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Impulsivity is the tendency to act prematurely without foresight. Behavioral and neurobiological analysis
of this construct, with evidence from both animal and human studies, defines several dissociable forms de-
pending on distinct cortico-striatal substrates. One form of impulsivity depends on the temporal discounting
of reward, another on motor or response disinhibition. Impulsivity is commonly associated with addiction to
drugs from different pharmacological classes, but its causal role in human addiction is unclear. We charac-
terize in neurobehavioral and neurochemical terms a rodent model of impulsivity based on premature
responding in an attentional task. Evidence is surveyed that high impulsivity on this task precedes the esca-
lation subsequently of cocaine self-administration behavior, and also a tendency toward compulsive
cocaine-seeking and to relapse. These results indicate that the vulnerability to stimulant addiction may
depend on an impulsivity endophenotype. Implications of these findings for the etiology, development,
and treatment of drug addiction are considered.
Introduction
Impulsive behavior, for which a simple definition is the tendency

to act prematurely without foresight, is associated with most

forms of drug-taking, including alcoholism. It is often considered

to be a product of impaired cognitive control and could poten-

tially affect several aspects of the addictive process, including

compulsive drug-seeking and relapse. A key question is there-

fore how such behavior causally contributes to aspects of drug

addiction, as well as to other disorders of human decision-

making. Surprisingly, this question has proven quite difficult to

address. Although impulsivity may be a pre-existing personality

trait, taking drugs may result in behavioral changes that include

impulsivity, as a consequence of their pharmacological or

‘‘neurotoxic’’ actions in the brain.

The main goals of this review are to characterize the (multifac-

eted) nature of impulsivity (which involves various forms of

response inhibition or ‘‘cognitive control’’), to consider its signif-

icance in the causation of compulsive drug-seeking behavior

(i.e., addiction), and to explore its neural mediation and origins.

In particular, we will be addressing whether forms of impulsivity

can be pre-existing biomarkers or ‘‘endophenotypes’’ for drug

addiction.

The construct of impulsivity captures a set of behavioral

characteristics that lay persons as well as clinicians can recog-

nize as contributing to psychopathology. Of course, impulsive

behavior is not always maladaptive; there will be occasions

when it is advantageous to respond rapidly. Aswithmany behav-

ioral constructs, impulsivity is probably multifaceted, as can be

gleaned from the following classic definition; ‘‘actions which

are poorly conceived, prematurely expressed, unduly risky or

inappropriate to the situation and that often result in undesirable

consequences’’ (Durana and Barnes, 1993). Deconstruction of
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this definition suggests that impulsivity could subsume behavior

that has not adequately sampled sensory evidence (‘‘reflection

impulsivity’’), a failure of motor inhibition (‘‘impulsive action’’),

a tendency to accept small immediate or likely rewards versus

large delayed or unlikely ones (‘‘impulsive choice’’) and risky

behavior, in the context of decision-making (see Evenden,

1999). Impulsivity can be also expressed in a number of different

responses, including aggression. Given such a range of modes

of expression of impulsivity, the question arises of whether we

are dealing with a unitary construct. The evidence to be surveyed

below using more operational measures of the impulsivity

construct suggests that we are not and that it will eventually be

necessary to formally define different forms of impulsivity;

indeed, some progress toward that goal will be reported in this

review.

Prototypical clinical disorders expressing impulsive behavior

include attention deficit/hyperactivity disorder (ADHD),

substance abuse and addiction, mania and antisocial behavior.

There is probably some relationship (Hollander and Cohen,

1996), and often some confusion, between impulsivity and

compulsivity. These two constructs have both been hypothe-

sized to result from failures of response inhibition or ‘‘top-

down’’ cognitive control. However, compulsivity can be

captured by amodification of the definition of impulsivity: actions

inappropriate to the situation which persist, have no obvious

relationship to the overall goal and which often result in undesir-

able consequences. The argument will be made here therefore

that compulsivity (which probably also comprises several

distinct dimensions) and impulsivity may be distinguished by

their involvement with different aspects of response control,

presumably mediated by related, but distinct, neural circuitry

linked with motivational and decisional processes. There is
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considerable evidence that such circuitry includes the basal

ganglia and their limbic cortical inputs, together with ‘‘top-

down’’ control exerted by cortical, especially prefrontal,

circuitry—modulated by neurochemical systems including the

ascending monoaminergic projections to these terminal

domains.

‘‘Sensation-seeking’’ is also often bracketed with impulsivity

(e.g., in the UPPS-Impulsive Behavior Scale [Cyders et al.,

2009]) presumably because it frequently involves risky behavior,

such as taking drugs or leaping from great heights; however,

it does not necessarily entail a failure to inhibit prepotent

responding and we will consider further the relationship of

sensation-seeking to impulsivity below.

Measuring Impulsivity in Experimental
Animals and Humans
Investigation of the neuropsychological basis of impulsivity has

been greatly aided by the fact that, although there may be

a variety of means for measuring impulsive behavior in human

volunteers, many of these methods have analogs in animal

behavior.

Delayed Discounting of Reward

Impulsive choice occurs when the individual preferentially choo-

ses an immediately available small reward in preference to expe-

riencing a delay for a larger one. Such choice can usually be

characterized mathematically as hyperbolic discounting, which

explains empirical findings originally in pigeons of ‘‘preference

reversal’’—the switch to choosing the smaller of the two rewards

as their values decrease over time (Ainslie, 1975). In this sense,

the animal and human paradigms may be quite comparable, in

that they measure directly behavioral choice after relatively short

temporal delays that are actually experienced by the subjects.

However, many human versions of this paradigm, such as the

Kirby test (Kirby and Petry, 2004), employ questionnaire-based

methods in which subjects make subjective choices concerning

imagined choices: e.g., would you prefer $100 after 2 days or

$110 after 62 days? This type of test has been much used in

the clinical domain for assessing impulsivity in psychiatric

patients. A related paradigm is that of ‘‘probability discounting’’

of reward when the dimension of waiting is replaced by that of

reinforcer uncertainty. Both forms of discounting behavior

almost certainly contribute to performance on complex labora-

tory-based tests of decision-making such as the Iowa Gambling

Task (Bechara, 2003), as well as to the everyday choices made

by drug addicts or compulsive binge eaters as they accept

short-term ‘‘highs’’ in preference to longer-term objectives

such as good health. Impulsive choice is probably governed by

a variety of factors that include decisions about relative value

of rewards (e.g., as affected by delay and magnitude) and the

ability to inhibit choices made to the more immediate options

(‘‘action restraint’’).

Motor Inhibition: Stop Signal Reaction Time

A very different form of impulsivity can be assessed by the ability

to exert volitional control over a response that has already been

initiated (‘‘action cancellation’’) rather than in the choice selec-

tion phase. Failure to do somay result in an inappropriate, impul-

sive response, and this situation has been modeled in a test

procedure called the ‘‘stop-signal reaction time task’’ (Logan,
1994) in which subjects are trained to respond as quickly as

possible in a reaction time task. But on a proportion of trials,

a ‘‘stop-signal’’ is sounded, which indicates that the subject

has to cancel responding on that trial. Presentation of the

stop-signal occurs at different time-points after the imperative

signal, so it is much more difficult for subjects to cancel the

response with increasing delay after the imperative signal than

when the stop signal occurs immediately. The ability to stop

behavior is measured by the stop-signal reaction time (SSRT),

which can be inferred from a consideration of the response

time distributions, and is based on a simple ‘‘race’’ model with

‘‘go’’ responses as measured by the ‘‘go’’ reaction time. This

paradigm, originally conceived for use in humans, including

patients with ADHD, can be implemented in rodents, for which

strikingly similar estimates of SSRT can be obtained.

The SSRT task is a relatively sophisticated version of a classic

neuropsychological task, the Go/NoGo procedure in which the

subject has to choose between a stimulus associated with

reward and another stimulus that cues inhibition of responding.

In other words, the Go/NoGo task resembles the SSRT when

the stop signal delay is 0 s. Although this appears to be a small

procedural difference, Go/NoGo and SSRT performance can

actually be affected differentially by the same manipulations,

for example, those affecting serotonergic neurotransmission,

which affect Go/NoGo choice, while having no effects on

SSRT (Eagle et al., 2008a). This dissociation highlights how it is

important to take into account the precise processes involved;

Go/NoGo implicates response choice selection as well as action

restraint, whereas SSRT involves the cancellation of an already

selected response (‘‘action cancellation’’). Thus, response inhi-

bition may clearly involve different subprocesses, depending

on the precise programming of the action.

Premature Responding on the 5-Choice

Serial Reaction Time Task

Another task that has been employed in rodents to measure

impulsivity, in the context of general attentional abilities, is the

5-choice serial reaction time task (5CSRTT) (Robbins, 2002).

This is based on a human test paradigm that is a forerunner of

the well-known continuous performance task, employed for

measuring sustained attention after drugs or stress or in clinical

populations. In the rodent version, rats (or mice) are trained to

detect brief visual targets to earn food. Anticipatory responses

that occur prior to the onset of the visual signals are termed

premature responses and are (usually) punished by time-out

(darkness and reward delay). These ‘‘impulsive’’ responses

contrast with the persistent, or perseverative, responses that

sometimes occur in this test paradigm (and therefore are more

accurately labeled as ‘‘compulsive responses’’). The impulsive

responses are more difficult to define in terms of the precise

scheme laid out above; they arise as a consequence of the

animal expecting a reward-related cue; however, they also

evidently measure an aspect of response inhibition that is related

to response selection in the Go/NoGo procedure. The impulsive

responding is similar to that observed in so-called differential

reinforcement of low rates of responding schedules, in which

rats are trained to withhold responding for food until a set delay

(often >15 s) has elapsed, except that the delays imposed before

visual target presentation in the 5CSRTT are generally much
Neuron 69, February 24, 2011 ª2011 Elsevier Inc. 681
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shorter and may depend to a lesser degree on the capacity for

timing behavior. Nevertheless, in both of these cases, the

response inhibitory process involved is action restraint during

waiting for a reward. Thus, some overlap with delayed discount-

ing paradigms is also evident, although these additionally

depend on choice between the relative reinforcing value (or

utility) of options (see above).

Self-Reported Impulsivity

In addition to these objective methods, impulsivity is generally

assessed in humans using self-report as in the Barratt Impulsivity

Scale (BIS-11), the UPPS-P Impulsive Behavior Scale (IBS), and

the Kirby test of delayed discounting (see above). The BIS-11

comprises 30 items that are totaled to produce an overall score,

with factor analysis having been employed to yield three major

subscales: ‘‘attentional,’’ ‘‘motor,’’ and ‘‘non-planning.’’ Patton

et al. reported high retest performance of the order of 0.8, for

populations of substance abusers, prison inmates, general

psychiatric patients, and undergraduates (Patton et al., 1995).

The UPPS-P IBS is a 59 item self-report scale with five distinct

subscales (positive urgency, negative urgency, lack of premed-

itation, lack of perseverance, and sensation-seeking) (Whiteside

and Lynam, 2003). However, the subjective measurement of

impulsivity often fails to bear a clear relationship with more

objective methods, suggesting that they are assessing subtly

different aspects; for example, self-report scales may reflect

subjective commentary on impulsive-like behavioral output

(Moeller et al., 2001).

Comparisons of Impulsivity Measures

More generally, correlations between performance on the

various ‘‘objective’’ methods often also tend not to provide

evidence of a unitary construct of impulsivity—for example,

a multicenter study of ADHD found that SSRT and delayed dis-

counting measures failed to correlate significantly, although

together they defined the entire spectrum of ADHD disorder

subtypes (Solanto et al., 2001). A study in rats examining various

measures of impulsivity as affected by central 5-HT depletion

also found little evidence of intercorrelation (Winstanley et al.,

2004a). There are exceptions; for example, the steep discount-

ing of delayed food rewards can predict aggression in rats

(Van den Bergh et al., 2006). We will also be reporting evidence

below that impulsivity as measured by the 5CSRTT and the

delayed discounting paradigms share overlapping (but not

identical) neural substrates. However, the general lack of inter-

correlation means that, although the different tasks share

some common features, such as the overall recruitment of inhib-

itory volitional control, this inhibition may be required at different

points in the programming of response output (e.g., from choice,

through response preparation to response initiation) and thus

be implemented by different neural structures. This explains

why impulsivity may be expressed at the behavioral level in

different ways and why different measures of impulsivity may

fail to intercorrelate.

The lack of intercorrelation between measures will thus

inform our understanding of response control mechanisms in

the brain, as well as sharpen the focus on which aspects of

impulsivity provide the most predictive endophenotypes for

psychiatric disorders. In fact, investigation of the neural

substrates of impulsivity confirms that its different forms of
682 Neuron 69, February 24, 2011 ª2011 Elsevier Inc.
expression are mediated by distinct, occasionally overlapping,

neural systems.

Neural Substrates of Impulsivity
The neural substrates of impulsivity have mainly been studied in

the context of response inhibition in humans as well as experi-

mental animals. Although there has been a natural tendency to

assume that inhibitory volitional control is exerted top-down by

cortical mechanisms, implying that impulsivity could result

from a relaxation of this control, there has been a growing appre-

ciation that neural circuitry involving both cortical and subcor-

tical mechanisms is implicated, particularly within the basal

ganglia. Moreover, the possibility exists for impulsivity to be

caused by chemical dysmodulation, not only of cortical

processes but also at the level of the striatum (Figure 1).

Reward Discounting

In terms of impulsive choice, excitotoxic lesions of the nucleus

accumbens core subregion produced remarkably potent shifts

in choice for small, immediate food reward (Cardinal et al.,

2001), a finding that has been replicated with different types of

temporal discounting procedure in several other studies (Basar

et al., 2010; Bezzina et al., 2007; Pothuizen et al., 2005). Pothui-

zen et al. also showed that similar lesions of the shell region of

the nucleus accumbens were without effect (Pothuizen et al.,

2005). The effects of nucleus accumbens core lesions on prob-

ability discounting are perhaps less well established, although

there is some evidence for a preference for certain small rewards

as distinct from uncertain larger ones (Basar et al., 2010).

The nucleus accumbens core region is also part of a larger

neural network that includes the amygdala and the prefrontal

cortex (Groenewegen et al., 1999). Accordingly, it is not

surprising that lesions of the basolateral amygdala exert qualita-

tively similar effects on impulsive choice as accumbens core

lesions (Winstanley et al., 2004b). For the orbitofrontal cortex,

however, there is evidence of both steeper discounting (Mobini

et al., 2002; Rudebeck et al., 2006) and the opposite tendency,

a preference for larger, delayed reward (Winstanley et al.,

2004b). There are several possible factors that may contribute

to this: examining lesion effects during acquisition rather than

established performance, including a reward-related stimulus

(conditioned reinforcer) during the delay interval (Zeeb et al.,

2010), and the possibility of opposed effects of lesions of the

lateral versus the medial orbitofrontal cortex (Mar et al., 2008).

This analysis is important because of the need ultimately to

match these data to electrophysiological findings, for example

in nonhuman primates (Wallis and Kennerley, 2010) and also

the functional imaging of temporal discounting in human volun-

teers (Basar et al., 2010). The importance of the OFC in impulsive

choice is supported by evidence showing enhanced release of

dopamine from this region during the choice phase of delayed

discounting (Winstanley et al., 2006b) and by molecular changes

within the OFC, including DFosB during cocaine withdrawal-

induced impulsive behavior (Winstanley et al., 2009).

There is some evidence from human functional imaging that

separate neural systems mediate the selection of immediate

and delayed options. Choice of either monetary reward or juice

or water is consistently associated with increased activity of

the ventral striatum and the medial PFC (Kable and Glimcher,



Figure 1. Schematic Representation of Neural Circuitry Mediating
‘‘Waiting’’ and ‘‘Stopping’’ Impulsivity
‘‘Waiting impulsivity’’ depends upon top-down prefrontal cortical interactions
with the hippocampus (HC), amygdala (AMG), and structures in the ventral
striatum, including the nucleus accumbens core (NAcb core) and shell
(NAcb shell). The anterior cingulate cortex (ACC), dorsal and ventral prelimbic
cortex (PLd, PLv), and infralimbic cortex (IL) make distinct contributions to
waiting impulsivity via topographically organized inputs to the NAcb. ‘‘Stop-
ping impulsivity’’ depends upon neurally dissociable circuitry involving cortical
motor areas (M1 primary motor cortex; SMA/pre-SMA supplementary motor
area; dPM dorsal premotor area), right inferior frontal gyrus (RIFG), ACC,
and the orbitofrontal cortex (OFC), as well as interactions with the dorsal stria-
tum (caudate-putamen) and other basal ganglia structures, including the
globus pallidus (GP) and subthalamic nucleus (STN), which project via the thal-
amus (Th) to the PFC. Both networks aremodulated bymidbrain dopaminergic
neurons in the substantia nigra/ventral tegmental area (SNc/VTA), seroto-
nergic neurons in the raphé nuclei (Raphe) and noradrenergic neurons in the
locus coeruleus (LC). Note that intracortical connections are not shown. For
clarity, neuromodulatory inputs to the AMG and Th are not shown.
This figure was adapted, in part, from Chambers et al. (2009) with permission
from Elsevier.
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2009). Selections anticipating immediate reward disproportion-

ately increased signal activity in the ventral striatum, medial

prefrontal, and medial orbitofrontal cortices, proposed to repre-
sent an ‘‘impulsive’’ system. By contrast, choice of the delayed

option was associated with higher activity in the lateral PFC

and orbitofrontal cortex (Hariri et al., 2006; McClure et al.,

2007), suggesting some form of balance between these

systems, support for which has been noted in recent rodent

studies (Mar et al., 2008). On the other hand, several studies

have failed to confirm specifically increased ventral striatal

activity during delayed discounting (Basar et al., 2010), and if

this increase is to be linked with immediate choice, it may be

difficult to reconcile with the rodent data showing that lesions

of the ventral striatum (specifically, the nucleus accumbens

core) actually have the same effect. However, one plausible

interpretation of the fMRI data is that the signal observed within

the ventral striatum during fMRI represents afferent input rather

than output, and so the results of the excitotoxic lesions of the

core region, which would selectively block its output, could be

understood in these terms if such output inhibited choice of

the immediate response option.

Go/NoGo and SSRT

Early work in nonhuman primates suggested that the lateral

prefrontal cortex (PFC) had an especially important role in the

control of Go/NoGo responding (Iversen and Mishkin, 1970),

although the orbitofrontal cortex has also classically been

related to disinhibition (Berlin et al., 2004). Subsequently,

evidence from neuropsychological studies on brain-damaged

patients, as well as functional imaging or electrophysiological

studies in healthy volunteers or patients with attention deficit

disorder, has suggested that the right inferior frontal gyrus

(RIFG) may have an especially important role in top-down

response control processes (Aron et al., 2003b).

Functional imaging studies defined a ‘‘stop circuit’’ in the

SSRT task that included the RIFG, the anterior cingulate cortex,

the presupplementary, and themotor cortex, as well as the basal

ganglia, with a ‘‘hyperdirect’’ cortical projection to the subthala-

mic nucleus (Aron et al., 2007) (see Figure 1). This conclusion has

been controversial (Aron, 2010), given that some studies indicate

a role for left frontal cortex also, and others argue that the rele-

vant activations are a product of attentional rather than inhibitory

processes, a reasonable argument because the stopping

response is a reaction to an external cue. However, it appears

that Go/NoGo tasks more reliably activate the left frontal cortex

than does the SSRT, possibly because of the additional

response selection processes recruited (Rubia et al., 2001; see

Eagle et al., 2008a). Aron (2010) reviewed evidence for functional

dissociations within the RIFG region that correspond to atten-

tional and response inhibitory zones, and Dodds et al. have

explicitly contrasted attentional and response control functions

associated with the posterior parietal cortex and RIFG, respec-

tively (Dodds et al., 2010). Whatever the precise nature of the

functions associated with the RIFG and its associated networks,

it is evident that malfunction of this region is associated with

impulsive behavior in healthy subjects and in ADHD (Casey

et al., 2007). Moreover, the RIFG is associated with a modulation

of the catecholaminergic enhancement of normal SSRT perfor-

mance by atomoxetine (Chamberlain et al., 2009) and by

methylphenidate and cocaine for the impaired performance of

stimulant abusers (Garavan et al., 2008). The striatum is also

implicated in impaired Go/NoGo performance in ADHD and its
Neuron 69, February 24, 2011 ª2011 Elsevier Inc. 683
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remediation bymethylphenidate (Vaidya et al., 2005), suggesting

fronto-striatal interactions in behavioral control (Casey et al.,

2007).

In general, the correspondence with animal studies has been

encouraging. For example, it has recently been shown that the

STN and the dorsomedial striatum (caudate) in rats have impor-

tant roles in SSRT performance (Eagle et al., 2008b; Eagle and

Robbins, 2003). However, it has proven to be more problematic

in rats to identify the corresponding cortical control regions,

doubtless because of problems of homology. In fact, lateral

orbitofrontal damage selectively lengthens the SSRT, consistent

with its projections to the dorsomedial striatum (Schilman et al.,

2008). A significant dissociation has been revealed between the

dorsal and ventral striatum, with excitotoxic lesions of the core

subregion not affecting SSRTwhile exerting considerable effects

on other measures of impulsivity, including responding under

a differential reinforcement of low rates (DRL) of responding

schedule and for delayed discounting (Eagle et al., 2008a).

5CSRTT and DRL Responding

The premature, anticipatorymeasure of impulsive behavior in the

5CSRTT has obvious similarities with DRL responding, in which

waiting over a defined temporal interval is required for reinforce-

ment, although the delays utilized in the 5CSRTT tend to be

shorter (5–9 s versus, typically 20 s for the DRL 20 parameter).

Lesion evidence suggests that the core region of the accumbens

contributes to both DRL response inhibition and to premature

responding on the 5CSRTT (Christakou et al., 2004; Pothuizen

et al., 2005). Moreover, d-amphetamine administered either

systemically or intra-accumbens increases premature respond-

ing on the 5CSRTT, an effect that is blocked by DA receptor

blockade or DA depletion from the nucleus accumbens (Cole

and Robbins, 1989; Pattij et al., 2007). The relative roles of the

core and shell subregions have been highlighted by the findings

of Murphy et al. (2008), who show that whereas core lesions

enhanced impulsivity produced by systemic d-amphetamine

(without in this case having any effect alone), shell lesions antag-

onized this increase. These observations are complemented by

apparently opposed effects of deep brain stimulation (DBS) of

these regions in rats, decreasing impulsivity in the shell but

increasing it in the core (Sesia et al., 2008). These findings are

compatible with the effects of the lesions if one assumes that

the DBS enhances, rather than disrupts, the functioning of these

nucleus accumbens structures. The clear involvement of the

nucleus accumbens core in impulsivity both in delayed discount-

ing and in terms of DRL and 5CSRTT performance is evident.

However, it should be noted that its lack of involvement in

stop-signal inhibition suggests that it does not participate

directly in motor inhibition and provides compelling evidence

against a simple ‘‘motor inhibition’’ hypothesis. However, the

integrity of the nucleus accumbens is clearly necessary for pre-

venting premature responding when anticipating or waiting for

reward presentation.

Premature responses in the 5CSRTT are also under neuro-

chemical modulation by other systems within the ventral

striatum; although selective 5-HT depletion from this region fails

to affect the measure (Fletcher et al., 2009), intra-accumbens

5-HT2A and 5-HT2C antagonists have opposite effects (blocking

and increasing impulsivity, respectively) (Robinson et al., 2008a).
684 Neuron 69, February 24, 2011 ª2011 Elsevier Inc.
Moreover, impulsivity on the 5CSRTT has been shown to be

highly correlated negatively with measures of 5-HT turnover in

the nucleus accumbens (Moreno et al., 2010). Noradrenergic

mechanisms are also important, given that atomoxetine,

the relatively selective noradrenaline transporter blocker,

selectively reduces impulsivity in the 5CSRTT (Blondeau and

Dellu-Hagedorn, 2007; Robinson et al., 2008b). In fact, atomox-

etine reduces impulsive responding in the SSRT and delayed

discounting paradigms also, suggesting some degree of

commonality in their capacity to assess impulsive behavior

(Robinson et al., 2008b)—although it is not necessarily the

case that these effects are mediated by a common neural

system, as opposed to diffuse effects of the ramifying central

noradrenergic projections.

Although we are gradually building up a picture of how the

nucleus accumbens is implicated in impulsive behavior (Basar

et al., 2010), it is evident that there are also ‘‘top-down’’influen-

ces on this responding, from hippocampal and PFC afferents

to the nucleus accumbens (see Figure 1) (Goto and Grace,

2008). For many years it has been known that hippocampal

lesions induce premature responding on DRL schedules—

a classic example of loss of ‘‘behavioral inhibition’’ (Gray and

McNaughton, 1983). Moreover, there is burgeoning evidence

of an involvement of the infralimbic (IL) PFC, the striatal projec-

tions of which are directed mainly to the shell subregion (Vertes,

2004). Thus, excitotoxic lesions of the IL-PFC, but not the more

dorsal prelimbic (PL)-PFC, induce premature responding on the

5CSRTT (Chudasama et al., 2003); such an effect is also found

after inactivation of the IL-PFC by infusing the broad spectrum

NMDA receptor antagonist R-CPP (Murphy et al., 2005). Prema-

ture responding on the 5CSRTT can be blocked by intra-IL-PFC

infusion of the 5HT2A receptor antagonist M100907 and the

5HT-1A receptor agonist 8-OHDPAT (Carli et al., 2006; Winstan-

ley et al., 2003), probably because of the antagonism of gluta-

mate release there (Calcagno et al., 2009). The elevated prema-

ture responding produced by intra-IL-PFC infusions of R-CPP is

consistent with this hypothesis, given the elevation of extracel-

lular glutamate resulting from such treatment (Calcagno et al.,

2009; Carli et al., 2006).

The projections of the IL-PFC to the nucleus accumbens

(Vertes, 2004) strongly indicate that the effects of manipulating

the IL-PFC might be mediated by its top-down influence on

mechanisms within the nucleus accumbens (Figure 1). However,

there are other routes by which this influence may be exerted.

Within the PFC, the IL-PFC projects only to the immediately

proximal PL-PFC (Vertes, 2004), and other recent evidence is

consistent with a role for this structure also (Hayton et al.,

2010). Rats were trained in a simple response inhibition task to

withhold responding until a signal was presented and synaptic

plasticity of excitatory synapses in the mPFC was then

measured with whole-cell patch-clamp recordings in brain slices

prepared from trained rats. Response inhibition training signifi-

cantly increased the relative contribution of AMPA receptors to

the overall EPSC in PL, but not IL-PFC neurons of the medial

PFC. This potentiation of synaptic transmission closely paral-

leled the acquisition and extinction of response inhibition. It

was further shown that these plastic changes were selective

for PL projections to the ventral striatum. It appears likely that



Neuron

Review
the PL-PFC plays an important role in response inhibition,

perhaps both via its connections to the ventral striatum and

also via its influence on motor cortex neuronal ensembles (Nar-

ayanan and Laubach, 2006).

An intriguing link to relapse in addiction is provided by parallel

studies suggesting that exposure to drug-paired cues, after

extinction of heroin self-administration, reduces the AMPA/

NMDA ratio in the mPFC (Van den Oever et al., 2008) and thus

promotes relapse to drug seeking. In line with these studies,

inactivation of the dorsal mPFC blocks cue-, drug-, and stress-

induced reinstatement of cocaine seeking after instrumental

extinction (Kalivas and McFarland, 2003), and furthermore the

consolidation of extinction of cocaine seeking behavior depends

on glutamate transmission in the IL-PFC (LaLumiere et al., 2010).

Thus, impulsive responding and relapse to drug seeking

behavior may both result from failures in top-down PFC systems

to regulate behavior at the level of the striatum.

Impulsivity and Drug Addiction
Impulsivity, in its multifaceted forms, is linked to addiction to

drugs of several classes: stimulants, opiates, and alcohol (Perry

and Carroll, 2008; Potenza and Taylor, 2009; Verdejo-Garcı́a

et al., 2008). With many of the classical methods for establish-

ing impulsivity, including the BIS-11 and other scales, and in

particular delayed discounting methods for monetary reinforce-

ment, it has been well-established that steeper discounting is

evident in opioid-dependent individuals (Kirby and Petry,

2004), heavy social drinkers (Vuchinich and Simpson, 1998),

alcoholics (Petry, 2001), cocaine abusers (Kirby and Petry,

2004), methamphetamine abusers (Monterosso et al., 2007),

and cigarette smokers (Bickel et al., 1999). There is also

considerable evidence of impulsive responding with such tasks

as the SSRT or Go/NoGo task in alcoholics (Noël et al., 2007),

cocaine (Fillmore and Rush, 2002; Hester and Garavan, 2004),

and methamphetamine (Monterosso et al., 2005) abusers.

Methamphetamine abusers exhibit increased impulsivity as

measured by the BIS-11 and also reduced DA D2/3 receptor

binding in the striatum (Lee et al., 2009), the first such associ-

ation to be shown in humans. Evidence of increased impulsivity

is less clear in cannabis or MDMA abusers (Quednow et al.,

2007).

Overall, it is evident that impulsivity, measured in a number of

ways, is associated with some forms of drug abuse and seems

likely to result from possibly multiple dysfunctions in cortico-

striatal pathways associated with diverse forms of impulsivity.

These dysfunctions may not always be caused by the same

factors; some may be pre-existing and others drug-induced,

both potentially coexisting in the same individual and contrib-

uting differentially to the addictive process.

Perry andCarroll (2008) consider the hypothesis that impulsive

responding can be induced by drug-taking acutely and find only

limited evidence for this possibility with delayed discounting

procedures. Indeed, stimulant drugs are often found to reduce

impulsive choice (both in humans and experimental animals).

There is considerable evidence that alcohol increases impulsive

responding in tasks such as Go/NoGo and the SSRT (de Wit,

2009). However, one recent study has shown that acutely admin-

istered cocaine can actually reduce deficits in a GoNo/Go proce-
dure in cocaine-abusing humans, concomitant with a normaliza-

tion of the BOLD response in the PFC (Garavan et al., 2008).

Although the evidence that acute administration of drugs of

abuse induces impulsivity in humans is therefore slight, an alter-

native possibility, that chronic administration of such drugs

causes neurotoxic effects on ‘‘top-down’’ control regions such

as the PFC, is a viable alternative hypothesis (Everitt and Rob-

bins, 2005; Jentsch and Taylor, 1999; Kalivas and Volkow,

2005)—although one that is much more difficult to test directly.

There is little doubt that chronic drug abuse in humans is associ-

ated with substantial structural andmetabolic changes in several

cortical areas, including lateral PFC and the orbitofrontal cortex

(Porrino et al., 2007; Robbins et al., 2008; Volkow et al., 2001).

Moreover, it appears plausible that such changes enhance the

transition to addiction, perhaps through relaxing control over

subcortical mechanisms.

On the other hand, at least some of these apparent changes

in brain function may actually reflect differences that were pre-

existing prior to any drug abuse. How is it possible to untie this

Gordian knot of cause and effect? Clearly, prospective studies

of humans from an early age could in principle establish whether

behavioral impulsivity and accompanying correlates of brain

function antedate drug-taking and therefore could even be

a risk factor for such drug taking. Such studies though rare indi-

cate that impulsivity often precedes the onset of problem

drinking and drug use (Nigg et al., 2006). The recent IMAGEN

study of 2000 adolescents based in 9 European Centers hopes

to obtain further prospective neurobehavioral indices of risk for

future drug abuse by following this cohort carefully (Schumann

et al., 2010). Another study has been able to predict the initiation

of smoking behavior in adolescents at age 14 from delay-dis-

counting measures at age 10 (Audrain-McGovern et al., 2009).

A further strategy is to follow in epidemiological studies ‘‘at

risk’’ groups, such as those adolescents with ADHD or children

of drug addicts, many of whom will express behavioral impul-

sivity and associated brain changes (Verdejo-Garcı́a et al., 2008).

Another, indirect method is to investigate impulsivity and other

putative traits not only in drug addicts but also in their first-degree

relatives, who are not abusing drugs. This classic approach to

establishing endophenotypes (Gottesman and Gould, 2003)

was recently implemented in a study by Ersche et al. (2010)

that examined impulsivity and sensation seeking in a large group

of stimulant abusers and their siblings, as well as age- and IQ-

matched controls. As shown in Figure 2, impulsivity, but not

sensation seeking, was significantly elevated in the siblings

compared with controls, suggesting a possible inherited basis

of impulsivity (there also being other possible causes), although

sensation seeking was not significantly enhanced in this group.

Of course, the drug users exhibited the highest levels of both

sensation seeking and impulsivity, also supporting the likely

conclusion that impulsivity may arise from a combination of pre-

disposing and drug-induced effects—these are not mutually

incompatible outcomes. On the other hand, sensation-seeking,

although not predictive of future stimulant use, appears more

specifically related to drug-induced rather than genetic effects.

The comparison of impulsivity and sensation-seeking was

stimulated in part by animal studies (Belin et al., 2008) of what

may be functionally equivalent tendencies in rats. In the
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Figure 2. Endophenotypes of Drug Addiction
Self-reported levels of impulsivity and sensation-seeking in 30 sibling pairs of stimulant-dependent individuals and their biological brothers/sisters without
a significant drug-taking history compared with 30 unrelated, non-drug-taking controls (A and C). Siblings reported significantly higher levels of trait impulsivity
than the control volunteers but did not differ from controls with regard to sensation-seeking traits (B andD). Stimulant-dependent individuals reported significantly
higher levels of impulsivity and sensation-seeking compared with both their siblings and controls. *p < 0.05 (versus controls). Data represent means ± SEM.
This figure was reprinted from Ersche et al. (2010), with permission from Elsevier.
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remainder of this article, we describe the approach of using

animal experiments in which the genetic background and neuro-

behavioral phenotype of the animal can be characterized, prior

to any controlled exposure to drugs of abuse.

Animal Models of Addiction Endophenotypes

Perhaps the earliest relevant study was the finding that rats

preferentially (75% of trials) choosing small (two food pellets),

immediate rewards over large (12 pellets) rewards delivered

after a delay of 15 s subsequently consumed significantly

more of a 12% alcohol solution than the less impulsive

subgroups (Poulos et al., 1995). More recent studies extended

the delayed discounting paradigm to cocaine self-administra-

tion, finding that ‘‘high impulsive’’ rats acquired cocaine

self-administration more quickly than ‘‘low impulsive’’ rats (Perry

and Carroll, 2008; Perry et al., 2005). These two studies clearly

supported the hypothesis that high impulsivity, as measured by

delayed discounting, is a vulnerability factor for both alcohol and

cocaine self-administration. A third set of studies had shown

that rhesus monkeys subjected to social stress as adolescents

consistently self-administered intravenously more cocaine than
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nonstressed animals and additionally showed lower levels of

dopamine (DA) D2/3 receptor binding in the striatum (Morgan

et al., 2002). This result was very significant given the studies

by Volkow and colleagues showing that chronic cocaine, meth-

amphetamine, and alcohol abusers had reduced DA D2/3

receptors in the striatum and, furthermore, that that non-drug-

abusing volunteers had a greater ‘‘liking’’ for i.v. methylpheni-

date when they exhibited relatively lower D2/3 striatal receptor

binding potentials—given that they indicate possible pre-exist-

ing changes in D2/3 receptors prior to drug exposure (Volkow

et al., 2002; Volkow et al., 1993; Volkow et al., 1999; Volkow

and Wise, 2005). Initial studies by the Nader group on rhesus

monkeys did not characterize in detail the behavioral phenotype

associated with their findings of reduced striatal D2/3 receptor

binding. However, it has subsequently emerged that the

dominant (high striatal D2/3 receptor availability) monkeys are

slower to contact a novel object, consistent with them being

novelty-reactive and the low D2/3 receptor availability monkeys

having faster latencies and thus potentially exhibiting impulsive

behavior (Czoty et al., 2010).



Figure 3. Rats Selected for High Impulsivity on the 5CSRTT Show Enhanced Self-administration of Cocaine, Nicotine, and Sucrose
Compared with Low-Impulsive Rats
Data from Dalley et al. (2007) (cocaine; reprinted with permission from AAAS), Diergaarde et al. (2008) (nicotine; reprinted with permission from Elsevier), and
Diergaarde et al. (2009) (sucrose; use of APA information does not imply endorsement by APA). Data represent means ± SEM.
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Recognizing that self-administration per se may not be the

most sensitive indicator of the tendency to addiction, Dalley

et al. (2007) took a different approach by investigating the

propensity to escalate cocaine i.v. self-administration as an

index of the addictive potential of cocaine (Ahmed and Koob,

1999). They also used the criterion of excessive impulsive re-

sponding in the 5CSRTT to identify impulsivity, given that

previous findings (Dalley et al., 2002) had indicated a bimodal

distribution of impulsive responding in the Lister hooded strain

of rats, according to this measure. In the previous study,

changes in serotonin levels within the PFC had been identified

in the high impulsive rats, together with evidence of enhanced

DA turnover in the anterior cingulate cortex.

An additional finding in the 2007 study was that the high impul-

sive rats had reduced DA D2/3 receptor binding in the ventral,

but not the dorsal striatum. Furthermore, this reduced level of

binding significantly correlated with the level of impulsive

behavior in the 5CSRTT, a correlation that is strikingly parallel

to that seen in human methamphetamine abusers (Lee et al.,

2009). Dalley et al. (2007) showed that high-impulsive rats greatly

escalated, or lost control over, their cocaine intake compared to

low impulsives, but were no different in their initial acquisition of

self-administration (Figure 3).

These findings, while again supporting the concept of a neuro-

behavioral endophenotype that predicts vulnerability to drug (in

this case, cocaine) abuse, of course raises many issues. Are

similar relationships evident for other drugs of abuse? How

precisely defined is the behavioral endophenoptype? For

example, is the construct of impulsivity the most appropriate?

Which neural circuitry is implicated? How do these neurobeha-

vioral changes arise, are they the product of genetic or epige-

netic factors? Significant advances can be reported for many

of these questions, below.

Extension to Other Drugs of Abuse and Reinforcers. A similar

measure of impulsive responding on the 5CSRTT was found to

predict enhanced nicotine self-administration and enhanced

resistance to extinction (see Figure 3) (Diergaarde et al., 2008),

thus extending the link with impulsivity to the more general class
of stimulant drugs. However, these high impulsive rats were not

apparently more susceptible to cue-induced reinstatement of

nicotine seeking behavior. These findings contrasted slightly

with those obtained when rats were screened for high impulsivity

alternatively using the delayed discounting procedure, but these

rats were also more susceptible to nicotine in other ways.

Inactivation of themedial raphé nucleus bymuscimol infusions

was shown to increase premature responding on the 5CSRTT

and also to reinstate alcohol seeking (Lê et al., 2008), but

whether high-impulsive rats would exhibit greater ethanol

consumption is yet to be established. One clear negative is

that high-impulsive rats screened on the 5CSRTT do not exhibit

enhanced acquisition or escalation of i.v. heroin self-administra-

tion (McNamara et al., 2010). The latter result is of interest, given

the evidence that both heroin addicts (Kirby and Petry, 2004) and

rats treated with opiates (Pattij et al., 2009) exhibit evidence of

enhanced impulsivity, as defined by effects on delayed discount-

ing of reward.

Refining the behavioral phenotype. An obvious question is

whether the findings for impulsivity defined according to the

5CSRTT and delayed discounting paradigms are compa-

rable—whether they both measure a unitary construct of impul-

sivity. The findings of Diergaarde et al. (2008) suggest that the

5CSRTT and delayed discounting tasks are measuring some-

thing in common that we can perhaps label as a ‘‘waiting impul-

sivity’’ that is related to vulnerability to nicotine reinforcement.

This suggests mediation by overlapping neural substrates,

although the subtly different relationships with susceptibility to

nicotine suggest some differences also.

Themost direct comparisons have been to compare high- and

low-impulsive rats on the 5CSRTT in other settings designed to

assess impulsivity. For example, high-impulsive rats on the

5CSRTT also exhibited significantly steeper discounting func-

tions, consistent with the unitary construct of ‘‘waiting impul-

sivity’’ suggested above (Robinson et al., 2009). However, it

was significant that the high-impulsive rats did not show

impaired (i.e., slower) SSRTs, suggesting that there is a dissoci-

ation between ‘‘failing to wait’’ and ‘‘failing to stop’’ forms of
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impulsive behavior, perhaps reflecting distinct neural substrates

(e.g., ventral versus dorsal striatum, see above and Figure 1). As

we have seen above, both forms of impulsivity may be impaired

in chronic stimulant abusers, but our evidence in rats suggests

that the ‘‘failing to stop’’ impulsivity, though often associated

with stimulant abuse (e.g., Fillmore and Rush, 2002), may not

be an endophenotype for cocaine addiction, although this

remains to be tested in both rats and humans.

Impulsivity has frequently been associated with sensation

seeking and so may be linked to the processing of novelty.

An early, seminal study (Piazza et al., 1989) reported that high

reactivity to novelty (presumably as a consequence of increased

anxiety) predicted faster acquisition of i.v. self-administration of

d-amphetamine and so the issue arises of whether the high-

impulsive rats were similarly novelty reactive. The high-reactive

rats were defined as such by their increased levels of locomotor

activity in novel circular corridors. However, we could find no

evidence of increased locomotor activity in photocell activity

cages in our high-impulsive 5CSRTT animals (Dalley et al.,

2007), suggesting that reactivity to novelty is not core to the

impulsivity construct.

A later study (Belin et al., 2008) explicitly classified the same

population of rats as high versus low impulsive or as high versus

low novelty reactive on the basis of their locomotor activity

scores. The findings were very revealing. The high-reactive rats

were indeed more sensitive to cocaine and acquired i.v. self-

administration more rapidly. However, the high-impulsive rats

did not acquire cocaine self-administration more rapidly, but

did exhibit greater evidence of compulsive cocaine-seeking

behavior by tolerating mild foot-shock punishment readily in

a cocaine-seeking paradigm (Belin et al., 2008). Moreover, the

high-impulsive rats were more prone to relapse to cocaine

seeking after punishment-induced abstinence (Economidou

et al., 2009).

These striking results indicate that the two endophenotypes,

novelty reactivity and impulsivity, may contribute to different

phases of cocaine self-administration, for example, initiation

and persistence—we consider the latter to be more predictive

of addiction potential. The data also underline the considerable

individual differences that underlie the drive to addiction and

the fact that only a proportion of animals subjected to drug expo-

sure actually become ‘‘drug-addicted’’ in the operational sense

(Deroche-Gamonet et al., 2004; Pelloux et al., 2007). The results

indicate that impulsivity as defined by premature responding is

not equivalent to the greater responsivity of rats shown to novel

situations. The findings may also bear on the possible relation-

ship of impulsivity to compulsivity; it is notable that Roman

High Avoidance rats exhibit not only evidence of impulsivity on

the 5CSRTT and delayed discounting but also elevated

schedule-induced polydipsia, a possible model of obsessive-

compulsive disorder (Moreno et al., 2010).

However, other possible phenotypes should be considered;

novelty reactivity is not the same as novelty preference, and

impulsivity may also be associated with diminished anxiety.

Recent studies (Molander et al., 2011) show that there are small,

significant correlations of 5CSRTT impulsivity with measures of

novelty preference and diminished anxiety as measured by

entries into the open, elevated arm of a Y maze. However, these
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are minor and could well be explained by the response disinhibi-

tion that underlies all of the measures. Interpretation of a recent

correlation of enhanced novelty preference with measures of

compulsive cocaine seeking is therefore somewhat compro-

mised by the lack of any concurrent measure of impulsivity (Belin

et al., 2011).

High impulsivity on the 5CSRTT does not seem simply to be

a consequence of altered timing (Mar et al., 2009) or impaired

stimulus control; attentional measures on the 5CSRTT are often

unaffected in high-impulsive rats, although there may be a small

decrement in accuracy, possibly relevant to an ADHDphenotype

(Dalley et al., 2007). There is evidence that high-impulsive rats

more readily respond for high-incentive foods such as sucrose

(see Figure 3) (Diergaarde et al., 2009). However, motivational

factors do not appear primary; although 5CSRTT impulsivity

can be reduced by satiety (Robbins, 2002), the latencies to

collect earned rewards are no faster than in low-impulsive rats

(Dalley et al., 2007). A suggestion that impulsivity might be

related to an increased propensity to approach Pavlovian cues

predicting food was also not supported (Robinson et al., 2009).

Finally, and perhaps most significantly, although high levels of

impulsivity could in theory arise because of slowed learning to

negative feedback (and in that sense be an example of persever-

ative or compulsive behavior, as distinct from impulsivity), in fact,

high-impulsive rats eliminate their impulsive behavior at a similar

rate to low-impulsive animals during the course of a session with

long intertrial intervals that normally elevate premature respond-

ing in both low and high impulsives (Mar et al., 2009). Overall, the

evidence indicates that the high-impulsive behavior on the

5CSRTT is a relatively well-defined example of response inhibi-

tory failure associated with reward anticipation produced by

lengthy delays to reinforcement, rather than being secondary

to a phenotype related to anxiety or reactivity to novelty.

Implications
Toward a Possible Neural Endophenotype

for Impulsivity

The definition of neural circuitry that contributes to impulsivity, in

its multifaceted forms, is an obvious objective in the search for

endophenotypes. It is entirely possible that superficially similar

behavioral syndromes arise from differences in the ways that

distinct components of this putative circuit operate. Whether it

is one in particular or several of these different behavioral neuro-

endophenotypes that best predict vulnerability to cocaine also

remains to be seen. A summary of the present circuitry putatively

associated with 5CSRTT impulsivity based on the evidence

reviewed in ‘‘Neural Substrates of Impulsivity’’ is shown in

Figure 1. Major elements are the core and shell subregions of

the nucleus accumbens, possibly in a functionally opposed

manner (Murphy et al., 2008), the infralimbic and prelimbic

cortices, as well as the anterior cingulate cortex and hippo-

campus having apparently ‘‘top-down,’’ response inhibitory

roles. The possible role of the orbitofrontal cortex is less clear;

it has been implicated occasionally in impulsive responding but

also in measures of perseveration (possibly reflecting ‘‘compul-

sivity’’) in this task (Chudasama et al., 2003). Clearly, there are

several ways by which top-down control may be implemented:

from the Il-PFC or the hippocampus to the shell, from the
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PL-PFC to the core and by currently unspecified interactions

between the core and shell regions, either directly or indirectly

via ‘‘spiralling cascades’’ of striato-VTA-striatal circuitry (Haber

et al., 2000). Indirect evidence for ‘‘top-down’’ control over stria-

tal functioning is provided by the finding that increased impulsive

responding produced by medial PFC lesions is alleviated by

intra-accumbens infusions of the D2/3 receptor antagonist

sulpiride (Pezze et al., 2009).

Regulation of inhibitory responding by neuromodulation may

occur from the noradrenergic locus coeruleus (to the shell region)

and from the midbrain dopamine and dorsal raphé serotonin

systems. Early studies of amphetamine-induced impulsive

responding in the 5CSRTT suggested that high levels of presyn-

aptic DA might be responsible: depletion of DA from the nucleus

accumbens by 6-OHDA blocked amphetamine-induced

increases in premature responding (Cole and Robbins, 1989).

Such increases were boosted by core, but reduced by shell,

lesions (Murphy et al., 2008). Additionally, amphetamine-

induced increases were blocked by infusion of a D2/3 receptor

antagonist into the core region (Pattij et al., 2007). These findings

complement those of Besson et al. (2010) showing that the pref-

erential D3 receptor antagonist nafodotride significantly reduced

impulsive responding in 5CSRTT impulsive rats when infused

intracore, but enhanced it intrashell, apparently consistent with

the observed reductions of D2/3 receptors in the ventral striatum

found in such animals (Dalley et al., 2007).

These findings of apparently altered DA receptor function call

into question the status of presynaptic DA activity in high-impul-

sive rats. For example, a reduced D2/3 binding potential might

have arisen from displacement by elevated DA release.

However, there were no obvious baseline differences in DA

activity in the ventral striatum of 5CSRTT high-impulsive rats,

as indexed by microdialysis. Moreno et al. (2010) also found no

relationship between impulsivity in the 5CSRTT and measures

of presynaptic DA function in the nucleus accumbens. Thus,

although it is the case that amphetamine undoubtedly increases

premature responding on the standard version of the 5CSRTT

paradigm as a consequence of elevated DA release, and this is

also consistent with evidence from human PET studies that

impulsivity is correlated with reduced D2 autoreceptors and

increased displacement of DA by methylphenidate (Buckholtz

et al., 2010), this may not be the case for the 5CSRTT high-

impulsive rat. Other investigations are to some extent equivocal:

thus in vitro measures of DA release were higher in the shell

region of 5CSRTT impulsive rats, compared to controls, but

lower in the core subregion; on the other hand, both regions

showed reductions in DA release in rats exhibiting impulsive

choice (Diergaarde et al., 2008). The latter findingmay be consis-

tent with the results of Moreno et al. (2010) showing that high DA

levels in the nucleus accumbens correlated significantly with

choices for a large reward.

Furthermore, there are other addiction phenotypes not based

on impulsivity; thus the ‘‘high reactive’’ rats studied by Flagel

et al. (2010) had increased DA ‘‘transients’’ in the core region

and increased binding of high-affinity DA D2 receptors. Clearly,

the precise ways in which accumbens DA is regulated could

be crucial in determining not only the behavioral phenotype,

but also its precise relevance to cocaine susceptibility. An alter-
native interpretation of the reduced D2/3 binding of the 5CSRTT

impulsive rats is in terms of phenotypic and/or structural

changes in medium spiny neurons bearing D2 receptors. This

possibility has recently been highlighted by structural magnetic

resonance imaging of high-impulsive rats that has revealed

apparent reductions of gray matter in the core region (as well

as in frontoparietal areas) compared with controls (Caprioli

et al., 2010). This observation is consistent with those showing

that core lesions can result in increased impulsivity, although

this may depend on the precise behavioral context (Cardinal

et al., 2001; Christakou et al., 2004; Pothuizen et al., 2005). An

additional possibility is that this phenotype is also associated

with reduced top-down control over striatal subregions. It is

evident that further refinement of these measures will enable

the definition of the neural circuitry associated with the high

impulsive syndrome, and these measures will also provide

a potential ‘‘biomarker’’ for the impulsive behavioral trait.

Whether such neural (and their accompanying behavioral)

changes are actually caused solely by genetic factors is yet to

be tested; evidence already points to the possibility that certain

environmental factors influence D2/3 receptor function and

thereby susceptibility to cocaine taking (Nader et al., 2008).

A Neurogenetic Perspective on Impulsivity

There is considerable evidence for heritability in drug addiction

(Kreek et al., 2005; Uhl, 2006), but a large number of genes have

been implicated for many different pharmacological classes of

drugsof abuse that transcend themolecular differences inmodes

of action that characterize these drugs. Perhaps key to such

analyses however are the underlying endophenotypes, whether

they are impulsivity, risk taking, sensation seeking, anxiety, sensi-

tivity to drug reinforcement, or some other trait. Kreek et al.

provide an informative table that illustrates the cross-involvement

of such traits with candidate genes. Notably, impulsivity (obvi-

ously defined in several ways) has been linked with several genes

regulating dopaminergic and serotoninergic function: the DRD4,

DAT, TRP1 (tryptophan hydroxylase), SERT, MAOA, and COMT,

as well as those affecting GABA-ergic function (GABRA1 and

GABRA6). Another recent addition is the serotonin 2B receptor

(Bevilacqua et al., 2010). Hamidovic et al. (2009) additionally

describe data linking impulsive behavior in humans to polymor-

phisms of the DA D2 receptor. It should be emphasized that

the array of genes is likely to have wide-ranging and even inde-

pendent effects on impulsivity and cognitive control, especially

given their different distributions in the brain and the multifaceted

nature of these constructs (and hence phenotypes).

An alternative approach to identifying relevant genes may be

to pursue a behavioral genetic approach combined with

genome-wide scanning. Two recent studies have shown the

utility of this approach. Moreno et al. (2010) utilized the Roman

High and Low Avoidance rat strains, with the High Avoidance

animals being more impulsive. In rats bred for high (HR) and

low (LR) novelty reactivity, the HR rats approach cues associated

with food or cocaine more readily than LR rats (Flagel et al.,

2010). However, although this would perhaps be consistent

with an impulsive phenotype, these rats also displayed less

‘‘impulsive choice’’ and therefore can be differentiated from the

5CSRTT high impulsives who also failed to exhibit heightened

‘‘autoshaping’’ to food-predictive cues (Robinson et al., 2009).
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Figure 4. Positron Emission Tomography Scans
Positron emission tomography scans showing reduced
dopamine D2/3 receptor availability in the striatum of
a recently abstinent cocaine addict (reprinted from Volkow
et al., 2002, with permission from Elsevier), a rhesus
macaque monkey exposed to 3 months intravenous
cocaine self-administration (reprinted from Nader et al.,
2006, with permission from Macmillan Publishers Ltd.)
and a Lister-hooded rat exposed to intravenous amphet-
amine self-administration (reprinted from Dalley et al.,
2009, with permission from Elsevier).
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A different genetic strategy is to compare a large number of

recombinant mouse strains and attempt to define the quantita-

tive trait loci associated with impulsivity. This approach has

been initiated with studies of the C57BL/6J and DBA2/J

mice, which have relatively high and low levels of impulsive

responding on the 5CSRTT, respectively (Pena-Oliver et al.,

2010). The notion that C57BL/6J mice are particularly impulsive

is given further credence by the finding of rapid discounting

functions in this strain after delayed reinforcement (Isles

et al., 2004).

In summary, several strategies are being pursued currently in

the search of genes related to the impulsivity phenotype in

human and rodent studies, and we can expect further candi-

dates to emerge in the next period, although the interactive

role of environmental factors has also to be explored.

Implications for Understanding Addiction

Self-medication. The fact that impulsivity is actually often

reduced by stimulant drugs, whether administered clinically to

patients with ADHD (Aron et al., 2003a) or experimental animals

(Winstanley et al., 2006a) including self-administration (Dalley

et al., 2007), suggests that the drug regulates or remediates,

in some sense, the neural substrate responsible for the hyper-

impulsivity. The fact that impulsivity predicts subsequent

cocaine intake is therefore also consistent with the hypothesis

that the impulsive rat’s self-administration behavior represents

some form of ‘‘self-medication,’’ especially as the hyperimpul-

sivity is actually reduced to control levels during the period of

self-administration (Dalley et al., 2007). Although it seems

unlikely such behavior reflects some conscious appraisal of

a deficient central state that the rat seeks voluntarily to reverse,

it is possible that, at least initially, the reinforcing value of the

drug is sensed in terms of an adaptive change in central state.

However, should the behavior develop ‘‘binge’’ and habitual

qualities it seems likely that neurotoxic effects may overwhelm

any apparently beneficial effects on response inhibitory control.

Moreover, although stimulants such as cocaine, which are pref-
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erentially taken in the presence of low D2/3

striatal receptors, may also in parallel restore

a normal level of DA function, it should be

noted that evidence indicates that further stim-

ulant drug taking actually downregulates stria-

tal D2/3 receptors (see Figure 4) (Dalley et al.,

2009; Nader et al., 2006) so that if the self-

administration behavior is conceived as a

form of ‘‘self-medication,’’ in the long term it
may serve only to ‘‘make the problem worse,’’ hence placing

the stimulant drug abuser in a cycle of chronic drug abuse.

Relationship of Impulsivity to Compulsivity. Previously, it has

been suggested that there are habitual qualities to drug taking,

which place much more emphasis on drug-related external

stimuli and their response eliciting capabilities, than on any

notional hypothesis that the drug taking persists because of its

enduring incentive properties (Everitt and Robbins, 2005). The

fact that high-impulsive rats come to exhibit compulsive

cocaine-seeking behavior (they persist in seeking and taking

cocaine despite punishment of seeking responses) supports

the link between a putative trait of impulsivity and the addictive

process. The hypothesis thus emerges that impulsivity may be

a causal factor for addiction, rather than being simply associated

with it. One way to test this hypothesis would be to block impul-

sive responding and its development (e.g., with a putative

medication) and observe whether this is sufficient to prevent

compulsive drug seeking and taking. Indeed, the anti-impulsive

medication atomoxetine prevents the greater propensity to

relapse seen in high impulsive rats in abstinence (Economidou

et al., 2009). It remains a possibility that it would not, in which

case the likely association between impulsivity and stimulant

drug abuse may arise from a third, shared but undefined, factor.

Another, indirect test of the hypothesis, is to determine whether

high impulsivity also predicts a predilection toward impairments

in proxy measures of compulsive behavior, such as persevera-

tion during reversal learning, even without any experience of

self-administering the drug. Such a relationship between impul-

sivity and compulsivity may then possibly reflect the operations

of similar underpinning neurobehavioral processes such as top-

down inhibitory control.

Conclusions
The ‘‘impulsivity’’ construct has been a useful heuristic,

capturing some aspects of a neurobehavioral state that may

predispose toward addictive behavior in humans, as well as in
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other animals. Our current analysis predicts that what is gener-

ally denoted as impulsivity will be fractionated into distinct forms

that may, however, often coexist in the same individual. These

forms arise from a dysfunctioning of fronto-striatal circuitries in

a spectrum-like manner to reveal several manifestations of dis-

rupted top-down cognitive control. Some of the key questions

remaining are the origins, genetic and otherwise, of ‘‘impulsivity

traits’’ as well as the necessary and sufficient conditions that

lead from impulsive syndromes to compulsive behavior.
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