fpl = Fpk ∩Fpm and b = 0.
Moreover, by (9) and (11), we have

L−1((a, b) ∗ (c, d)) ∗ (e, f ) = (u ◦k e + α( f ◦k(ad))σ , u f + ade),

and

(a, b) ∗ L−1((c, d) ∗ (e, f )) = (a ◦k v, a(c f + de)).

Since u + u pk
= a ◦k c + α(b ◦k d)σ = a(c + cpk

), we have u = ac and

L−1((a, b) ∗ (c, d)) ∗ (e, f ) = (a(c ◦k e) + αaσ ( f ◦k d)σ , ac f + ade),

(a, b) ∗ L−1((c, d) ∗ (e, f )) = (a(v + v pk
), a(c f + de)).

By the definition of v, it follows that:

L−1((a, b) ∗ (c, d)) ∗ (e, f ) = (a, b) ∗ L−1((c, d) ∗ (e, f )) if and only if aσ
= a.

Since N (Sk,σ ) ⊆ Nm(Sk,σ ), when σ is non-trivial, from Theorem 2(2), we know that
Nm(Sk,σ ) = {(a, 0)|a ∈ Fpl , l = gcd(m, k)}. Therefore, we have N (Sk,σ ) ≃ Fpt .

When σ is the identity mapping, let a, b ∈ Fpl , b ≠ 0 and d = f = 0. Assume that
(a, b) ∈ N (Sk,σ ), then by comparing the second components of (9) and (11), we have v = ce,
which means that

v + v pk
= ce + cpk

epk
.

However, by (10), we have

v + v pk
= c ◦k e.

Hence,

(c − cpk
)(e − epk

) = 0,

which cannot hold for c, e ∈ Fpm \ Fpk . Hence, N (Sk,σ ) is a proper subset of Nm(Sk,σ ).
Furthermore, since N (Sk,σ ) is a subfield in the finite field Nm(Sk,σ ) ∼= Fp2l , and it is routine

to show that Fpl ⊆ N (Sk,σ ), finally we have N (Sk,σ ) ∼= Fpl and l = t = gcd(m, k, 0). �
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Remark 2. If we let k = 0, then Sk,σ is a Dickson semifield. It is easy to see that Theorems 2
and 3 also hold for Dickson semifields.

3. The isotopism between Sk,σ

It is natural to ask that whether (4) defines isotopic presemifields for the same m but different
k and σ . As we mentioned after Theorem 1, if there exists some u such that pk

+ 1 =

pu(ps
+ 1) mod pm , then Pk,σ is isotopic to Ps,σ ; for different σ but same k, the same result can

also be derived. Furthermore, we can prove the following:

Theorem 4. Let Pk,σ be the presemifield with the multiplication ∗ defined as in (4) on Fp2m . Let

0 < k, s ≤ ⌊
m
2 ⌋ and 0 ≤ r, t ≤ ⌊

m
2 ⌋, where σ(x) = x pr

and τ(x) = x pt
. If (k, σ ) ≠ (s, τ ),

then Pk,σ and Ps,τ are not strongly isotopic.

Proof. Let l be a linearized polynomial over Fp2m . Since every element z ∈ Fp2m can be viewed
as a vector (x, y) ∈ Fpm × Fpm by choosing a basis of Fp2m over Fpm , l(z) can be written as a

polynomial L(x, y) ∈ Fp2m [x, y] whose terms are x pi
and y pi

with i = 0, . . . , m − 1.
Denote f and g as the corresponding planar functions from Pk,σ and Ps,τ . Since strong

isotopism between Pk,σ and Ps,τ is equivalent to the linear equivalence between f and g, we
assume that there exist linearized polynomials l1, l2 : Fp2m → Fpm which can be written as
L1(x, y), L2(x, y) respectively, and linearized polynomial l(z) = L(x, y) where both L(x, y)

and (L1(x, y), L2(x, y)) invertible, such that

L


L1(x, y)pk
+1

+ α(L2(x, y)pk
+1)σ , L1(x, y)L2(x, y)


= (x ps

+1
+ α(y ps

+1)τ , xy). (14)

For convenience, we denote L i (x, 0) and L i (0, y) by L i (x) and L ′

i (y) respectively. We first
prove the following:

Claim 1. If (14) holds, then s = k and L i (x) and L ′

i (y) are monomials or zero, for i = 1, 2.

Here we only prove the result for L i (x). By symmetry, a similar proof can be derived for
L ′

i (y). Let y = 0, we have,
L1(x)pk

+1
+ α(L2(x)pk

+1)σ , L1(x)L2(x)


= L−1(x ps
+1, 0)

= (ϕ1(x ps
+1), ϕ2(x ps

+1)),

where L1(x) =
m−1

i=0 ai x pi
, L2(x) =

m−1
i=0 bi x pi

, ϕ1(x) =
m−1

i=0 ci x pi
and ϕ2(x) =m−1

i=0 di x pi
are linearized polynomials. We divide the following proof into two cases:

1. Neither L1(x) nor L2(x) equals 0;
2. L1(x) or L2(x) equals 0.

Case (1): Since L1(x)L2(x) = ϕ2(x ps
+1) and s > 0, we have

(ai bi+s + ai+sbi ) = di , for any i ;
ai b j + a j bi = 0, j ≠ i ± s.

Assume that du ≠ 0, then noticing that ai bi = 0 for any 0 ≤ i ≤ m − 1, we have du = aubu+s
or au+sbu .
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(a) If au ≠ 0, then bu = 0 and for any j ≠ u ± s, we have

aub j + a j bu = 0,

which means that b j = 0, and L2(x) = bu−s x pu−s
+ bu+s x pu+s

. If bu±s ≠ 0, then we can also
use a similar argument to prove that L1(x) = au x pu

. Furthermore, we have

ϕ1(x ps
+1) = a pk

+1
u (x pk

+1)pu
+ α(bu−s x pu−s

+ bu+s x pu+s
)(pk

+1)σ . (15)

The right side of (15) is
a pk

+1
u x (pk

+1)pu
+ αb(pk

+1)σ
u−s x (pk

+1)σ pu−s
+ αb(pk

+1)σ
u+s x (pk

+1)σ pu+s


+ α


bpk

u−sbu+s x (pk−s
+ps )pu

+ bu−sbpk

u+s x (p−s
+ps+k )pu

σ

which means that (15) does not hold, since x (pk−s
+ps ) and x (p−s

+ps+k ) cannot be simultaneously
written in the form x (ps

+1)pi
for some i respectively. Therefore, one of bu−s and bu+s must be 0.

If bu−s = 0, then we can derive that L1(x) = au x pu
+ au+2s x pu+2s

. By symmetry it can also
be proved that au+2s = 0. These arguments show that L1(x) and L2(x) are both monomials, and
we have that

ϕ1(x ps
+1) = a pk

+1
u (x pk

+1)pu
+ α(bu+s x pu+s

)(pk
+1)σ . (16)

When s ≠ k, then (16) also cannot hold, otherwise that means the presemifields on Fpm defined

by x ps
+1 and x pk

+1 are isotopic.
If bu+s ≠ 0, then by symmetry we can get L1(x) = au+s x pu+s

and L2(x) = bu x pu
and s = k.

(b) Similarly as in (a), if bu ≠ 0, by the symmetry of L1 and L2 in L1(x)L2(x) = ϕ2(x ps
+1),

we can prove that s = k and both L1(x) and L2(x) are monomials.
Case (2): Assume that L1(x) ≠ 0 and L2(x) = 0, without loss of generality, we have

L1(x)pk
+1

= ϕ1(x ps
+1). It cannot hold for s ≠ k, since two generalized twisted fields are

not isotopic. When s = k, according to Theorem 5.2 in [8], we know that L1(x) and ϕ1(x) are
both linearized monomials.

Therefore, we have proved Claim 1.
Now, for k = s, we know that L1(x, y) and L2(x, y) are both linearized binomials or

monomials. Assume that the possible degrees of x in L1 and L2 are pu and pu+k , those of y
are pv and pv+k , then there are four possible combinations of them to form L1 and L2:

(a) L1 : (x pu
, y pv

), L2 : (x pu+k
, y pv+k

);
(b) L1 : (x pu

, y pv+k
), L2 : (x pu+k

, y pv
);

(c) L1 : (x pu+k
, y pv

), L2 : (x pu
, y pv+k

);
(d) L1 : (x pu+k

, y pv+k
), L2 : (x pu

, y pv
).

First, let us assume that L1 and L2 are both binomials. In fact, noticing that there is only xy on
the right side of (14), both (a) and (d) are not feasible, and there must be u = v for (b) and (c).
Now we consider case (b): L1(x, y) = au x pu

+ a′

u+k y pu+k
and L2(x, y) = bu+k x pu+k

+ b′
u y pu

.
Let

L−1
=


ϕ1 ϕ3
ϕ2 ϕ4


,
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then by expanding the first component of (14), we have

L1(x, y)pk
+1

+ α(L2(x, y)pk
+1)σ = ϕ1(x pk

+1
+ α(y pk

+1)τ ) + ϕ3(xy).

The terms are au x pu
a′

pk

u+k y pu+2k
and (bpk

u+k x pu+2k
b′

u y pu
)σ occur on the left side, but they are

impossible to appear on the right side. That means L1(x) and L2(x) are both monomials with
the same degree.

First, if a′

u+k = bu+k = 0 then we have

(au x pu
)pk

+1
+ α((b′

u y pu
)pk

+1)σ = ϕ1(x pk
+1

+ α(y pk
+1)τ ) + ϕ3(xy).

We can easily derive that ϕ1 is a monomial, ϕ3 = 0 and hence σ = τ .
Second, if a′

u = bu = 0 and w = u + k, then we have that L1(x, y) = a′
w y pw

, L2(x, y) =

bwx pw
, and

(a′
w y pw

)pk
+1

+ α((bwx pw

)pk
+1)σ = ϕ1(x pk

+1
+ α(y pk

+1)τ ) + ϕ3(xy).

It is also easy to see that ϕ1(x) is a monomial and ϕ3(x) = 0. Therefore σ = τ and σ 2 is identity.
For case (c), we can derive the same result as case (b). Hence, this completes the proof. �

To investigate the isotopism between Sk,σ and Ss,τ further, we need the following result
from [17]:

Theorem 5 (Coulter and Henderson). Let F1 = (Fq , +, ⋆) and F2 = (Fq , +, ∗) be isotopic
commutative semifields. Then every isotopism (M, N , K ) between F1 and F2 satisfies either

1. M = N, or
2. M(x) ≡ γ ⋆ N (x) mod (xq

− x), where γ ∈ Nm(F1), γ ≠ 0.

Next, we are going to show the non-isotopism between Sk,σ and Ss,τ .

Theorem 6. Let Sk,σ be the presemifield with the multiplication ∗ defined as in (6) on Fp2m . Let

0 < k, s ≤ ⌊
m
2 ⌋ and 0 ≤ r, t ≤ ⌊

m
2 ⌋, where σ(x) = x pr

and τ(x) = x pt
. If (k, σ ) ≠ (s, τ ),

then Sk,σ and Ss,τ are not isotopic.
Furthermore, if σ = id, then for every k, the semifield Sk defines two inequivalent planar

functions over Fp2m .

Proof. Now let ⋆ and � be the multiplication of Sk,σ and Ss,τ respectively defined by (6), where
(k, σ ) ≠ (s, τ ). To show that they are not isotopic, by Theorem 5 we need to show that it is
impossible to find linearized polynomials N , K and γ ∈ Nm(Sk,σ ) such that

(r ⋆ N (x)) ⋆ N (y) = K (x � y),

which is

(r ⋆ x ′) ⋆ y′
= K (N−1(x ′) � N−1(y′)),

by replacing N (x) with x ′ and N (y) with y′. Define x ⋆γ y := (γ ⋆ x) ⋆ y, and let ∗ be the
multiplication of Pk,σ . By (6), we have

x ⋆γ y = (γ ⋆ x) ⋆ y

= L−1(L−1(γ ) ∗ L−1(x)) ∗ L−1(y),
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which is strongly isotopic to

x ⊗γ y := L−1(L−1(γ ) ∗ x) ∗ y. (17)

Hence we only need to prove that for any nonzero γ the semifield defined by ⊗γ and Ss,τ are
not strongly isotopic. We divide the proof into two cases: σ ≠ id and σ = id.

When σ is non-trivial, we know that Nm(Sk,σ ) = Fpm ∩ Fpk = {(c, 0) | c ∈ Fpl } with

l = gcd(k, m) by Theorem 2, hence L(c, 0) = (c + cpk
, 0) = (2c, 0). Write γ as (2c, 0) where

c ≠ 0, and write x as (a, b), then

L−1(γ ) ∗ x = L−1 ((c, 0) ∗ (a, b)) = L−1 (a ◦k c, bc) = (ac, bc).

Take y = (e, f ), then (17) becomes

(a, b) ⊗γ (e, f ) = L−1 ((c, 0) ∗ (a, b)) ∗ (e, f )

=

(a ◦k e)c + αcσ (b ◦k f )σ , c(a f + be)


.

The corresponding planar function of ⊗γ can be written as

(x, y) → 2 · (cx pk
+1

+ αcσ (y pk
+1)σ , cxy),

which is equivalent to the one defined by Sk,σ . That means if the presemifield defined by ⊗γ is
strongly isotopic to Ss,τ , then Sk,σ is also strongly isotopic to Ss,τ , which contradicts Theorem 4.
Hence Sk,σ is not isotopic to Ss,τ .

For the case that σ is trivial, as proved in Theorem 2, Nm(Sk,σ ) = Fp2l = {(c, d) | c, d ∈ Fpl }

with l = gcd(k, m). Hence L(c, d) = (c + cpk
, d) = (2c, d). Write γ as (2c, d) where cd ≠ 0,

and write x as (a, b), then

L−1


L−1(γ ) ∗ x


= L−1 ((c, d) ∗ (a, b))

= L−1


c(a + a pk
) + αd(b + bpk

), ad + bc


= (ac + αbd, ad + bc).

Take y = (e, f ), then (17) becomes

(a, b) ⊗γ (e, f ) = ((ac + αbd) ◦k e + α((ad + bc) ◦k f ), (ad + bc)e + (ac + αbd) f )

= (c(a ◦k e + b ◦k f α) + αd(b ◦k e + a ◦k f ), c(a f + be)

+ d(ae + b f α)) .

If c ≠ 0 but d = 0, then it is easy to check that the semifield defined by ⊗γ is strongly
isotopic to Sk . By Theorem 4, Sk is not strongly isotopic to Ss , therefore the semifield defined by
⊗γ is also not strongly isotopic to Ss .

If d ≠ 0, then without loss of generality, we assume that d = 1. Then (a, b) ⊗γ (e, f )

becomes

(c(a ◦k e + b ◦k f α) + α(b ◦k e + a ◦k f ), c(a f + be) + (ae + b f α)) , (18)

and the corresponding planar function is

(x, y) → (2c(x pk
+1

+ αy pk
+1) + 2αx ◦k y, 2cxy + x2

+ αy2),

which is equivalent to

(x, y) → (2cxy + x2
+ αy2, c(x pk

+1
+ αy pk

+1) + αx ◦k y). (19)
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Now, we need a claim:

Claim. If c2
− α is a non-square in Fpl , where l = gcd(m, k), then the presemifield defined by

⊗γ in (18) is not strongly isotopic with Ss , for any s > 0.

Let us first assume that this claim holds. It is well-known that there always exist some c ∈ Fpl

such that c2
− α is a non-square in Fpl , where l = gcd(m, k) and α ∈ Fpl is also a non-square.

Therefore for any γ , the presemifield defined by ⊗γ and Ss are not strongly isotopic. Hence Sk
and Ss are also not isotopic. Furthermore, we also see that for every k, the semifield Sk defines
two inequivalent planar functions over Fp2m .

Finally, we are going to prove this claim. Assume that the presemifield defined by ⊗γ in (18)
is not strongly isotopic with Ss , then, similarly as in the proof of Theorem 4, we have linearized
polynomials L1(x, y), L2(x, y) and L(x, y), where L(x, y) is a permutation such that

L ◦


2cL1(x, y)L2(x, y) + L1(x, y)2

+ αL2(x, y)2

c(L1(x, y)pk
+1

+ αL2(x, y)pk
+1) + αL1(x, y) ◦k L2(x, y)

T

= (x ps
+1

+ αy ps
+1, xy).

Let y = 0, and we denote L i (x, 0) by L i (x), for convenience. We get,
2cL1(x)L2(x) + L1(x)2

+ αL2(x)2

c(L1(x)pk
+1

+ αL2(x)pk
+1) + αL1(x) ◦k L2(x)

T

= L−1(x ps
+1, 0) = (ϕ1(x ps

+1), ϕ2(x ps
+1)),

where ϕ1(x), ϕ2(x) are linearized polynomials. Let L1(x) =
m−1

i=0 ai x pi
, L2(x) =m−1

i=0 bi x pi
and ϕ1(x) =

m−1
i=0 ci x pi

, then

L1(x)2
+ αL2(x)2

+ 2cL1(x)L2(x)

=


i> j

2(ai a j + αbi b j + cai b j + ca j bi )x pi
+p j

+

m−1
i=0

(a2
i + αb2

i + 2cai bi )x2pi
.

Since s ≠ 0, by comparing the equation above with ϕ1(x ps
+1), we have that

a2
i + αb2

i + 2cai bi = 0, for any 0 ≤ i ≤ m − 1,

which can also be written as,

(ai + cbi )
2
+ (α − c2)b2

i = 0, for any 0 ≤ i ≤ m − 1.

If c2
− α is a non-square in Fpl , then it is also a non-square in Fpm , since m

l is odd. Hence the
equation above has no solution. Therefore, the claim is proved, and we also finish the proof of
this theorem. �

The total number of non-isotopic semifields and inequivalent planar functions defined by Sk,σ

can also be counted:

Corollary 1. Let Sk,σ be the semifield with the multiplication ⋆ defined as in (6) on Fp2m , where
m = 2eµ with gcd(µ, 2) = 1, then Sk,σ defines

1. ⌊
µ
2 ⌋ · ⌈

m
2 ⌉ non-isotopic semifields; and

2. ⌊
µ
2 ⌋ · (⌈m

2 ⌉ + 1) inequivalent planar functions.
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4. Sk,σ is a new family

In the previous sections, we showed that our new family looks like a combination of Dickson
semifields and generalized twisted fields, and Sk behaves quite different from Sk,σ with nontrivial
σ . Therefore, we suggest to divide it into two families, according to whether σ is trivial, as the
case of finite fields and Dickson semifields.

When we take them as two families, then one natural question is:
Do Sk and Sk,σ contain new semifields compared with the other known families?
In fact, for some cases, we can prove that Sk is contained in the family discovered by

Budaghyan and Helleseth [11,12], which can be rewritten in the following form:

Theorem 7 (Kyureghyan and Bierbrauer [7]). Let p be an odd prime number, q = pm, n = 2m
and integers i, j such that s = i − j . Then the mapping Ms : Fpn → Fpn given by

Ms(x) = x pm
+1

+ ωtrq2/q(βx pi
+p j

), i ≥ j ≥ 0,

is planar if and only if all the following conditions are fulfilled:

1. s = 0 or ν(s) ≠ ν(m),
2. ω ∈ Fq2 \ Fq ,
3. β is a non-square in Fq2 ,

where ν(s) is defined by s = 2ν(s)s1 with s1 an odd integer.

Since u pm
+1

∈ Fpm , for any u ∈ Fp2m , different choices of ω give equivalent planar functions.
Furthermore, it is easy to see that different (i, j) with the same s also lead to equivalent Ms , so
we redefine Ms(x) as follows:

Ms(x) = x pm
+1

+ ωtrq2/q(βx ps
+1), (20)

where s = 0 or ν(s) ≠ ν(m), and β and ω are the same as in Theorem 7.
The following lemma can be found in [16,24,27]:

Lemma 2. For an odd prime p,

gcd(p j
+ 1, pn

− 1) =


pgcd( j,n)

+ 1, if ν( j) < ν(n);
2, otherwise.

When m is odd, there exist ω ∈ Fp2 \Fp, such that ω +ωpm
= 0 and u ∈ Fp2m can be written

as a + bω, where a, b ∈ Fpm . Furthermore, by Lemma 2, since m is odd and ν(s) ≠ ν(m),
we have gcd(ps

+ 1, p2m
− 1) = 2, so different non-square β lead to equivalent Ms(x) and

we assume that β = ω−1. Then we denote ⊙ to be the multiplication defined by (20), denote
u, v ∈ Fp2m respectively by a + bω and c + dω, and we have

u ⊙ v = (a + bω) ⊙ (c + dω)

= (a + bωpm
)(c + dω) + (a + bω)(c + dωpm

) + ωtrq2/q(ω−1x ◦s Y )

= 2ac − 2bdω2
+ ((a + bω) ◦s(c + dω) − (a − bω) ◦s(c − dω))

= 2(ac − bdω2) + 2(a ◦s(dω) + (bω) ◦s c)

= 2(ac − bdω2) + 2(a ◦s d + b ◦s c)ω.
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The last equality sign holds, because ωps
−1

= 1, since that s must be even. Moreover, the
corresponding planar function is equivalent to

Ms(x, y) = (x ps
y + xy ps

, x2
− ω2 y2),

which is equivalent to (19) with c = 0, when −1 is a square in Fpm .
However, on the other hand, since we showed above that when m is odd and −1 is a square, the

Budaghyan–Helleseth semifield is isotopic to Sk , it cannot be isotopic to Sk,σ with non-trivial
σ by Theorem 6. Furthermore, by the middle and left nucleus of Sk,σ , we know that it is not
isotopic with Albert’s and Dickson’s semifields. Moreover, since Sk,σ is defined over p2m for
any odd p, it must cover some new semifields.

Theorem 8. When m ≥ 5 is odd and −1 is a square, Sk,σ with non-trivial σ contains semifields
which are not isotopic with any known ones.

5. APN functions with the similar form

In [11,36], it is independently shown for the first time that some planar functions can be
derived from quadratic APN functions. Similar constructions for planar function can also be
found in [4,6,37]. One natural question is the following: Is it possible to get some new APN
functions from known planar ones?

In fact, from our new presemifields family, we can derive a similar family of APN functions
on F22m :

Theorem 9. Let m ≥ 2 be even integer, and k be a integer such that gcd(k, m) = 1. Define a
function f on F22m as follows,

f (x, y) = (x2k
+1

+ αy(2k
+1)σ , xy),

where α ∈ F2m , α ≠ 0 and σ ∈ Aut(F2m ). Then f is an APN function, if and only if, α cannot
be written as a2k

+1(t2k
+ t)1−σ , where a, t ∈ F2m .

Proof. Since f is quadratic, we only have to prove that for each (a, b) ≠ 0, the equations
x ◦k a + α(y ◦k b)σ = 0
ay + bx = 0

have at most two roots, where x ◦k y = x pk
y + y pk

x .
If b = 0, then we have x ◦k a = 0 and ay = 0, which means y = 0, x = 0 or a, since x pk

+1

is APN function on F2m and a ≠ 0.
If b ≠ 0, then x =

ay
b = t · a, where t :=

y
b . Hence, we have

(at) ◦k a + α((bt) ◦k b)σ = 0,

namely,

(t2k
+ t)a2k

+1
+ α(t2k

+ t)σ b(2k
+1)σ

= 0.

If t2k
+ t = 0, then x = y = 0 or y = b, x = a; If t2k

+ t ≠ 0, then we have

α =

 a

bσ

2k
+1

(t2k
+ t)1−σ ,

from which we prove the claim. �
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Let us further consider the condition of Theorem 9. For even m, when gcd(k, m) = 1, we
have gcd(2k

+ 1, 2m
− 1) = 3 and gcd(2i

− 1, 2m
− 1) = 2gcd(i,m)

− 1. Hence, if i is seven and
σ(x) = x2i

, then a2k
+1(t2k

+ t)1−σ is a cube. Therefore, if α is not a cube, then the condition in
Theorem 9 holds.

Corollary 2. Let m ≥ 2 be even integer, and k be a integer such that gcd(k, m) = 1. Define a
function f on F22m as follows:

f (x, y) = (x2k
+1

+ αy(2k
+1)2i

, xy),

where the nonzero α ∈ F2m is a non-cubic and i is even. Then f is an APN function.

Let m = 4, k = 1 and α be a primitive element of F24 . By Corollary 2, we can choose i = 0
or 2 to get two APN functions. By using MAGMA [9], it can be computed that, when i = 0, the
APN function is equivalent to the function No 2.1 in Table 10 in [25]. However, when i = 2, the
Γ -rank of the APN function is 13642, which does not occur in the list of known APN functions
in [25] (see [25] for the Γ -rank). More concretely, the function

f (x, y) = (x3
+ αy12, xy)

is a new APN function on F28 .

Remark 3. In [14], Carlet presents some interesting constructions of APN functions, which
include a similar result to Theorem 9 with σ = id.
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