
Science of Computer Programming 54 (2005) 143–211

www.elsevier.com/locate/scico

Architectural modifications to deployed software

A.S. Klusenera,c,∗, R. Lämmelb,c, C. Verhoefc

aSoftware Improvement Group, Muiderstraatweg 58A, 1111 PT Diemen, The Netherlands
bCWI, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

cDepartment of Information Management and Software Engineering, Free University of Amsterdam,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Received 5 July 2002; received in revised form 20 February 2004; accepted 17 March 2004

Available online 18 September 2004

Abstract

We discuss the nuts and bolts of industrial large-scale software modification projects. These
projects become necessary when system owners of deployed systems hit architectural barriers. The
mastery of such projects is key to the extension of the best-before date of business-critical software
assets. Our discussion comprises the process for problem analysis, pricing and contracting for such
projects, design and implementation of tools for code exploration and code modification, as well
as details of service delivery. We illustrate these concerns by way of a real-world example where a
deployed management information system required an invasive modification to make the system fit
for future use. The chosen project is particularly suited for a complete treatise because of its size
(just 90,000 LOC), and the nature of the relevant architectural modification (namely, a form of data
expansion). We share the lessons that we learned in this and other architectural modification projects.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Software malleability; Software maintenance; Definition of software architecture; Software asbestos;
Software modification; Software analysis; Automated program transformation

Contents

1. Introduction.. 144
Organisation of the paper... 146

2. A real-world modification example... 147

∗ Corresponding address: Software Improvement Group, Muiderstraatweg 58A, 1111 PT Diemen, The
Netherlands.

E-mail addresses:steven@cs.vu.nl (A.S. Klusener), ralf@cs.vu.nl (R. L¨ammel), x@cs.vu.nl (C. Verhoef).

0167-6423/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.03.012

http://www.elsevier.com/locate/scico

144 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

2.1. Characteristics of a suitable project... 147
2.2. Introduction to the PRODCODE project... 149
2.3. Technical challenges.. 150
2.4. Project drivers.. 152

3. Software asbestos.. 154
3.1. In Cobol’s defense... 155
3.2. Universal inevitability of asbestos... 158
3.3. The future of contaminated systems.. 160
3.4. A definition of software architecture.. 164

4. Analysis of modification problems.. 166
4.1. The process for problem analysis.. 167
4.2. The initial problem statement... 167
4.3. Identification of undue assumptions.. 168
4.4. Identification of usage patterns... 172
4.5. Encountered subtleties... 174
4.6. Dissolved complications.. 176
4.7. Convergence of analysis... 178

5. Project economics... 179
5.1. Cost estimation and contract signature... 179
5.2. Management summary... 180
5.3. The cost and risk dimensions.. 180

6. Design of the solution.. 182
6.1. The top-level specification... 183
6.2. Identification of affected fields.. 184
6.3. Picture-string expansion... 186
6.4. Maximum expansion... 187
6.5. Literal expansion.. 189
6.6. Table expansion.. 191
6.7. Specific changes that remained... 193
6.8. Documentation of the changes.. 196

7. Implementation of tools... 197
7.1. Aperl-based implementation.. 198
7.2. Technology issues... 200
7.3. Technology options... 204

8. Concluding remarks.. 206
Acknowledgements... 207
References... 207

1. Introduction

This paper is about software systems that are already in use for a long time—five, ten
or even more than 20 years. These are normally business-critical systems, which automate
important business processes and processes in our society like the payment of salaries,
the bookkeeping of pensions, and the payment of taxes. On the one hand, such systems
require constant change to preserve or enhance the assets that are represented by these
systems. On the other hand, these systems often lack malleability such that they resist to

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 145

new requirements. The mismatch between as-implemented vs. as-required systems is in no
way restricted to technology or development methodologies of the past. Systems that are
deployed today are the legacy of tomorrow because many of the elements of current system
designs will naturally be replaced or revised in the future, e.g., APIs for data access and
user interfaces, middleware technology, and model-driven technology.

The malleability attribute. This paper deals with the managed and automated
modification of deployed software. Our focus is on revitalising malleability of deployed
software. To this end, we realise that malleability is one of the most vital architectural
quality attributes in the software world. Generally, the term malleability stands for
possessing the capacity for adaptive change and the capability of being altered or controlled
by outside forces or influences. In other words, the ideal software architecture for a
system is one that, once the software enters its deployment phase, is continuously
adaptable to changing business needs and the ever changing environment. Other names for
this prominent quality attribute arechangeability, adaptability, modifiability, flexibility,
maintainability, extensibility, evolvability, and so on. We opt for malleability since this
word expresses the implied attribute most accurately. Not all change is smooth; sometimes
pressure is needed to adapt a system, and also this is expressed in the roots of the word
malleability. The etymology of this word goes back to the Latin verbmallearewhich
means to hammer. Malleability is therefore also used to express the capability of being
extended or shaped by beating with a hammer or by other pressures. This image resembles
the realities of the software world. The early phase of software is like melted iron, and
while architecting, decisions about the grades of malleability are made for the various
parts. There are immutable parts, which can never be heated up again because they are
interspersed with inflammable materials. For other parts it is envisioned that they should
be amenable to change when the need arises. So they are constructed in such a way
that one can heat them up again to change them, but it takes considerable effort. Yet
other parts have to be kept permanently in the oven to continuously blacksmith them:
thehot spots.

Architectural modifications. Revitalisation of malleability is complementary to normal
maintenance practice. That is, revitalisation of malleability requires operating at the
system-wide level rather than on a per-function or per-module basis. We use the term
architectural modifications to emphasise that the corresponding projects are based on the
as-implemented architecture of deployed systems. While software architecture often refers
to high-level designs in a way to serve the construction of new systems, our focus is
instead on the modification of deployed systems. The deployed system itself (say, its source
code) defines the architectural barriers that hinder smooth change. Hence, we propose the
following definition of software architecture:

The software architecture of deployed software is determined by those aspects that
are the hardest to change.

Our definition is meanwhile adopted by others as we will clarify later. This makes us
believe that we are on our way to better understand software architecture as a whole.
Starting from this definition, the present paper supplies a methodology for architectural
modifications. We will explain why these projects are important and special. We will

146 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

define the milestones of successful architectural modification projects: initial problem
statement, iterative problem analysis, contracting, design and implementation of tools
for code exploration and code modification, and finally service delivery. This is a major
contribution for two reasons. Firstly, software assets are invalidated if their malleability
cannot be revitalised. Secondly, architectural modification projects tend to fail, and they
consume huge amounts of resources—when attempted in a naive manner.

Complete treatise of a case. We applied our methodology for architectural modifications
to several real-world projects, and the paper lays out one such project that is suitable for
presentation. In fact, the present paper contains the first complete treatise of a real-world
project dealing successfully with an actual architectural modification to deployed software.
The reported experience is meant to be instructive for carrying out future architectural
modification projects. In particular, the paper presents and integrates experiences with the
following subjects:

• Problem analysis: “How to use code exploration to learn about the modification
problem? When to stop? How to get the customer involved?”

• Cost estimation: “How to obtain a precise and transparent cost estimation in a
reasonable amount of time and with costs that are acceptable for the customer?”

• Managerial realities: “How to argue in favour of automated transformations as opposed
to a manual approach? How to explain the complexity of the project to the system
owner?”

• Organisational realities: “How to align offline modification at the site of the service
provider with simultaneous client-site maintenance?”

• Technological issues: “What technology to use for modification? What amount of
automation is justified for the project at hand?”

While the paper is shaped by a very tractable example project (just 90,000 LOC), we
have applied the same methodology in other projects. For instance, the methodology for
analysing impact, and for estimating effort and costs, was also used to provide a customer
with precise information on a project where a 50 million LOC software portfolio had to be
investigated for the architectural modification of extending bank account numbers to ten
digits.

Organisation of the paper

• In Section 2, we introduce the real-world case that is used throughout the paper.
Codename: PRODCODEproject. The case is concerned with a data expansion problem
in a business-critical application. This project as well as other projects will be used for
discussing the realities of architectural modification projects.

• In Section 3, we substantiate that software architecture is determined by what is the
hardest to change. The crux of insufficient malleability of deployed software is what
we callsoftware asbestos. We will then explain that architectural modifications aim at
revitalisingmalleability, while using automated program transformations for removing
or safely manipulating software asbestos.

• In Section 4, we describe a process for the analysis of malleability problems. This
process iteratively refines an initial problem statement based on code exploration. There

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 147

are provisions that ensure a timely and precise analysis, which is meaningful to all
parties involved in such projects. The resulting problem specification forms the basis
for the development of automated transformation tools.

• In Section 5, we deal with project economics. Foremost, we will explain the process to
agree on a cost estimation and effort distribution such that a fair contract can be signed.
We will also point out the high costs and (im)possible risks of a manual approach to
pursuing architectural modifications.

• In Section 6, we work out the problem specification obtained from the program analysis.
All analyses and transformations are described in such detail that a basis for an
implementation of automated tools and manual steps is obtained. We will employ formal
rewrite rules, informal rules, and examples.

• In Section 7, we discuss tool support for code exploration and automated program
transformations. We will describe the lightweight approach that was actually adopted
in the PRODCODE project. We will also briefly assess the various technology options
that exist, where the PRODCODEproject serves as a benchmark.

• In Section 8, we conclude the paper.

2. A real-world modification example

We will now sketch the PRODCODE project. At the surface, this project was simply
about extending ‘product codes’ from two to three digits. We will describe the problem
statement of the PRODCODE project complemented by lists of challenges regarding the
technical solution and service delivery. Here we will also incorporate experiences gained
in other projects. By listing the challenges and thedrivers of modification projects, we
want to create awareness of the complexity of these projects, which implies that they
need to be managed and that they require automated tool support. Before we introduce the
PRODCODEproject in some detail, we will identify project characteristics that we consider
as important in the view of the paper’s contribution.

2.1. Characteristics of a suitable project

Service delivery. We assume a business model with two independent parties: the
problem ownerand thesolution provider. The problem owner is the one to pose a
problem statement. It is not uncommon that the problem owner is represented via the
maintenance department of a company. The solution provider takes the lead in analysing
the modification problem and implementing its solution. Hence, this business model is
aboutservice delivery. An alternative situation is when architectural modifications are
carried out by the system owners themselves, but even then different departments are
involved such as the regular maintenance department vs. a task force responsible for an
identified malleability problem.

Reality check. A suitable case of a modification project must concern abusiness-critical
software system. Without that reality checking, we would miss crucial managerial and
technological forces that drive real-world projects. One major class of business-critical
systems comprises all the information systems that are deployed for processing data in
the finance, insurance, or governmental sector. This implies almost certainly that our case

148 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

had to deal with a deployedCobolsystem, which is substantiated by the following figure
in [1, p. 70]:

Over 95% of finance and insurance data is processed with Cobol.

We refer to [1,69,83] for further related figures. So by opting for a Cobol case, we ensure
that our approach is immediately meaningful for business-critical systems as they exist
today. Nevertheless, we will soon clarify the generality of our approach and inevitability
of insufficient malleability—regardless of the used language and technology.

Amenable to full treatise. On the one hand, the chosen case should be complex enough
to encounter typical complications. On the other hand, the chosen project should also be
simple enough to be able to convey a complete and meaningful discussion in the paper at
hand. Not every project is suitable for a full treatise: sometimes the problem statement
is too specialised, sometimes the types of modification are too diverse, sometimes the
tooling is too sophisticated, sometimes non-disclosure limits the discussion, sometimes
the system is too large, sometimes the involved languages are too unknown, and so on.
Therefore, it took us some time before we came across a real-world case that is suited to
be discussed as a whole. The example system in this paper, with its 90,000 LOC, is not so
small that an architectural modification effort would be trivial, but it also not too large to
prevent full coverage of the problem including its solution. The problem statement looks
deceptively simple. The project required to expand certain kinds of fields. Data expansion
is relatively well understood because it occurs frequently in practice, e.g., in the form of
the 10-digit bank-account number problem. These characteristics make the case ideal for
a full treatment so that one gets complete insight in a real-world architectural modification
project from start to finish.

Generality. Our approach is not restricted to Cobol, nor to data expansion. It generally
applies to projects that aim at the modification of deeply ingrained aspects of the as-
implemented architecture of deployed systems. There are many other types of project that
can (and did) benefit from our work. It is just convenient to use a project with a simple
problem statement for explanatory purposes. In [78], we describe an example of another
type of architectural modification effort. The paper reported on a code restructuring project
for a Swiss bank, where the code was drastically changed in order to migrate from a green-
screen function-key mainframe interface to a browser-like, mouse-centric PC interface.
Because of the complexity of the problem, the paper had to focus on the transformation
algorithm, while several project drivers could not be discussed. In [25], we address yet
another type of architectural modification. The paper reported on a project for a German
bank, where multiple instances of the same information system were migrated to a product
line. In that paper, the focus is on the methodology of migration. Although the paper had
been backed up by a real-world case, a full treatise was infeasible. For the case that we have
chosen in the present paper, the problem statement can be comprehended without special
domain-specific knowledge. So we can focus on what the impact of such architectural
modifications comprise, how such projects are managed, and what tools can aid in cost-
effective solutions.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 149

2.2. Introduction to the PRODCODE project

PRODCODEis the codename of an architectural modification project that we carried out
in 1999 for one of the global players in the finance and insurance industry. The contracting
enterprise and a number of parameters of the project are made anonymous. The PRODCODE

project was concerned with a deployed management information system. This business-
critical system was developed in the early 1970s and is refined and enhanced to this day.
The software system provides managers with important productivity summaries on their
finance and insurance products. Due to various mergers and acquisitions the number of
products to be monitored had grown to above one hundred, which was never anticipated. In
the 1970s, a hundred financial products was an unimaginable number, so it was sufficient
to identify all financial products with a two-digit product code. This two-digit type was
hard-wired in the source code. So an architectural modification effort was necessary to
expand the product-code fields to facilitate monitoring more than a hundred products.

Problem statement. The modification effort was initiated by the following statement:

Data items representing product codes have to be expanded so that the system can
deal with more than a hundred product codes.

The management information system is written in Cobol. Here is a sample declaration of
a product-code field namedPRODCODE:

01 PRODCODE PIC 99.

The picture string99 stands for two numerical digits. To continue to deploy the
management information system in the future, a new upper limit for product codes above
100 was needed. The new typePIC 999 was considered appropriate, and hence, the above
line of code has to be transformed as follows:

01 PRODCODE PIC 999.

One could argue that if two digits are expanded to three digits, it would be best to
take as upper limit a 1,000 products. However, smaller values might be favourable as
well in the view of a possible performance degradation. The customer requested that
experiments should be carried out to find the balance between increase of product codes
and performance degradation.

Summary of the system. The application consisted of 102 Cobol programs totalling
90,000 lines of code. Furthermore, 84COPY books with 3039 lines of code were involved.1

Regarding data management, a mixture of sequential and indexed files as well as DB2
tables were used. The files were accessed with Cobol’s native support for file processing,
and the DB2 tables were accessed using embedded SQL. There were 31 out of the 84COPY
books generated from DB2 tables. The code base contained 114 embedded SQL statements
and 592COPY statements.

1 Cobol terminology: aCOPY book is a kind of include file for textual inclusion; it gets expanded in place of a
COPY statement—just like C-include files that get expanded by means of the preprocessing statement#include.
In Cobol,COPY books are pervasively used to define common data declarations and reusable statement blocks.

150 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

When to make a type. This is also the title of an IEEE Software column by Martin
Fowler [29], where he discusses whether or not to define types for money, currency,
product codesand other “little objects”. We view Fowler’s position in this column as a
support for our classification of the PRODCODEproject to be regarded as an architectural
modification. Namely, Fowler observes that “many architects consider such details [types
for little objects such as product codes] unworthy of their attention”. Fowler points out that
the consequences of having not defined some type of “little objects” can be disastrous—
once we need to change software. We must recover the type before we can change it. This
is precisely what happened in the PRODCODE project. So types for “little objects” are
indeed an architectural matter. Hence, we say that product codes are part of the software
architecture because the type of product code is very hard to change. Fowler also makes
this link between software modification and software architecture in another column [30],
where definitions of software architecture are scrutinised.

2.3. Technical challenges

Simple problem statement, simple solution? The initial problem statement for the
PRODCODE project may suggest to the reader that the problem was trivial. Thus far, the
problem statement is misleading. The Y2K problem can be stated in such simple terms,
too, while it is meanwhile folklore that its systematic and cost-effective solution was a
major challenge. In the same way, it will turn out that the PRODCODE project was about
much more than expanding fields namedPRODCODE. We will first consider rather technical
challenges, while the next section discusses project drivers that are more of a managerial
or technological nature.

Impact analysis. Non-trivial modification projects of whatever kind require substantial
effort regarding impact analysis. In the PRODCODE project, the assumption that relevant
fields are namedPRODCODE or alike is naive. So a more complete set of mnemonics for
product codes has to be worked out. Also, identification based on mnemonics is neither
guaranteed to be safe nor complete. Hence, eventually, we need a code analysis that can
be used to identify relevant fields based on usage patterns. This is significantly more
involved than searching for fields by name. Also, it raises the standard issue of precision.
An imprecise identification of affected fields will be likely to cause a harmful modification,
which is not acceptable for a system owner of a business-critical system.

It turned out that patterns other than simple data-field declarations were relevant to
the PRODCODE problem. For instance, the upper limit for product codes occurs in the
declaration of Cobol tables.2 TheOCCURS 99 clause in these table declarations had to be
expanded as well. Furthermore, the upper limit 99 was also hard coded in control structures.
In fact, the value 100 was frequently used as an error code in the sense of “end-of-loop” or
“invalid prodcode”. In this context, we learned that some declarations of fields for product
codes were already of typePIC 999 as opposed toPIC 99 just because some fields had to

2 Cobol terminology: in Cobol, the termtable is used for an array, say a homogeneous collection of data. In
Cobol syntax, a table is declared by adding anOCCURS n clause to a field declaration, wheren is the size of the
array.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 151

Fig. 1. A form for entering a prodcode and the corresponding data declarations that were generated by a 4GL tool
for user-interface development. The Cobol application program communicates with the run-time system of the
forms manager via subprogram calls where the group fieldHANDLER-SELECT-DIALOG is used for data exchange.

be able to hold the error code 100. Nevertheless the constants 99 and 100 had to be replaced
systematically by the new upper limit. As we will see, there is a variety of affected patterns.

Heterogeneous system platforms. Business-critical systems normally involve a cocktail
of languages, notations, and technologies. This cocktail comprises programming
languages, in-house or general purpose facilities for macros and preprocessing, embedded
languages for database access and transaction management, middleware technology for
distribution etc., and scripting languages for gluing together programs, for controlling jobs
and processes, and for configuring applications. This heterogeneity very much challenges
all attempts to derive simple solutions that are evidently complete and correct. For instance,
an impact analysis would need to operate across all languages. Such heterogeneous
reasoning is challenging; we refer to reports on language migration [90] and dialect
migration [19,42,81,98] for an indication. Heterogeneity is also the source of the 500
language problem [55], which is about the mere challenge of obtaining quality front-ends
for source-code analysis and transformation.

In the PRODCODE project, we were faced with different Cobol dialects, with some
standard compiler-directing statements (or preprocessing), with embedded SQL, with DB2
data models, and with generatedCOPY books for the DB2 tables. The latter issue of
generatedCOPY books is an instance of the general issue that parts of the source code are
generated by external tools, e.g., generators supporting interaction with 4GL languages.
Consequently, one has to be careful to change the primary, proprietary sources rather
than the generated ones. This is illustrated for user-interface development inFig. 1. The
PRODCODE field in this dialog was described in the proprietaryFormWizardformat. This
4GL code would also be subject to data expansion. We have encountered this specific
problem in another project, but it was not an issue in PRODCODEproject, where basic I/O
was used for forms and reports.

Semantical subtleties. The solutions for modification problems are ultimately challenged
by subtleties of the used programming language(s). For instance, in the PRODCODE

project, we had to struggle with subtle rules for conversion between Cobol’s types for

152 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

numeric and alphanumeric data. In other modification projects, we have encountered
complications as follows:

• Semantical subtleties of exception handling.
• Semantical subtleties of object destruction (cf. memory leaks).
• Precision issues for cross-language data conversions.
• Undocumented or obscure API uses, e.g., error codes for file handling.
• Fragile race conditions in distributed or multi-user code.

Such subtleties are the source of unsound modifications that look seemingly correct. Also,
these subtleties are likely to lead to complex and defensive schemes of modification.

2.4. Project drivers

We have substantiated that large-scale modification projects are challenging as far as a
proper technical solution is concerned. However, one should not overestimate the specific
technical problem in a project. In our experience, modification projects aredrivenby other
factors. These project drivers are normally related to the economical, managerial, legal, and
technological characteristics of both problem owner and solution provider. It is important to
identify such drivers upfront in a modification project, in fact, before contract signature, be-
cause they affect the costs substantially up to the level of infeasibility of the project as such.

The light-switch myth. At an early stage of modification projects, customers tend to think
of a well documented, user-friendly, mature tool that could be used by maintenance staff
to solve all problems automatically, transparently, and conveniently on their site. The ideal
tool has the complexity comparable to a light-switch: just turn the handle and the result
is a neatly converted program. In the PRODCODE project, we rapidly realised that the
complexity of the problem required a semi-automatic approach. The overhead to build tools
that could be used by the maintenance programmers would be unaffordable. Furthermore,
the software and hardware architecture at the client site and our site turned out to be largely
different. Our exploration and transformation tools are currently Unix based, whereas
the client’s software, including the PRODCODE application, ran on a mainframe with a
different operating system. A Unix to mainframe conversion of the modification tools could
not have been paid off by the project at hand. Consequently, we had to communicate with
the customer to agree on the more realistic option for service delivery, where the conversion
is carried out by us on our site.

Syntax retention. This non-functional requirement for tool support means that the changed
programs should be identical to the original sources in all locations that did not require
modification. This normally includes preservation of syntactical patterns, lexical details,
spacing, and comments. Syntax retention is a prerequisite for using lexical technology for
the line-by-line inspection of the differences between the original and the new system.
Without syntax retention, the customer cannot inspect differences efficiently because too
many locations will be notified, even though their appearance was changed only. Customers
will not necessarily come up with this requirement themselves. This might be implied
by the primary way of thinking of modification: modification in terms of hand-coding.
Then, one does not realise that automated conversions could possibly perform pervasive

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 153

code changes such as stripping off line numbers, lexical or syntactical normalisations, and
pretty printing. In fact, syntax retention and similar non-functional requirements challenge
the implementation of transformation tools. In the PRODCODEproject, we anticipated the
need for syntax retention.

Limited testing opportunities. In the PRODCODE project, regression testing of the
software and testing that the new requirements are met was to be done by the customer.
At first sight, this set-up appears to reduce our effort, but it soon becomes clear that this
set-up puts stress on the process as to be able to guarantee a correct solution even without
testing. Our customer would have found it unacceptable to go through several iterations
of modification and testing—be it just to compensate for our omissions. Also, we cannot
expect the customer to carry out advanced testing for the new requirement. Generally, we
cannot even expect the owner of deployed software to be in the possession of a serious
harness for regression testing. In conclusion, modifications must be “obviously” correct so
that a modified system does not produce unforeseen (i.e., undocumented) problems at the
client site. This is a strong incentive for using automated transformations. Also, automated
checks are to be performed on both the converted system and the transformation rules
themselves. However, we are not proposing a complete, formal verification of architectural
modifications because these projects are normally not amenable to such a treatise.

Scattered modification projects. Modification projects naturally involve the maintenance
departments at the site of the system owner even though the core of the automated
modification might be delivered by an external solution provider. Such scattered
modification projects imply extra effort for synchronisation. In the PRODCODE project,
the customer did not want to outsource the database part of the expansion, and we had
in fact no access to the 4GL code. Also, for reasons of confidentiality, the maintenance
department was responsible for migrating all the indexed files and DB2 tables. This implied
the challenge of setting up a process that guarantees consistent changes. Recall that the
Cobol code included severalCOPY books that were generated from the DB2 tables. In
order to make our part of the expansion as complete and reliable as possible, we generated
a report for the client to point out affected database columns that needed expansion at the
client site.

Dead code. In the course of modification projects, one often encounters code patterns
that are difficult to comprehend and difficult to handle. Often these patterns are symptoms
of dead code. Identifying abnormal patterns is beneficial because it prevents us from
trying to cover these patterns. However, the approval of dead (or dangerous) code can be
involved as well since simple static checks are too conservative, but additional knowledge
about program usage and data are often required. In the PRODCODE project, we found
suspicious tables that were indexed by product codes, while they had fewer than 99 entries.
It eventually turned out that the size of these tables reflected an earlier upper limit for
product codes, and the code did not trigger problems because it happened to be dead.
Business-critical systems are likely to contain dead code of significant quantity. Many
updates were performed on these systems, and this can lead to as much as 30% of the
actual volume of the code being dead [36]. Often entire programs are dead in the sense that
they are not used anymore.

154 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

Off-loading and shipping back. In many organisations there is no predefined process to
deliver complete systems to external sites. Proper institutionalisation of configuration and
version management requires level 2 of SEI’s capability maturity model (CMM), while
75% of all companies are at level 1 [38, p. 30]. As a consequence, the original system
might initially come in batches, where some files might never get shipped, other files are
shipped more than once—maybe in different versions. This is one example of difficulties
of integrating an external large-scale software modification effort into the client’s everyday
practice. Such aspects can hamper swift throughput of the project, and even cause failure.
Another problem to prepare for is that once the software is off site, the client will change
the system in the meantime. Once we have done the modification work for a (possibly
incomplete and by then outdated) version of the system, the next phase is to manage a
separate shipping project with the client so that the complete, most recent version of the
system is shipped once again and modified with the tools. Then we can apply the tools
to the system, and ship the new version say the next day. The client needs to freeze other
maintenance activities during this period.

There exist more project drivers, but they will differ from project to project. The
drivers in the above list occur often and they influence the duration and costs of projects
significantly.

3. Software asbestos

Throughout its life-cycle, software becomes invaded by incidental or accidental issues
just as buildings have been unintentionally invaded with the then unknown characteristics
of asbestos. We use the termsoftware asbestosto refer to the implementation of
unintentionally immutable parts of a software system that severely hamper anyone making
necessary changes. Architectural modifications are precisely meant to remove or safely
manipulate software asbestos, e.g., the hard-coded product codes in the PRODCODE

project. The following matrix places architectural modifications in a context:

Change easy hard

anticipated
maintenance design while alter
(best practice) (malpractice)

unanticipated
maintenance architectural modification
(sheer luck) (life-cycle enabling)

That is, architectural modifications are about required changes that had not been
anticipated, while they happen to be difficult because of asbestos. Architectural
modifications go beyond regular maintenance activities, which may be concerned with
modifying single subprograms, or systematically revising all calls to a given subprogram,
or wrapping a subprogram (cf.anticipated, easy changesin the above table). Architectural
modifications are rather concerned with deeply ingrained aspects of the as-implemented
architecture of a deployed system.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 155

We note that the inevitability of software asbestos and the continued need to keep
business-critical systems malleable is directly linked to some of Lehman’s laws of software
evolution [5,59,60].3 All possible forms of software asbestos are concerned with choices,
abstractions, and idioms in software development:

choice for implementation languages, platforms, development environments,
libraries, domain-specific APIs, proprietary communication protocols, choice
for partitioning into components, directory structures, CPU partitioning, layout
conventions, variable naming schemes, use of preprocessing, middleware for
distribution, synchronisation aspects, the security policy, . . .

We will now explain why software asbestos exists in the PRODCODEapplication and why
software asbestos is generally inevitable even if we could dream up the technology and
methodology for business-critical systems. In due course, we will encounter several forms
of software asbestos. We also discuss the issue what to do with a contaminated system:
modify it, replace it, keep it as is, or otherwise. In the final part of this section, we can then
fully substantiate the link between software architecture and (architectural) modifications
of deployed software.

3.1. In Cobol’s defense

The primary challenge regarding a technical solution for the PRODCODE problem is
that fields for product codes first need to be identified, since these fields are not readily
tagged in any way. Some fields of typePIC 99 will be product codes; others are not. We
learned that several different types are used—not justPIC 99, but alsoPIC XX, PIC 999,
and others. In fact, 12 different types were used for same concept: a product code. Given
the 90,000 lines of the PRODCODE system, this implies a different type for every 8,000
LOC. Further complications are related to hard-coded literals, e.g., 100, which serves as
an error code. Now it is legitimate to raise the following questions:

• How can someone implement an issue that looks so simple as the concept of product
codes in such a complex and unfathomable manner? Is this an exception—a freak
accident, or is this type of implementation common practice?

• The problem would be simpler if not trivial if declarations of fields for product codes
would refer to a designated type. Also, constant declarations could have been used for
error codes, special values, and so on. Why did this not happen?

In replying to these questions, we want to provide evidence that (Cobol-based) business-
critical information systems (such as the PRODCODE application) are not the result of
careless programming by careless programmers incapable of adhering to the simplest best
practices in software engineering. To this end, we need to analyse Cobol idioms.

Hard-coded types and literals. Cobol did not permit a reusable declaration of a type
for product codes. This immediately rules out a malleable software architecture in which
the type for product codes amounts to a hot spot. Instead, one was encouraged to use

3 In particular: law I, continuing change, law II, increasing complexity, law VII, declining quality.

156 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

hard-coded types. In so far Cobol is (was) inferior compared to languages like Pascal,
C, Modula, Ada, and typed OO languages. Similarly, the error code 100 was hard-coded
because the proper declaration of constants was not permitted either. The use of several
types of product code as opposed to merelyPIC 99 (or PIC 999) is related to common
Cobol programming practice to heavily use formatted types for reports and screen I/O, but
it is further encouraged by Cobol’s weak type system.

A reference encoding. Meanwhile, with a Cobol 2002 compliant implementation, the
type for product codes could be declared once and for all in theDATA DIVISION of each
program, or even in aCOPY book for system-wide use:

01 PRODCODE-TEMPLATE IS TYPEDEF.
03 PRODCODE PIC 999.

88 PROD-ERROR-CODE VALUE 100.

This declaration uses Cobol’s newTYPEDEF clause for type declarations [18,34,74]. The
TYPEDEF clause indicates thatPRODCODE-TEMPLATE is a template, i.e., type declaration,
and not a normal data field which the compiler has to allocate space for. As a result, the
picture string999 no longer needs to be scattered over the normal field declarations. We
should note that we immediately favour the typePIC 999 over the typePIC 99 here
because we uniformly assume fields that are able to store the error code 100, or even a
greater value for the converted PRODCODEsystem. Indeed, the type declaration declares a
condition namePROD-ERROR-CODE for the error code 100 once and for all. One can refer
to such a template with theTYPE-clause. To give an example, we construct a group field
OUTPUT-DATA, which includes a field for a product code:

01 OUTPUT-DATA.
03 OUTPUT-HEADER PIC X(42).
03 OUTPUT-PRODCODE IS TYPE PRODCODE-TEMPLATE.

For clarity, this code is equivalent to the following “expanded” code:

01 OUTPUT-DATA.
03 OUTPUT-HEADER PIC X(42).
03 OUTPUT-PRODCODE PIC 999.

88 PROD-ERROR-CODE VALUE 100.

These new constructs are clearly convenient to encode a reusable type of product
code, and hard-coded error codes are avoided as well. Type declarations donot make
complications go away related to the different types that are used for product codes.
That is, code for conversion between the types is still scattered throughout the system,
e.g., in the form of implicit conversions inMOVE statements. One can imagine defining
abstract data types for product codes including conversion routines, which would be
possible using Cobol’s subprograms or the object-oriented concepts of contemporary
Cobol [52].

Idioms available at that time. Since type declarations were not available at the time,
when most Cobol-based, business-critical systems were built, one might wonder what other
idioms could possibly have been used to avoid hard-coded types and literals. We will now
discuss all such idioms.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 157

Data-field declarations can be augmented by condition names. These condition names
are like constants because they can be used in conditions inIF statements instead of
“PRODCODE = 100”, and in assignments using theSET statement. This idiom is insufficient
because condition names had to berepeatedfor each new product-code field. We would
really need type declarations to avoid this, as illustrated with thePRODCODE-TEMPLATE
above.

The ENVIRONMENT DIVISION of a Cobol program is used for various kinds of
declarations. There are also forms that come close to constant declarations. One can define
character sets with theALPHABET phrase, and enumerations of literals with theCLASS
phrase. In turns out that both phrases are too restricted to declare numeric constants like
100 for general use in a program. Also, there is no form of declaration that comes even
close to type declarations.

Some compiler vendors have made extensions to their Cobol implementations to solve
the hard-coded literal problem. MicroFocus Cobol has been supporting symbolic constant
declarations for several years. For this purpose, the level 78 for data declarations is used.
Fujitsu Cobol supports a declaration form for so-calledSYMBOLIC CONSTANTS that is part
of theSPECIAL-NAMES paragraph. This is an indication that indeed the pervasive problem
of hard-coded literals is not easily solved using the existing palette of constructions in
Cobol. Hard-coded types can still not be eradicated in this manner.

We could attempt to place a reusable declaration of product codes in aCOPY book.
Several elements of the declaration should be variable then: the level number 01, 02, 03,
. . . , 49;4 the name for the field; and the condition name for the error code 100. To this end,
we assume aCOPY book “PRODCODE.CPY” of the following trivial form:

LEVEL DATA-NAME PIC 999.
88 ERROR-CODE VALUE 100.

We can now attempt to reuse this declaration by means of a sophisticatedCOPY statement
that replacesLEVEL,DATA-NAME, andERROR-CODE. We reconstruct the earlier example for
using type declarations:

01 OUTPUT-DATA.
03 OUTPUT-HEADER PIC X(42).
COPY "PRODCODE.CPY" REPLACING

==LEVEL== BY 03
==DATA-NAME== BY OUTPUT-PRODCODE
==ERROR-CODE== BY OUTPUT-PC-ERROR.

The REPLACING mechanism is purely textual, i.e.,COPY books are inlined during
preprocessing. This low-level idiom is indeed not used in practice. Also, the assumption of
a uniform typePIC 999 further disqualifies this approach because at that time, when the
system was deployed, this type would have been considered wasteful.

None of the above idioms can be considered a proper solution.

4 Cobol terminology: the order of level numbers expresses grouping of fields. That is, a greater level number
indicates nesting relative to the previous field, while the same level number for contiguous fields means that the
fields are part of the same group.

158 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

3.2. Universal inevitability of asbestos

The Cobol-biased discussion revealed that existing Cobol-based business-critical
systems could not possibly avoid software asbestos related to hard-coded types for product
codes and others. Consequently, if we want to prolong the life of these software assets then
we have to engage into an architectural modification effort. This conclusion is of dramatic
impact because 95% of finance and insurance data is processed with Cobol [1, p. 70].
However, the celebrated focus on hard-coded types in Cobol needs to be complemented by
the following two key observations:

• The mere existence of type declarations or abstract data types in a language of choice
does not guarantee that these idioms are consistently used such that malleable system
architectures will be implied.

• Hard-coded types constitute just one particular form of software asbestos. Any choice
of language, platform, environment, style, etc. has its own collection of examples of
software asbestos.

As we will substantiate, the bottom line is this: no matter how hard one tries, any software
system is likely to be contaminated with several forms of software asbestos. It does not
matter so much whether the asbestos is a result of deprecated idioms or styles, or whether a
software architect failed to anticipate a certain dimension of malleability. Software asbestos
is a fact of life.

Too many types, too little time. Having support for type declarations, and using this idiom
widely is not a guarantee for success. To explain this, we resort to another language since
we have not seen any Cobol-based business-critical systems that uses type declarations of
the new age. We discuss type declaration problems for a language that had type declarations
from the start: ABAP/4 (short for advanced business application programming). This is a
4GL based on Cobol with support for type declarations. In fact, ABAP/4 is the language
for the implementation of the SAP software, which certainly counts as business critical.
In [88], Spitta and Werner lay out an analysis where the reuse of the data types in the
implementation of SAP R/3 was analysed. The system is huge, 40,000 programs, 34,000
functional modules, and 11,500 tables, and therefore an excellent candidate for data type
reuse. Spitta’s and Werner’s analysis revealed that the majority of data type declarations
in this huge system were not reused at all, namely 69%. Also, 6.2% of the data type
declarations were not used at all. And of the 15.6% that was reused, the reuse was restricted
to two to five times; the remaining 9.2% was apparently reused more often. These results
indicate that it is rather difficult to maintain a precise set of types in larger applications.
Throughout the life-cycle of software, types do emerge, and it is not always clear to the
developers which types already exist, or how certain types are related. This knowledge
is not explicit in software. At a certain moment, variations of existing types are created
although they are conceptually equivalent to existing ones. This leads to software asbestos.

Asbestos related to APIs. In the last 10 years or so, development platforms have started
to rely heavily on APIs. While a conservative Cobol program uses Cobol’s file-processing
constructs, a Java application uses JDBC for database access, and a .NET application uses
the ADO interface for database access. Even the Cobol code of the PRODCODEapplication

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 159

uses an API for embedded SQL. All the existing business-critical code employs a myriads
of general-purpose, domain-specific, or home-grown APIs, and often there exist several
versions of them. While the benefits of APIs are beyond dispute, pervasive API usage is
clearly a prime cause of software asbestos. This status becomes evident whenever we want
to migrate from one API to another, or maybe just to another version of the same API. To
give an example, here is some fairly simple C++ code which creates a “Main Window” in
terms of the (pre-.NET) Windows API:

HWND hwndMain = CreateWindowEx(
0, "MainWinClass", "Main Window",
WS OVERLAPPEDWINDOW | WS HSCROLL | WS VSCROLL,
CW USEDDEFAULT, CW USEDEFAULT,
CW USEDDEFAULT, CW USEDEFAULT,
(HWND)NULL, (HMENU)NULL, hInstance, NULL);

ShowWindow(hwndMain, SW SHOWDEFAULT);
UpdateWindow(hwndMain);

Mapping this code to Windows Forms in the .NET Framework results in the following:

Form form = new Form();
form.Text = "Main Window";
form.Show();

This looks relatively simple. As with the idea of mappingPIC 99 to PIC 999, we
should not miss the hard problem of API migration. That is, we first have to locate
the slices of code that amount to a certain idiom of API usage, and then to define a
representation of this idiom using the new API. To make this a bit more concrete, consider
the configuration of the main window in the original code snippet. If we always knew
to find a Boolean expression likeWS OVERLAPPEDWINDOW | . . . , then this configuration
would be sufficiently explicit for conversion. However, in actual code, this expression
could be arbitrarily formed, or we could need to resolve variable references, or it might
even be computed dynamically. This is just a very simple example, but it indicates that
API conversion is a challenging form of architectural modification.

Asbestos related to preprocessing & Co. Mechanisms for preprocessing and macros are
specifically meant to make software more malleable. This is not a new idea. For instance,
Peter Brown wrote in the 1970s about the use of macro-processors to construct portable
software [16] using conditional compilation for targeting different platforms. Portability
is clearly a form of malleability. The PRODCODE developers could have been using
preprocessing to simulate type and/or constant declarations as required for PRODCODE

fields. Cobol 2002 supports preprocessing statements these days [17,34], but we could
also have been using the C preprocessorcpp [41] (even for Cobol), the traditional
Unix tool m4 [73], a reuse-oriented preprocessor [3], or a home-grown preprocessor.
For instance, constants would be defined with a#define-like statement as opposed
to the hard-coded constants in the PRODCODE application. Encoding reusable type
declarations is a bit more involved in that we need to come up with suitably parameterised
macros.

Preprocessing has not been identified in studies on best practices in software
engineering [38,64,65]. On the contrary, the assumed benefits did not show up at that

160 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

time. Elsewhere, various authors [4,26,27,61,86,87] report on the implications of using
preprocessors likecpp and m4 for portability and code reuse reasons. The executive
summary of their reports is the following:

Using preprocessors to make software more flexible, tends to lead to unmaintainable
source code in the end. The presence ofcpp-like constructs in programs is a
headache not just for maintainers, but also for developers of tools for program
comprehension and others.

So the use of these mechanisms makes software less malleable in a certain dimension.
Hence, the use of preprocessing and macros introduces some new forms of software
asbestos. In some cases, this necessitates architectural modifications that eradicate
conditional compilation constructs and others. For instance, from people at Philips
Research we learned that they had written a so-called#if-def-resolver, to shed light
on the software in television sets [68]. Tool support for the eradication of preprocessing
statements is also discussed in [4].

Model driven architecture—a silver bullet? In the last few years, the object management
group (OMG) has developed the model driven architecture (MDA) approach to building
platform-independent applications [43,67]. This approach relies on OMG standards such
as UML, XMI, and others. MDA promises that applications can be realised on different
open or proprietary platforms, including Corba, J2EE, .NET, and Web Services. The key
requirement is that the developer differentiates a platform-independent model (PIM) and
a platform-specific model (PSM) of the developed software. The MDA approach aims at
supporting the derivation of the PSM from the PIM. At first sight, the MDA approach can
be viewed as a major attack against software asbestos coming in the form of scattered
platform-dependent code. We quote Martin Fowler [31] to assess the eternal independence
of the MDA approach:

When MDA talks about platform independence, it’s treating your programming
environment as the platform. But this is complete hogwash. MDA uses a bunch of
OMG standards (UML, MOF, XMI, CWM etc.), these standards are every bit as much
a platform as the Java stack (or the .NET stack for that matter). All you are doing
is swapping one (hardware/OS) platform independent programming environment for
another. You aren’t getting any more independence.

So using the MDA approach is not likely to make the problem of software asbestos
go away. The pervasive use of complex standards underlying MDA and the specific
mechanisms for the derivation of PSMs are good candidates for software asbestos.
A difference is perhaps that we will also be faced with asbestos inmodelsin addition
to just asbestos in source code before.

3.3. The future of contaminated systems

Given a contaminated system, there are different perspectives for the system:

• Conservation: As long as the asbestos is not in the way, as long as we do not suffer from
the associated lack of malleability, we are likely to keep the system as is. For instance,

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 161

in the PRODCODE application reside many hard-coded types other than for product
codes. We will not invest in type recovery for these.

• Modification: The PRODCODE project exemplifies that a problem with software
asbestos is normally addressed because system owners are faced with insufficient
malleability. In order to enable a specific enhancement of the system, an architectural
modification project must be embarked on. We also call this life-cycle enabling.

• Preventive modification: In some cases, a preventive architectural modification can be
preferable, if the associated benefits are considered worth the effort. Such benefits
typically include improved program comprehension and cost reduction of normal
maintenance activities.

• Replacement: Rather than revitalising malleability, system owners could possibly
abandon their deployed systems, and replace it by a new system that includes previous
services but also new ones that were hard to accomplish within the as-implemented
architecture of the deployed system.

• Starvation: System owners could also decide to keep the system as is accepting the
negative impact of not being able to eradicate deficiencies or to add a valuable service.
Reasons for such starvation include unaffordable costs for revitalisation or replacement,
and the foreseeable end of the life of the business-critical system.

We will now discuss these potential perspectives in some more detail.

Modification vs. replacement. At first sight, replacement seems attractive: insufficient
malleability of a deployed system could serve as a good reason to develop a new, modern
system. However, in most cases such replacement cannot be motivated in economical
terms. The large investment for a deployed system has normally be debited in the past.
Hence, the deployed system only has operational costs. A new system requires a large
budget to rebuild the current one. This also includes high operational costs during the
first years, where the “unknown” features of the current system are recovered, by the
virtue of failure of the new system. These costs can never be compensated by lower
operational costs of the new system for the rest of the system’s lifetime. InFig. 2, we
illustrate how an IT investment stresses the return on investment (ROI) threshold. Even
when the requirements change drastically, i.e., when a significant budget is needed to adapt
the deployed system, the option for incremental changes comes with less risks at the very
least. Our arguments assume that system owners must be able to perform architectural
modifications in a managed manner. Otherwise, starvation is the only remaining option.

The mere existence of software asbestos is normally not a sound reason for replacement
since the costs and risks are simply too high. Replacement is sometimes implied by
strategic or political forces such as the replacement of home-made systems by standard
(ERP-)packages.

Modification: automated vs. manual. Our structured process for carrying out
architectural modifications employs automated program transformations. In current IT
practice, the inability to update software in a structured and automated manner implies
that most modification projects, where significant amounts of the system need to be
changed, are not performed in the first place. If large architectural modification projects
are performed in a more or less manual manner, then they are likely to fail. Namely,

162 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

Fig. 2. A quaver curve for the lower-bound ROI threshold to achieve 10% net return in a software development
project. The figure is adopted from [92].

a manual approach is very expensive and error prone. A manual approach leads to
patchwork incrementalism, resulting in short-term extensions of the system. The lack
of automation in software modification projects is only one factor. In addition, large-
scale projects often suffer from inappropriate project management. These projects often
have harsh deadlines, and there is little commitment from management since the business
sees no added value. Projects like the described PRODCODE project are launched when
management realises the benefits of an automated approach to performing large-scale
architectural changes. To this end, we compile an open-ended list of reasons in favour
of automation:

• The bottom line for using transformations is that one keeps control over the situation:
one knows exactly what needs change, what is changed, how it is changed, in which
order, and how to change the changes themselves. Automated transformations are a
scalable means to deal with large code bases. Automation of modifications contributes
to a structured process.

• People are not good at consistently applying rules by hand over and over again. If there
are several variants of modifications, this is even more error prone. Using automated
program transformations for each and every change solves this issue. Moreover, for
large code volumes, manual approaches are strongly discouraged by Gartner Group: for

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 163

systems that comprise more than 2 million lines of code, manual mass-update projects
could be considered professional malpractice [32,37].

• In an automated approach, most work is about the exact formulation of the problem
including all its variances—as we will demonstrate for the PRODCODE project. The
actual implementation of the problem specification is then normally a low effort
with respect to a manual approach. In case of a manual approach, complications and
variances are often overlooked in the initial phases, which causes problems and delays
when the complications and variances finally are encountered.

• Changes often have to be performed on different versions of a system, e.g., the
modification rules are developed using an initial snapshot, while they need to be applied
to the production system later. Also, source-code portions of the system often occur late.
Hence, one needs an automated process to handle all batches and all versions uniformly.
Even manual changes are recorded (using for example the Unix tooldiff) such that
they can be included as patches in this automated process.

• The mass change needs to be executed in a short period of time, when normal
maintenance is put to hold. For some aspects such as data migration, it might even
be necessary to take the running business-critical system offline. The implementation
of an automated process may take a while including recording manual steps, but the
final application of an automated process can normally be limited to one night or one
weekend.

• If more than one version of the system is running at remote locations, one must perform
the mass update several times. Also, converted systems can display unexpected side-
effects, for instance in connection with other systems. Then these systems need an
update as well, and the conversion needs to be repeated. Automated transformations
provide a high degree of reuse in such situations.

• Variants of a new system are often required to compare certain aspects for these
variants. Using automated transformations, these variants can be generated easily. In
the PRODCODE project, this was the ability to do a performance analysis for the new
upper limit between100 and1000 for product codes. Transformations can also be of
use to temporarily include code that facilitates assertion checking and debugging.

A fully automatic solution is not always feasible, and it is sometimes not cost effective.
For instance, a modification problem that involves heuristics to determine affected parts of
the system often necessitates interactive steps for approval by maintenance programmers.
In an extreme case, the automation could be restricted to the generation of a report, which
is then applied by maintenance staff in a manual manner. To this end, special interactive
tool support can be provided such that programmers basically walk through the generated
report and navigate to the affected code locations without ado. Similarly, there is a tension
between handling less frequent or highly complex idioms by specific, manual changes per
occurrence rather than providing a general rule for the underlying code pattern(s). The
decision how much automation is necessary and whether generic modification rules are
required has to be made while relating to the technical analysis of the problem at hand, and
to the drivers for the project.

Asbestos treatment. In an endeavour to deal with software asbestos in architectural
modification efforts, there are three different options:

164 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

• Safe change: We trace the software asbestos, and adapt all affected code patterns. This
is precisely what we have done in the PRODCODEproject. A similar effort is described
in [76], where hard-coded SQL error codes were updated with the new codes for a new
version of the database management system.

• Removal: We trace the software asbestos, and remove it entirely. In the case of
the PRODCODE problem, this would mean turning hard-coded literals into symbolic
constants, and replacing hard-coded types by type declarations. This option requires a
Cobol 2002-compliant compiler, or some extensions at least.

• Workaround: We trace the software asbestos, and supply a workaround. A typical
example is using windowing to deal with a Y2K problem. That is, the hard-coded types
for dates with 2 digits for years are preserved, but the workaround interprets the years
00–99 differently.

• Hybrid: These three options can also be mixed. For instance, different degrees of
asbestos removal were used in Y2K projects. While it was not uncommon to factor
out date arithmetic into designated routines, the use of hard-coded types was normally
not eradicated.

Note that we always start with tracing asbestos prior to an asbestos-aware transformation.
Hence, we obtain a stricter separation of tracing and transformation, if we assume that the
result of tracing is documented temporarily or permanently in the source code. In fact, this
is a form of scaffolding [48,77], say a structured comment. This is a useful method to drive
a transformation, or to repeatedly operate on the asbestos. Scaffolds are also useful for
interactive transformations, where the scaffolds mark the relevant spots to be affected, and
they encode options for user intervention.

3.4. A definition of software architecture

We want to utterly clarify the architectural dimension of the presented work. To this
end, we discuss definitions of software architecture, and we argue that our view, which
focuses on the modification of deployed software, is valuable.

Pluralism in software architecture. There exist many proposals for definitions. For an
extensive list of definitions we refer to [85]. Most definitions seem to suggest, in more
concrete terms, that software architecture is about certain views on the system design. A
fairly established definition by Bass et al. [2] is given as an example:

The software architecture of a program or computing system is the structure of the
system, which comprise software elements, the externally visible properties of those
elements, and the relationships among them.

This style of operational definition is widely used, where the definition provides a list of
issues such as components, their properties, relations between the components, and others.
It also seems that many definitions tend to share some aspirations with civil architecture in
the sense of focusing on integrity of construction. InThe art of systems architecting, the
idea of architecture is perceived as follows: “Models are used to control the construction
process and to ensure the integrity of the architectural concept” [62, p. 140].

The architecture of deployed systems. In the case of deployed systems, requirements
or design documents are normally outdated and often even non-existing. Also, the

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 165

original designers and programmers are no longer available to reflect on the architecture.
Furthermore, successive changes have blurred many original design decisions. Moreover,
there is no guarantee whatsoever that the encountered barriers were considered at all in the
original architectural design. This leads us to conclude that deployed systems themselves
define anas-implementedarchitecture. There is a body of research on architectural
recovery of systems [23,33], but again, the recovered architectural information is of a kind
we just have discussed: high-level views on the system design. We would rather want to
focus on malleability of deployed systems.

Who needs an architect? In an IEEE Software column of this name, Martin Fowler and
Ralph Johnson (the latter by means of quotations) discuss the role of an architect, and soon
they discuss defining software architecture [30]. They criticise phrases like “architecture
of a software system . . . is its structure of significant components” because these phrases
miss the relativity of significance. Significant for whom? For customers? Johnson votes for
expert developers, and he offers a definition of software architecture:

In most successful software projects, the expert developers working on that project
have a shared understanding of the system design. This shared understanding is
called architecture.

So architecture is about important design issues, important for the expert developers. And
the architect is the person who worries about such important things. Johnson also identifies
another style of definition such as in “architecture is the set of design decisions that must
be made early in the project”. Johnson proposes that this should actually read as:

Architecture is the set of design decisions that you wish you could get right early in a
project, but that you are not necessarily more likely to get them right than any other.

Fowler picks up this definition. He simply wonders why people would feel the need to
get some things right early in the project. This is Fowler’s answer including his implied
definition of software architecture:

The answer, of course, is because they perceive those things as hard to change. So
you might end up defining architecture as things that people perceive as hard to
change.

While this definition is somewhat oriented towards development or construction of
software, its emphasis on changeability (or malleability) is 100% in line with our
architectural view on deployed software. Fowler uses the wording that architecture is what
people “perceive as hard to change” because it depends on the technical and imaginable
abilities of the architect if he or she can arrange for something being easy to change. This
is the reason for perceivability being part of the definition.

As-implemented architecture. It is only a little step from Fowler’s to our definition.
When modifying deployed systems, we are faced with an as-implemented architecture.
The detailed design decisions that would have made it easy or hard to change aspects
belong to the past. There is no longer any point about perceivability, while from Fowler’s
perspective there is. Also, the architecture is partly incidental or accidental. This motivates
the following definition:

166 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

The software architecture of deployed software is determined by those aspects that
are the hardest to change.

Whether something is hard to change or not is judged by the standards of software devel-
opment and maintenance practice. Managed and automated architectural modifications are
precisely meant to enable changes that would otherwise be too hard. To conclude, software
architecture is about the immutable aspects of a software system. It really needs archi-
tectural modifications to replace these parts. Candidates for such immutable aspects are
the chosen implementation languages, platforms, development environments, predefined
libraries and APIs, proprietary communication protocols, database schemas, and so on.
However, not every instance of such aspects counts as architectural. Whether a given as-
pect in a given system actually counts as architectural solely depends on how difficult it is
to change the encountered implementation of the aspect.

Bibliography. We started to use this definition of software architecture three years ago,
and at that time it deviated from the status quo. Meanwhile, the definition has been
adopted or independently discovered by others. For instance, Andrey Terekhov adopted
our definition on his slides presented at the Dagstuhl seminar 03061 Software Architecture
[89]: “We believe that the best definition of software architecture is the following: Software
architecture is comprised of all features that are difficult to change in a system”. At the
same seminar, Jan Bosch, independently of us, develops a very similar characterisation
on his slides [8]: “Software architecture is hard to change. . . . [it] is [the] static, the stable
part of the system. . . . Inflexible architecture is a fact of life!”. Gert Florijn refers to our
definition in his course notes on software architecture [28] as a good example of a definition
for software architecture. We also recall the IEEE Software columns by Fowler [29,30],
which are aligned with our view on software architecture. This makes us believe that our
alternative definition is of general use.

The next sections will describe an approach to carrying out architectural modifications.

4. Analysis of modification problems

We will now define a process for analysing the actual problem in an architectural
modification project. The result of this analysis is a problem specification, which forms
the basis for an estimation of effort and costs. We will focus here on the analysis of the
technical solution, where we recall that a complete understanding of a modification project
also requires the identification of project drivers—as listed inSection 2.4.

Disclaimer. Some readers, who are very experienced in the area of data expansion, might
feel that our approach to come could be more sophisticated. It is the case, indeed, that some
companies are in the possession of advanced technology and methodology to endeavour
expansion projects. We would like to stress that data expansion serves as an example in this
paper. That is, we deal with all the more or less well known issues in doing data expansion.
We aim at the illustration of a reusable method and a general process for architectural
modifications, rather than the description of the ultimate approach to data expansion.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 167

4.1. The process for problem analysis

We use the following process for problem analysis:

(1) Explore: We use code exploration to learn about the problem. This will lead to
the substantiation of assumptions about affected patterns, variation points, and a
quantitative measure.

(2) Model: We sketch an operational model that approximates the technical solution of the
identified part of the problem. This concerns analyses to determine affected patterns,
and transformations to adapt the code.

(3) Estimate: Based on the operational model, knowledge about project drivers, and
quantitative measures, we estimate the effort needed to actually solve the identified
part of the problem.

(4) Review: We reflect on the operational model gathered so far as to identify drastic
sources of incompleteness. This includes the exposure of undue assumptions about
programming conventions and encoding idioms adhered to.

(5) Discuss: The findings are discussed with the customer’s domain experts. This is meant
to ensure a feedback cycle so that we can take advantage of the customer’s insights,
and to create awareness of identified complications at the same time.

(6) Loop: Steps 1–5 are repeated until the risks and problem variances are well understood
such that the model has sufficient detail for cost estimation.

The purpose of this process is twofold. Firstly, the amount of affected code and the diversity
of relevant code patterns are estimated. Secondly, it is superficially investigated how to
make the changes. The customer’s participation ensures that the impact and the results of
the analysis are meaningful to the customer. In the PRODCODE project, the maintenance
department at the client site was loosely involved in the problem analysis. In addition to
daily meetings, there was a contact person who could be consulted by us for immediate
help.

4.2. The initial problem statement

We will now enter the above process starting from the initial problem statement for the
PRODCODE project. Remember this very succinct statement: The system is required to
work with more than a hundred product codes. We will now go through the phasesexplore,
model, andestimate.

Code exploration. The customer told us that the names of fields for product codes
normally contain the stringPRODCODE. So we decided to make a rough estimate on how
many affected data declarations were present in the system. To this end, we employed the
simple UNIX commandgrep to list all declarations for data fields containing the string
PRODCODE:5

5 In this paper, we usegrep under SUN Solaris/SunOS 5.8. Our commands may need minor changes before
they can be applied on other platforms.

168 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

> grep " [0-9][0-9]*[A-Z0-9\-] * PRODCODE" * | wc -l
341

The abovegrep command looks for all lines starting with a Cobol level number (cf. the
[0-9][0-9]) where the data name declared in the line contains the stringPRODCODE. We
pipe the output of thegrep command into the word count commandwc -l to solely obtain
the number of hits forPRODCODE.

Quantitative measure. For the programs that were supplied by our customer, there were
341 occurrences ofPRODCODE in the DATA DIVISIONs of the initial batch of programs.
Apart from the programs, there were another 104 product codes in the suppliedCOPY
books (including 54 in thegeneratedones). This simple query gave us a first indication
of the volume of data declarations that needed to be changed.

Tooling in time. We will comment on technology for tooling later, but we want to state
here very clearly that in this phase of the project one should either use very light weight
tooling such asgrep, or (advanced) tooling which is alreadyup and running. One must
avoid labour-intensive development of tooling in this phase because the problem analysis
in architectural modification projects has usually to be completed before pricing on very
short notice. This does not leave room for software development aimed at supplying tool
support. We note that code exploration only has to be precise enough for cost estimation
as opposed to the precision needed for the ultimate technical solution.

Sketch of the operational model.

Replace the data typePIC 99
in the declarations of data fields whose names containPRODCODE

byPIC 999.

Effort estimation. The effort for implementing this requirement is pretty low. There
are only 341+ 104 product code fields. The above (sketch of an) operational model is
directly executable with even simple means of textual replacement. The required effort
for implementing this model is less than 1 person day.6 None of the project drivers
for the PRODCODE project (cf.Section 2.4) seems to complicate the implementation of
the requirement. For instance, syntax retention would be easily guaranteed because the
required transformation operates on a very small focus.

4.3. Identification of undue assumptions

We will now discuss the steps to obtain a more detailed problem specification in the
PRODCODE project. This involves reviewing the initial problem statement and the so-far
gathered model. This review is meant to identify directions for deeper exploration.

The accuracy of the problem specification. Problems with simple requirements
specifications are often underestimated, apparently many people stop after a first
formulation of the operational model. Research by Boehm [6,7] shows that stopping at this
moment is not a good idea. In the initial phase of a project, there is usually a factor of 16

6 1 person dayis meant to represent 8 h of work by a person representing the solution provider.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 169

difference between optimistic and pessimistic estimates of the effort. Putting a little more
effort into defining an operational model pays off considerably: when the requirements
specification is known in detail, there is only a factor of three difference between high and
low estimates. This is an improvement of over 80%. That is why our process for problem
analysis is iterative.

Completing the naming conventions. In accordance with the findings of Boehm we had
no reason to believe that we already converged to the final problem specification and we
continued to investigate the problem in more detail. We decided to challenge the naming
conventionPRODCODE that was originally offered by the customer. To this end, we applied
grep instructions as follows in order to find all declarations of fields with two digits:

> grep "PIC *99 | ... | wc -l"
577

> grep "PIC *9(2) | ... | wc -l"
186

The elisions indicate that thesegrep commands are slightly more elaborate to avoid
matches with other data types whose prefix happens to match such asPIC 999 or PIC
9(2)V9(3). We browsed over the 577+186= 763 field declarations, and checked the use
of some of them in the source code. We discussed a couple of candidates with the client,
after which we addedPRDCODE andPC to the naming conventions.

Accounting for disobeyed naming conventions. One can expect that sometimes the
naming conventions are not obeyed. We used code exploration to determine if approved
fields for product codes are moved to other fields whose name would not be covered by
the naming conventions. For instance, the following query gives us all the lines withMOVE
statements with aPRODCODE field as the source:

> grep "MOVE *[A-Z0-9\-]*PRODCODE" *
p4247v88:00228 MOVE PRODCODE IN LINK-FIELD-07 TO PRODCODE
p4247v88:00238 MOVE PRODCODE IN TAB-PROG(IND1) TO PRODCODE IN A-DAT.
p4737v13:00118 MOVE PRODCODE-BOOKING TO IND1.
p4737v13:00588 MOVE PRODCODE IN TAB-PROG(IND1) TO PRODCODE IN A-MAND.
...

One of the shown hits reveals the data nameIND1 in line 00118 of programp4737v13,
which obviously does not follow the prescribed naming conventions.

Recall—tooling in time. Note that we could have developed a data-flow analyser to
accomplish the above task with more accuracy. We have seen people tempted to write the
perfect data-flow analyser, control-flow analyser, slicer, dead-code detector etc. to solve
such problems, only to find out that they did not need the tool, or that it took too much
time. Therefore, we recall that, at this stage, it is better to use simple tools which do
not require any up-front investment in tool development. Even if powerful infrastructure
is available, the time for customisation to be applicable to the portfolio at hand might
be non-affordable. For example, the advent of an in-house preprocessor, a so-far non-
encountered cocktail of embedded languages, or simply a strange dialect is likely to trigger
considerable customisation efforts for advanced technology—be it just one day, which is
still too much. Besides customisation, the issue of explaining findings to the people at the
client site should not be underestimated, which often speaks in favour of simple tooling.

170 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

The refined operational model. The above investigation ofMOVE statements shows that
many fields were used as product codes, while their names do not reveal their functionality.
So, we need to improve our operational model to identify affected fields more precisely:

All field declarations that follow the naming conventionsPRODCODE, PRDCODE, and
PC are affected. In addition, all fields that occur inMOVE statements together with
some other affected field are affected as well.

We have used this style of specification also in Y2K and Euro-conversion projects, namely
in the design of sophisticated tools for the identification of problem spots as needed for an
impact analysis. The above model raises two issues with view on an estimation of effort:

• Pollution: We need to make sure that the identification of affected fields is precise, i.e.,
it does not suffer from false negatives or false positives.

• Name resolution: We need to be able to navigate from use sites of affected fields (in
MOVE statements and elsewhere) to declaration sites.

We will now discuss these problems in more detail.

Pollution. A naı̈ve algorithm for the identification of affected fields is likely to include
too many fields. This can happen if some field is not just used for product codes but also
for other types. Then, fields of all the other types might get included as well by transitive
closure. To see if this problem was relevant, we investigated a fewMOVE statements by
looking at the types of the operands. Consider the following line of code which shows a
data itemTMP-ALPHA used in aMOVE statement together with a definite product code:

MOVE PRODCODE TO TMP-ALPHA.

The type ofTMP-ALPHA turned out to bePIC X(80). This extra-large type and the further
use ofTMP-ALPHA in the program suggested that this field served as a heterogeneous buffer
field. We must not qualify fields as affected just because they were used in aMOVE statement
together withTMP-ALPHA.

Name resolution. While our initial operational model could be read as a kind of textual
replacement command, the identification of affected fields via use sites complicates the
situation. Namely, we start to interact with the language syntax and static semantics, i.e.,
we must be able to navigate from use sites such asMOVE statements to the corresponding
declarations of the operands, which is not entirely trivial. That is, such name resolution
potentially needs to handle compound references to data fields, which is illustrated with
the following nested group field—notice the two occurrences ofFLDX:7

00115 01 TOPREC.
00116 03 REC1.
00117 05 REC11.
00118 07 FLD111 PIC 99.
00119 07 FLDX PIC XX.
00120 05 FLD12 PIC 99.
00121 03 REC2.
00122 05 FLD21 PIC X(10).
00123 05 FLDX PIC 99.

7 The grouping is visually emphasised by indentation as is common in Cobol, but the grouping is defined by
the order of the level numbers.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 171

There are some degrees of freedom for referring to components of such group
fields. Here are legal references as they could possibly occur inMOVE statements and
elsewhere:

• FLDX IN TOPREC IN REC1 IN REC11 refers to the first declaration.
• FLDX IN REC11 also refers to the first declaration.
• FLDX IN REC1 also refers to the first declaration.
• FLDX IN TOPREC IN REC2 refers to the second declaration.
• FLDX IN REC2 also refers to the second declaration.

In fact, the data nameFLDX alone does not correspond to a valid reference as it is
ambiguous. With regard to the PRODCODEproject, we end up with the following question:
Do affected fields require the use of compound references during name resolution?
Fortunately, our further analysis revealed that such precision was not required.

Effort estimation. As precise name resolution is relatively expensive, we checked
whether we would really need it in the PRODCODE project. To this end, we prototyped
the identification of affected fields. We augmented this prototype such that inclusion
of an overloaded name would be reported. It turned out that overloaded names
did not occur except for fields that followed the naming conventions of product
codes. So our analysis revealed that we could ignore compound names during name
resolution.

The extra effort for a propagation of affected fields (as operationalised above) plus an
ad hoc name resolution was estimated to account for 3 person days, adding to the earlier 1
person day for the initial operational model. We note that the effort has grown by a factor
of four compared to the initial estimation, which is well in line with the findings by Boehm
[6,7] regarding the precision of requirements specifications.

Type variations. Another component of the initial problem statement is also worth
challenging. Our exploration of affected fields revealed that types other thanPIC 99 were
in use for product codes. We detected over ten different types. We will discuss the actual
list later. For each type possibly a different expansion rule is necessary. For now, it is
important to realise that the gained insight enables us to make a more realistic estimate
regarding the increased effort for this project. This estimate is higher than the customer
initially expected. Therefore it is a good idea to make sure the customer is made aware of
the encountered complications. Among the types we found, other thanPIC 99 there was
one that puzzled us the most:

00083 01 SUBSCRIPTS.
00084 03 SUB-PC PIC S9(4) COMP.
...
00294 MOVE PRODCODE TO SUB-PC.

The picture stringS9(4) describes the type of asignednumeric data item with four digits.
Why would one need a signed type? Why four digits? Note that we included a line of
source code showing the connection betweenSUB-PC andPRODCODE. When we confronted
the domain experts from the client site with the typeS9(4), they could not offer any
explanation. Such findings are a reality of modification projects, and such information can
be used to build confidence in a thorough and fair cost estimation. Code exploration reveals

172 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

issues that come as a surprise to the domain experts but need to be understood in order to
supply a solution for the modification problem.

4.4. Identification of usage patterns

Until now we have only considered declarations as possibly affected code locations. An
important question to answer is what other usage patterns of product codes are present,
whether any of these are affected as well, and whether they need adaptation. While we
were identifying affected fields, we had already probed forMOVE statements to see if they
revealed any additional affected fields. But now we want to systematically learn aboutall
the usage patterns.

PRODCODE tracing. We developed a simple analysis to determine all occurrences of
PRODCODE, the corresponding statement form and other operands used in the same context.
To this end, we usedperl for rapid tool development. The produced list looks as follows:

p4247v88, 749, 15, 4, field, IND2, SET
p4247v88, 788, 39, 2, numeric, 00, IF
p4247v88, 795, 15, 4, field, IND1, SET
p4737v13, 118, 46, 4, field, IND1, MOVE
p4737v13, 318, 10, 4, alpha, ’42’, MOVE
p4737v13, 1811, 39, 2, numeric, 99, IF
...

This list had 1477 entries corresponding to 1477 uses of product codes in the PRODCODE

application. Each line of output consists of the program name, the line number, the
columns, and the operand used in combination with aPRODCODE field. Also an indication
of the kind of operand is shown: afield, anumeric literal, or analphanumeric literal.
Finally, every line of the report mentioned the statement form in which thePRODCODE
field was found. The above report provides us with a useful overview in what contexts
PRODCODEs are used. They are not just used inMOVE statements but also inSET conditions
andIF statements. These findings trigger questions:

• The occurrences of literals ring a bell. Why is 99 used together with aPRODCODE field
in anIF statement? This is an indication of hard-coded literals.

• What is the reason for using aSET statement for product codes? TheSET statement
seems to reveal that tables are subscripted by product codes.

These two patterns and all the others deserve a deeper analysis by an exhaustive case
discrimination since they are potentially subject to adaptation. So we are clearly not yet
done with a full problem analysis. The number of 1477usesis a factor of five larger than
the original number of merely affected declarations. This increase of effort is again fully
aligned with Boehm’s findings [6,7].

Hard-coded literals. Regarding the first question given above, we learned that the
PRODCODE implementation heavily relied on the use of hard-coded literals for product
codes. Most notably, such hard-coded literals occurred inIF andMOVE statements, where
the boundary literals 99 and 100 were used in conditions to limit loops over legal product
codes. As we will see later on, literals other than 99 and 100 were used elsewhere. Let us
consider one occurrence of a literal in anIF statement together with aPRODCODE field:

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 173

01810 IF PRODCODE IN ENTRY1-PROG NOT NUMERIC
01811 OR PRODCODE IN ENTRY1-PROG > 99
01812 GO TO 5391.
01813 MOVE PRODCODE IN ENTRY1-PROG TO SUB-PROG.

While the initial problem statement assumed that there were 99 possible codes, the
comparison . . .> 99 reveals that codes greater than 99 also carry a meaning. Many
affected fields were already of types likePIC 999 prior to data expansion such that they
could store values greater than 99. Code snippets like the one above invited us to suspect
usage of values greater than 99 as error codes. We also noticed that the implementation
used dynamic type-checks to ensure that fields for product codes contain proper numeric
values. That is, in the Boolean condition in line 01810, there is a check forNOT NUMERIC.
This triggers new questions: Why would anybody check for aPRODCODE to be numeric?
Were they not always numeric?

Revealing error codes. A simple way to look for potential error codes is to search for
loops ranging overPRODCODEs. In the actual system, we could find many of those. Let us
look at the following loop:

00758 5703.
00759 IF IND2 > 99
00760 GO TO 5705.
00761 PERFORM 5707.
00762 ADD 1 TO IND2.
00763 GO TO 5703.

Suppose that the analysis categorisedIND2 as an affected field. The loop iterates over all
product codes by incrementing the fieldIND2. For each product code, the paragraph5707
is performed. The loop is terminated if the conditionIND2 > 99 holds. Hence, 100 clearly
is used as an error code. Our investigation did not reveal any alpha-numeric error codes.
So we assume that the above test for the field to contain a numeric field is an indication of
a defensive style of programming related to some irregular situations.

Adaptation of error codes. Apparently, fields that can hold the error value 100 must be of
a type likePIC 999 already. Then, the question is if they need expansion to four digits or
what other precautions are due. In fact, extension of fields of typePIC 999 is not needed
unless we insisted on precisely 999 valid product codes. With 998 product codes or fewer,
there will be still one code left to serve as error code. We state the following addendum to
our operational model:

The literals 99 and 100 when occurring in simple comparisons involving an affected
field as the second operand need to be replaced by the values newmax and newmax
+1. Here, newmax denotes a parameter of the modification project, where newmax
< 999.

This formulation does not yet specify the affected patterns very precisely. However, the
present formulation is considered sufficient for effort estimation.

Tables of product codes. In Cobol, there are five different sorts of statements that share
the verbSET. The idiom which turned out to be used for product codes is the one to assign
values to index fields for Cobol tables.

174 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

00235 01 TAB-PROG.
00236 03 ELEM01 OCCURS 99 INDEXED BY IND1.
00237 05 CODE-NOT PIC X.
00238 05 MINIMUM PIC 999V99.
00239 05 COMP-CODE PIC 99.
...
00795 SET IND1 TO PRODCODE IN WG-MAND-NUM.
00796 MOVE ’Y’ TO CODE-NOT IN ELEM01 (IND1).
...

In line 00236, the index fieldIND1 is declared and associated with the tableELEM01. In
line 00795, aSET statement assigns aPRODCODE to IND1. In line 00796, a table access
is performed whereIND1 serves as an index field. So we have to conclude that the table
ELEM01 is indexed by product codes.

Expansion of affected tables. After expanding the number of product codes, tables of
product codes need to be expanded as well. When we encountered this new fact, we began
to understand how a new upper limit for product codes could affect the performance of the
system. The response time of the system and its memory requirements might change by a
factor if we increase the size of tables from 100 to say 1000 entries. Of course this also
depends on other factors like the size of the table entries, the complexity of the operations
per entry, and the complexity of loops over such tables: e.g., are they linear or quadratic?
We estimated that 299 product codes would be a good starting point, which could later on
be revised if necessary. So we assumednewmax= 299. The operational model needs to
be enhanced as follows to take findings aboutSET statements into account:

A SET statement reveals affected fields just asMOVE statements. TheOCCURS clause
for a table with an index field that is known to be affected has to be changed from99
entries to newmax (= 299) entries.

We can easily locate tables by recognisingOCCURS clauses. A table is affected if it is
INDEXED BY an affected field. Hence, we can easily change theOCCURS clauses to expand
the table. So again, the operational model is straightforward to implement. A complication
arises from the fact that the index of a table does not necessarily need to be declared
explicitly, in which case theINDEXED BY clause is missing. Then, the link between index
fields and the affected table has to be identified differently. In fact, this is again a simple
form of name resolution. We estimated 2 person days effort for table expansion including
a special-purpose name resolution.

4.5. Encountered subtleties

The code exploration revealed two issues that were particularly puzzling compared
to things discussed so far. Firstly, numeric and alphanumeric types were freely used
for product codes including hard-coded literals. We were initially unable to predict the
implications of this irregularity. Secondly, there were a few tables that were not subscripted
by product codes but still each table entry contained a product code. We were initially
unable to decide on whether to expand or not. These subtleties will now be discussed
in more detail, which underlines once more that architectural modifications tend to be
more intricate than suggested by the deceptively simple problem statement that was
communicated to us initially.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 175

Suspicious tables. We are concerned with tables that involve a product code per entry.
Such tables are potentially subject to expansion on the basis of the loose argument that if
there are more product codes, then the table might also need to hold more entries, but in
fact there are different idioms conceivable:

• 1–1 table: A table is used to hold exactly one entry per valid product code. Hence, there
must be as many table entries as product codes. This idiom, once revealed, requires
table expansion.

• Fixed table: A table serves as a kind of buffer with a fixed number of entries. For
instance, the size of the table might reflect the number of viewable entries on the screen.
This idiom does not require expansion, or expansion might even be incorrect.

• Open-ended table: The number of entries in the table is bounded but it can be greater
than the number of product codes. In this case, the new number of entries has to be
defined per case.

Here is sample code for what could correspond to the first or the last idiom. The fragment
fills a table in a loop readingall records from a file:

00337 01 WORK-PRODCODES.
00338 03 ELEM01 OCCURS 99.
00339 05 PRODCODE PIC 99.
00340 05 SHORT-TXT PIC X(8).
00341 05 VAL-MIN PIC 999V99.
...
00934 0170.
00935 PERFORM TEST-PRODCODE.
00936 ADD 1 TO IND1.
00937 MOVE PRODCODE IN RECORD04 TO PRODCODE IN ELEM01(IND1).
...
00947 READ FILE04 NEXT RECORD
00948 AT END GO TO 0199.
00949 GO TO 0170.
00950 0199.
...

The fieldIND1 is used as loop variable which is initiallyZERO. TheOCCURS clause for the
table manifests the upper limit for the number of records in the file, namely 99. In this case,
we would need to argue in favour of expansion because the structure of the loop suggests
that records for all possible product codes could potentially be encountered. In fact, the
loop by itself does not rule out several records per product code. Code exploration of the
file-control entry forFILE04 revealed thatPRODCODE is declared to be a primary key of
FILE04. Hence, there is at most one record per product code, and the normal increase from
99 to 299 table entries is appropriate.

One option is to adopt a defensive style of modification. That is, we expand all
such tables regardless of further symptoms speaking in favour of expansion. Obviously,
this approach is potentially wasteful. Also, customers often strictly dislike what they
think are unnecessary modifications. Furthermore, there are even circumstances where
an expansion can result in hazardous code. Most notably, expansion of a conceptually
fixed tablecan lead to out-of-range problems on a screen or elsewhere. Fortunately, our
code exploration revealed that there were only three suspicious tables in the PRODCODE

project. This made us conclude that the issue of suspicious tables is less relevant in the

176 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

phase of cost estimation. We safely postponed dealing with the three suspicious tables until
later.

Strange literals. Besides the maximum 99 and the error code 100, our simple code
exploration also revealed several other hard-coded literals all over the system. In
Section 4.4, we listed some usage patterns for product codes. We initially glanced
over suspicious occurrences such as the alphanumeric literal’42’ in an affectedMOVE
statement. What is the meaning of 42? Why are alphanumeric literals used here? We
learned that codes other than 99 and 100 encoded distinguished product codes which
had some special meaning in a certain program or at a certain time (e.g., in a migration
program). The fact that some of these codes are alphanumeric is largely accidental. These
hard-coded literals sometimes need to be changed (say, expanded) for subtle reasons as we
will illustrate. Namely, consider an alphanumeric field for product codes:

00226 01 MAND-IN.
00227 03 PRODCODE PIC XX.
...
02491 MOVE ’42’ TO PRODCODE IN MAND-IN.

After expansion theMOVE statement will actually move the literal’42’ to the field
PRODCODE IN MAND-IN. Hence, the affected literal’42’ has to be expanded to
’042’. The PRODCODE application exercised basically all combinations of numeric
and alphanumeric operands. By our systematic investigation, we also revealed that
alphanumeric types likePIC XX were often used for product codes. This means that
numeric and alphanumeric product codes coexisted in the program. So we would
eventually need to make decisions for all such combinations. We confined ourselves
to postpone working out details of literal expansion since we would only need to
make a small number of decisions for expanding literals or not. Still the amount of
literals and the subtle issue as such required adding 1 person day to the estimated
effort.

4.6. Dissolved complications

Recall that we investigated whether or not a precise name resolution would be needed.
Such investigations are crucial for limiting the costs of the project. There are several other
complications that we dissolved in order to keep all analyses and transformations as simple
as possible. Here is a list of dissolved complications:

• The seed-set construction might require liberalisation. For example, one could use
conditions on the data declarations to qualify a field as element of the seed set. One
could also use patterns of usage to support assumptions about elements of the seed set.
Given the relatively reliable naming conventions in the PRODCODEproject, this was not
necessary.

• Sophisticated analyses can be used to uncover buffer fields or fields with several types
of usage as opposed to pure PRODCODEfields. In the PRODCODEproject, we restricted
ourselves to simple heuristics, but we planned for human approval of affected fields.
Given the size of the application, this was reasonable.

• Other syntactical forms can be taken into account, e.g.,MOVE CORRESPONDING
statements, arithmetic statements, file-access statements. In the PRODCODEproject, we

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 177

concluded that such additional forms will not reveal more affected fields. For example,
no arithmetic is performed on product codes.

• The analysis of affected fields can potentially be an inter-modular analysis. By this
we mean that we track product codes across program boundaries by following all
subprogram calls and all imports ofCOPY books for record descriptions and others. In
the PRODCODEproject, subprograms were not used for modularising application code,
and naming conventions were obeyed in theCOPY books. Hence, the identification of
affected fields on a per-file basis was sufficient.

• The analysis of affected fields and the expansion of fields can require a precision
where redefinitions (i.e., Cobol’s form of unsafe variant records or unions) andMOVE
statements with group fields as operands have to be taken into account. By means of
code exploration we checked that this was not necessary.

There are a few more conceivable complications but we omit them here because they were
not as relevant as those above. So in theory, all these issues have to be taken into account,
but in practice we can neglect some of theme due to the specifics of the project. All these
complications, when relevant, imply major extra effort, which we will illustrate by means
of discussing the last item in the list given above.

Group MOVEs. Consider the following contrived code fragment:

01 PRODCODE PIC 99.
01 WORK99.
05 WORK99-FIRST PIC X.
05 WORK99-SECOND PIC X.
...
MOVE PRODCODE TO WORK99.

That is, aPRODCODE field is moved to a group fieldWORK99 which happens to split up the
product code into two characters. While this idiom was not exercised in the PRODCODE

application, it is found in other projects that we carried out. For instance, date ingredients
such as day, month, and year are often retrieved in this manner. The problem with this
idiom is that the group field will also count as an affected field, which necessitates a
generalised operational model for expansion. Also, the use of the positionsWORK99-FIRST
andWORK99-SECOND in other statements could be relevant for the identification of further
affected fields. Furthermore, some code might rest on the assumption that there are only
two positions. Such code needs an update as well. Without the finding that these problems
were irrelevant for the PRODCODE project we would have embarked on more complex
algorithms such as those in [24,72].

Redefinitions. Identification of affected fields and their expansion becomes further
complicated if product codes occurred in redefinitions. This is Cobol’s facility to provide
multiple interpretations for stored data. We illustrate redefinitions by overlaying the two
fields that were stored separately above:

01 PRODCODE PIC 99.
01 PRODCODE-XX REDEFINES PRODCODE.
05 WORK99-FIRST PIC X.
05 WORK99-SECOND PIC X.

Hence, we could access product codes in two ways, either as a two-digit value or
position-wise. Again, this is a contrived fragment. Fortunately, the many redefinitions

178 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

in the PRODCODE application did not involve product codes. Other languages also offer
related language constructs, e.g., unions in C. The use of such constructs is known to
considerably complicate reasoning about programs. Redefinitions are pervasively used
in Cobol programs. Especially in older software, redefinitions are used to save space by
imposing two different interpretations on a block in memory or a file record. In such
cases, expansion of both the primary and the overlaid data structure would not be justified.
However, it is hard to determine if a redefinition is meant to provide an alternative view on
the same data vs. an unrelated data structure.

4.7. Convergence of analysis

A useful idea to feed the problem specification process is to pick up one program
from the code base and to perform some obvious changes manually. This approach will
usually result in an intensive exploration of the particular program, and it will trigger the
implementation of simple queries for code exploration. These queries are applicable to the
full code base. The process will reveal many aspects of the solution strategy. In analysing
code patterns, and implementing exploratory analyses, one can apply a worst-case selection
criterion. For instance, the very first program should be one of the more complex programs,
and one should cover simple and more complex cases. At that point, more code exploration
will not necessarily give a more accurate cost estimation. There is no formula to detect the
required amount of code exploration, but a form of time boxing is a good idea here: try
to find as much as possible prominent aspects of the problem specification, and after that
inventory make a new effort estimation.

In the PRODCODEproject, the result of the problem specification phase was a collection
of examples, scenarios, reports, and raw solution options—as illustrated above. This kind
of problem specification was to a large extent comprehensible to the system owners.
Thereby, a solid basis for a cost estimation was formed. In addition we came up with a
management summary of how many changes in which context were probably necessary.
This summary appears as follows:

Filename, FS, WS, CY, XX, 99, MV, ST, IF, MISC
p4247v88, 0, 3, 9, 2, 1, 21, 13, 16, 2
p4737v13, 0, 0, 5, 0, 0, 1, 1, 1, 0
p7766v13, 0, 9, 18, 0, 0, 22, 0, 7, 21
p7887v08, 0, 9, 6, 0, 0, 10, 0, 1, 1
p7888v15, 0, 1, 4, 0, 0, 4, 0, 4, 0
p7889v22, 1, 5, 5, 0, 0, 7, 0, 5, 4
...

The report lists all programs and the corresponding counts ofPRODCODE for the respective
pattern. We used the following abbreviations for the context of the patterns:

FS affected code in file section
WS affected code in working storage section
CY affected code inCOPY books
XX affected code in alphanumeric literal context
99 affected code in numeric literal context

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 179

MV affected code inMOVE statements
ST affected code inSET statements
IF affected code inIF statements
MISC affected code in other statements.

All in all, there were 1818 code patterns that directly involvedPRODCODE. This number is
five times larger than the original estimate of 341PRODCODE declarations.

5. Project economics

Now that we know the impact of the problem, we can deal with the pricing issue. An
important characteristic of this type of project is that customers tend to demand a fixed
price, for fixing a problem that occurs only once. The fixed price often origins from the
handcraft-directed thinking of the customer: they initially envision a black box tool to
do the job, which has a price, a fixed price. Being in that position, it is mandatory to
come up with an accurate cost estimation. Also, evidence regarding the specifics and the
complexity of the problem must be gathered. Thereby, the customer can be convinced that
the estimation is reasonable.

5.1. Cost estimation and contract signature

The problem analysis, as described inSection 4, was completed in about a week. To this
end, the analysis phase was covered by a consultancy contract for three person days with
the problem specification as deliverable. While we were taking the lead in working out the
problem specification, we also arranged for daily meetings with the client, complemented
by phone calls and email threads. This guaranteed the necessary customer involvement.
The idea of separate contracts for analysis and the rest of the project is that the customer
stays in power, i.e., the customer can decide whether to continue the project or not,
while the deliverable of the analysis phase, i.e., the problem specification, becomes the
customer’s property. This specification is supposed to be of use for the system owner
regardless of the continuation of the project.

To initiate the continuation of the project, we submitted an effort distribution and cost
estimation in the form of a draft contract. This submission offered a fixed price, which
was calculated based on an effort estimation for 15 person days. To this end, the following
activity-based effort distribution was listed:

• 3 working days for further code exploration and meetings with the customer: the
expected results are the detailed modification rules, and detailed side conditions for
service delivery, e.g., the kind of documentation.

• 3 working days for tool development for analysis of affected fields.
• 1 working day for tool development for picture-string expansion.
• 2 working days for tool development for table expansion.
• 2 working days for tool development for literal expansion.
• 2 working days for manual adaptations of remaining affected patterns, and recording

them in transformation scripts.
• 1 working day for documentation of modifications.

180 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

Fig. 3. Management summary of the PRODCODEproject.

• 1 working day for running the mass-conversion on the production code, and sanity
checking the mass-conversion results.

This effort distribution was defended during a meeting prior to contract signature. There
was enough information available to make a good estimate. So we could agree on the terms,
and signed a fair contract. This contract also fixed a few side conditions. Most notably our
liability was limited by the fact that the modification of 4GL code and others would not
be carried out by us. Also, the responsibility for testing was assigned to the customer.
Furthermore, the contract stated that detailed documentation of all the performed changes
had to be delivered.

5.2. Management summary

On completion of the project, the customer was provided with a kind of a management
summary of the performed changes. This summary helped to convince the client that the
agreed price was reasonable. An overview of numbers of changes and categories is shown
in Fig. 3. Note that the compilation of such an overview was straightforward in the view of
the requirement to document all changes. We recall that at one moment in time we found
341 declarations and 1477 use sites ofPRODCODEs. Of course, not all the locations where
affected code is found, needed an update. From the summary we can see that 597 actual
changes were made. All the affected spots were detected by our tools for code exploration.
Most of the changes were covered by generic transformation rules. The remaining changes
were performed manually, but they were recorded in patch scripts so that we can replay
them.

5.3. The cost and risk dimensions

We want to briefly argue that an architectural modification effort using automated
transformations was the right way of addressing the PRODCODE problem. To this end,
we summarise the costs and the risks of a manual approach. We will omit a discussion of

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 181

risks of automated modifications or, more generally, re-engineering, but we refer to Sneed’s
work [84] to this end.

Costs of a manual approach. From benchmarking data it is known that maintenance
programmers can on the average deal with 8 bugs a month [35]. Other data indicates that
47% of the time a maintenance programmer is occupied withunderstandingthe problem,
in order to make an actual change [63]. From the management summary provided in
Fig. 3 we can see that 597 changes had to be made. They were grouped in seven named
categories, and additionally 41 changes did not fit any of the main categories. So there
were 41+7 = 48 typesof change. By lack of further information we assume that applying
a type of change is similar to fixing a bug, hence we can apply 8 types of changes a
month, 48 changes in 6 months. Note, that applying the 47% of [63] gives us about 3
months for understanding alone. We made changes, while the client tested the changed
code, and carried out complementary changes of the DB2 tables and others. This implied
an additional 10 working days at the client site. Total effort was 28 working days, while the
benchmarked estimate was 6 months, which is about 120 working days. So our automated
process to architectural modification resulted in an improvement of a factor of four when
compared to a conservative estimation for tackling the problem in the course of regular
maintenance.

Problems with code volume as a metric. Some people might think that 100 working days
for such a project by hand is too much. One way of looking at it is that this project contained
about 100 files. So that is one day per file for a relatively small change. However, code
volume is not a useful metric. Ted Keller showed this with an interesting analogy. Suppose
that for gall bladder removal, the average duration is 45 min and the costs are $2,000.
Suppose that for the average pea-sized brain tumour 8–10 h time at a cost of $10,000
is necessary. If a surgeon’s effort is merely measured by tissue volume, one will obtain
nonintuitive results. Suppose that a gall bladder is 20 times larger than a pea-sized brain
tumour. Then neuro-surgeons are 100 times more expensive (per tissue volume), are 260
times less productive (per tissue volume), and general surgeons should be able to remove
about 26 pea-sized brain tumours per hour for $103 each [40]. Keller used this to show
that looking at code volume in maintenance projects leads to nonintuitive results. So, 100
working days for the PRODCODEproblem is not much for such an effort, if one succeeds
at all with the manual approach.

Risks of a manual approach. Apart from thecost dimensionthere is arisk dimensionas
well. In fact, this dimension is very important, and must not be missed by looking at the
cost issue only. Suppose this type of mass-change project is done by hand. Then in many
cases, the team loses oversight pretty quickly: which solutions are applied in which case,
which programs are already updated, and which not. Which order to apply for which type
of change, and if there is an order, how to keep track of this process. Namely, the conceptual
scope of the average maintenance programmer is the program, and not the entire system.
So when a change is made to a program with the goal to modify the structural integrity
of the system, the program scope is not sufficient. Manual modification projects often fail,
or are avoided in the first place, leading to years of patchwork incrementalism. If these
mass-change projects are avoided, then this is indeed either because of the cost dimension

182 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

or of the risk dimension. It is our experience thatautomatedmodification efforts perform
much better in both dimensions.

An example of failure. Let us give an example to demonstrate the risks of a manual
approach. The example concerns the preparation of a system for a Euro conversion.
Several manual efforts to do this modification effort had failed. At this stage, one of our
colleagues was hired and resolved the problem by means of a 400 hour managed and
automated modification project. The reason for earlier failure of the manual attempts was
that not only a lot of changes needed to be made, but also, the changes were dealing with
seemingly random alphanumeric identifiers with an average length of 20 characters. These
systematic identifiers had to be recognised, and partly changed. Data structures needed
to be phased out toCOPY books, using the macro function calledREPLACED BY where
parts of the alphanumeric identifiers were factored out and put in the parameters of the
replacement macro. All these identifiers looked alike, but were not exactly the same, so
that typographical errors could hardly be detected. This status prevented any human being
from implementing large-scale changes to this scheme since it was completely ingrained
in the entire system.

So our calculation on productivity improvement has to be augmented by a risk dimension:
our calculation shows how much one saves in case someone happens not to fail to do it by
hand.

6. Design of the solution

The phase following the problem analysis deals with the detailed design of the solution.
That is, we will now work out rules for the analysis and transformation of the PRODCODE

application. We will describe the rules by means of examples, and some rules will be
subjected to a formal specification. The rules are given in sufficient detail so that they can
serve as the input for actual tool implementation.

The specification formalism. Let us briefly explain the specification formalism that we
use. Our algebraic specification consists of equations of the form

s1 = t1, . . . , sn = tn
s = t

wheres, s1, . . . , sn, t, t1, . . . , tn are (open) terms over a given signature. Such an equation
is interpreted as a rewrite rule from left to right; given a ground term which matches
with the left-hand side of the equation (the open terms), such that all conditions are
fulfilled (all conditionssi = ti evaluate to true), thens is rewritten tot . The variables
that occur in the terms are bound to closed terms by matching. The specifications given
in this section were executed by the ASF+ SDF Meta-Environment—a system which
implements conditional term rewriting with concrete syntax [44]. Our specification relies
on a special idiom supported by ASF+SDF, namely generic traversal functionality [11,12].
Function symbols can be marked to model traversal of their first arguments, e.g., bottom-
up or top-down traversal. The remaining arguments are parameters of the traversal. As a

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 183

Fig. 4. Top-level specification.

result, specifications become radically more concise since only constructs of interest need
to be covered by equations.

6.1. The top-level specification

In Fig. 4, the top-level specification of the PRODCODEmodification is given by a single
conditional equation. It expresses that the whole modification consists of the following
steps:

• In the first condition, a seed set is determined by the function Seed for the given program
Prog1. This is a set of fields that match certain naming conventions. The seed set is the
starting point for determining affected fields.

• In the second condition, the function Propagate extends the seed set with all other
affected fields. This will be done by analysing the statements in the source code of
Prog1, based on a maximum number of iterations.

• In the third condition, the function PicExpansion expands picture strings of affected
field declarationsProg1. This will be an elaboration of the simple case to turnPIC 99
into PIC 999. This results in an intermediate resultProg2.

• In the fourth condition, the function MaxExpansion expands all literals that refer to
the maximum number of product codes. This concerns the literals 99 and 100 inIF
statements and elsewhere. This transformation produces yet another intermediate result
Prog3.

• In the fifth condition, the function LiteralExpansion expands all literals that refer
to product codes. This is meant to compensate for the mixture of numeric and
alphanumeric product codes. This transformation produces yet another intermediate
resultProg4.

• In the sixth condition, the function TableExpansion expands all tables that are
subscripted by product codes. The transformation operates onProg4 and it computes
the final resultProg5. However, the function TableExpansion takes the original program
Prog1 as an additional parameter for name resolution.

These steps are discussed one by one in the following. In the last part of the section, we will
discuss some specific changes separately, and we will explain the approach to documenting
all the required changes.

184 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

Fig. 5. Identification of the seed set—specification.

6.2. Identification of affected fields

We first identify theseed set, which contains the affected fields that are recognisable in
the code based on naming conventions. Then, apropagationstep needs to be performed
repeatedly by computing the closure of fields with the same type of usage.

Finding the seed set. During the problem specification phase we have checked the
naming conventions that were initially provided by the customer and we have found some
additional ones. As a result, we knew that the namesPRODCODE,PRDCODE, andPC are used
for product codes. These names can also occur as prefixes or postfixes of other data names.
In Fig. 5, this is specified accordingly. We define the function Seed, which accumulates a
seed set denoted bySeed. In the top-level specification given inFig. 4, the function Seed
was applied to the complete programProg1, whereas the only location where a match is
possible at all, is in Cobol’sDATA DIVISION. As we rely on generic traversal functionality,
we do not need to specify all the trivial rewrite rules to navigate to the relevant patterns. We
explain the remaining equations ofFig. 5. The function IsProdcodeName is used to check
whether an identifier matches with any of the search patterns. To this end, the equations
employ a wild-card notation; cf. “∗”. Furthermore, we check the length of the fields with
the function IsProdcodeLength.During code exploration we encountered that most affected
fields have length two, but we also encountered product code fields of length 3 or 4. While
fields of length 3 or 4 may not have to be expanded, they still could be needed to reveal
affected fields by propagation. It is strongly recommended to check the seed set for false
positives, as they may pollute the remaining steps in the analysis.

Propagation. The purpose of propagation is to identify the data fields in a program that
are of the same type of usage [22] as the fields in the seed set. We have subdivided
propagation into two phases. Firstly, there is a one-step algorithm that detects affected
fields in statement forms. Secondly, there is an iteration with a suitable stop condition. In
the PRODCODEproject, this straightforward propagation algorithm did the job.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 185

Fig. 6. One-step propagation—specification.

Fig. 7. Iterated propagation—specification.

One-step propagation. Fields used inMOVE and SET statements have the same type
of usage, and thus, the constructs provide input for one-step propagation. Consider the
following MOVE statement:

MOVE PRODCODE TO PC IN CUSTOMER-RECORD.

In this example, one-step propagation does not reveal any new affected fields because both
PRODCODE andPC are already covered by the naming conventions for product codes. In the
following SET statement, the fieldIND1 is uncovered by one-step propagation:

SET IND1 TO PC IN CUSTOMER-RECORD.

One-step propagation is formalised inFig. 6. In a MOVE statement and aSET statement,
the two involved fields have the same type of usage; see equations (9) and (10) inFig. 6.
These equations also suggest how one-step propagation can be readily arranged for other
syntactical patterns. If a setFieldsof fields of the same type of usage overlap with the set
Affectedof affected fields so far, then we add allFields to Affected; see Eq. (11) inFig. 6.
Otherwise, the setAffectedis preserved; see Eq. (12) inFig. 6.

Iterated propagation. The definition of propagation analysis is completed by iterating
one-step propagation until no new fields are found, or until the maximum iteration count
is reached. The top-level Eq. (1) inFig. 4stated that the set of affected fields is initialised
with the seed set, and the parameter position for an iteration count is initialised with the
maximum count. The iteration of the propagation is defined inFig. 7. Eq. (13) inFig. 7

186 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

simply states that the iteration stops whenever the iteration count has reached zero. In the
other two equations, the function for one-step propagation is applied. Eq. (14) inFig. 7
states that the iteration stops if no new affected fields are found, whereas Eq. (15) inFig. 7
states that we continue the iteration otherwise.

Pollution problems. As we have discussed earlier, the computation of affected fields has
to be done with care. In the PRODCODE project, we did indeed not include fields with
king size formats such as buffers during propagation. For brevity, this is not reflected in
the above specifications. In other projects, we have found it useful to employ negative
name patterns and other criteria to avoid false positives. In the PRODCODEproject, iterated
propagation converged already after the first step, that is, the second step did not reveal
additional affected fields. In our experience, this is usually a good indication for absence
of pollution problems.

6.3. Picture-string expansion

We start now with picture-string expansion. Our intuition is of course to expand the type
PIC 99 to PIC 999, but we will have to discuss several other types as well. Let us first
illustrate expansion for aDATA DIVISION fragment of a program:

00115 01 STRA-FIELDS.
00116 03 STRA-MAND.
00117 05 STRA-DATA.
00118 07 PC PIC 99.
00119 07 FUN PIC 9(4).
00120 05 SKI PIC 999.

In line 00118 we see aPC field at level07 whose name matches with conventions for
product codes. The field must be expanded since the picture string is indeed too short. The
expansion leads to the following code:

00115 01 STRA-FIELDS.
00116 03 STRA-MAND.
00117 05 STRA-DATA.
00118 07 PC PIC 999.
00119 07 FUN PIC 9(4).
00120 05 SKI PIC 999.

We underlined the expanded picture string. Several other types are used for product codes
as well, e.g.,PIC 999 (i.e., three digits),PIC XX (i.e., two alphanumeric positions), and
PIC BXX (i.e., three alphanumeric positions with a blank if the first position happens to
be zero). InFig. 8, we map all data types for product codes, that were present in the
PRODCODE application, to expanded types. Affected fields of other types, e.g., of type
PIC 999, are preserved. Here, we assume that these other types are capable of holding at
least three digits.

In Fig. 9, the specification for picture-string expansion is given. Eq. (16) inFig. 9deals
with the pattern of so-called data description entries, i.e., field declarations. The first
condition checks if the data nameId at hand is in the set of affected fields. The second
condition performs the actual picture-string expansion (if any)—as it was specified in
Fig. 8. The first argument of the function PicExpansion is an arbitrary field declaration.
Using associative list pattern matching its picture stringStr0 is obtained and turned into

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 187

Fig. 8. Picture-string expansion—specification (part I).

Fig. 9. Picture-string expansion—specification (part II).

its expanded equivalentStr1. Note that this specification will be more complicated in case
name resolution takes compound data reference into account.

6.4. Maximum expansion

As pointed out earlier, literals need to be adapted if they exercise boundary values
of product codes. Code exploration revealed that the boundary values 99 and 100 were
explored in conditions ofIF statements, only. The required adaptations were of the
following form.

PC > 99 ⇒ PC > 299
PC NOT > 99 ⇒ PC NOT > 299
PC = 100 ⇒ PC = 300
PC NOT = 100 ⇒ PC NOT = 300

HerePC denotes the name of an affected field. We used 299 as the new maximum. Flipped
variations on the patterns are omitted for brevity. Maximum expansion is illustrated with
the following code fragment:

188 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

Fig. 10. Expansion of table boundaries.

00758 5703.
00759 IF IND2 > 99
00760 GO TO 5705.
00761 PERFORM 5707.
00762 ADD 1 TO IND2.
00763 GO TO 5703.

Propagation revealed thatIND2 is an affected field in the program. The condition in line
00759 refers to the number of product codes, and hence it needs to be adapted accordingly:

00758 5703.
00759 IF IND2 > 299
00760 GO TO 5705.
00761 PERFORM 5707.
00762 ADD 1 TO IND2.
00763 GO TO 5703.

In principle, patterns other than those discussed above are conceivable because
comparisons can be formed in various ways. It is a good idea to restrict transformation
rules to actual code patterns present in the given code base. As an aside, thinking of
normalisations is not always a good idea. Firstly, a normaliser can require substantial work.
Secondly, normalisation can make it more difficult to meet side conditions like syntax
retention.

In Fig. 10, maximum expansion is specified. The rules cover the special patterns that
we listed above. The transformation function MaxExpansion is applied to conditional
expressions consisting of the relational operatorRel and two operands. The variable
Rel matches with relational operator symbols like ”=”, ” >”, and ”<” but also with their
negated counterparts like ”NOT=”. There are two Eqs., (17) and (18) inFig. 10, since
an affected field can serve as a left or a right operand, while the other operand is then
required to be a numeric literal. The last three Eqs., (19)–(21) inFig. 10, specify the actual
expansion of literals.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 189

6.5. Literal expansion

When we analysed the problem, we learned that both numeric and alphanumeric types
were used as product codes. Furthermore, code exploration revealed that both numeric and
alphanumeric literals were hard coded in many cases. In particular, literals occurred in
patterns like this:

• MOVE ’42’ TO PC.
• MOVE 42 TO PC.

Here,PC is an affected field of whatever type. Such patterns raise the question whether
literals need to be expanded when the corresponding fields are expanded. The semantics
of MOVEs for numeric and alphanumeric types is well defined, but a bit subtle to interpret.
Virtually every combination of numeric or alphanumeric source and target for any length
of picture string is valid, and the result is regulated by a number of rules. The following
table explores some combinations. When a literal’42’ or 42 is moved to a fieldPC, the
actual result depends on the picture string. In the following table, we denote a space by the
symbol “ ”.

PC PIC XXX PC PIC 999

alpha-numeric literal MOVE ’42’ TO PC 42 42

numeric literal MOVE 42 TO PC 42 042

We obtained this knowledge by writing a tiny test program because this seemed to be the
most reliable approach to us. Even experienced programmers cannot predict these cases
very reliably. From this table we concluded that literals like’42’ or42 should be expanded
as well, to respectively’042’ and042.

Patterns involving literals. It is clear that literals can occur in a number of syntactical
patterns, not just inMOVE statements. By a systematic code exploration, we narrowed down
all possible patterns to those that were actually exercised in the PRODCODEapplication:

• source operands ofMOVE statements;
• in conditions ofIF statements;
• in declarations of condition names.

We extend the operational model accordingly:

If a literal, alpha-numeric or numeric, of length 2 is assigned to or compared with a
product code field, a leading zero should be added. Literals can also occur as part
of the declaration of condition names for product codes. These literals need to be
expanded in the same manner.

The following fragment illustrates literal expansion inIF statements:8

8 This fragment uses Cobol’s so-called abbreviated combined relation conditions. That is, the condition
in the IF clause is abbreviated in a manner assuming that the left operand of the first comparison and the
comparison operator ”=” are inherited to the subsequent abbreviated comparisons. For instance,A = ’1’ OR
’2’ abbreviatesA = ’1’ OR A = ’2’.

190 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

Fig. 11. Literal expansion—specification.

01731 IF PRODCODE IN WG-MAND-ALPHA = ’01’ OR ’02’ OR ’13’
01732 NEXT SENTENCE
01733 ELSE
01734 GO TO 0377.

We need to expand all the literals in the compound condition, since they are are compared
with the fieldPRODCODE IN WG-MAND-ALPHA:

01731 IF PRODCODE IN WG-MAND-ALPHA = ’001’ OR ’002’ OR ’013’
01732 NEXT SENTENCE
01733 ELSE
01734 GO TO 0377.

Several of the programs, in which hard-coded literals occurred, were eventually suspected
to be dead. In a few cases, a maintenance programmer argued that the programs used liter-
als for product codes because they implemented a one-shot data conversion at some point
in time. Here is a code fragment from such a suspected conversion program. This fragment
also illustrates that literals for product codes can occur as part of data-field declarations:

00159 03 COND-OCCUPIED PIC 99 VALUE ZERO.
00160 88 IS-OCCUPIED-CODE
00161 VALUES 07, 15, 16, 31, 37,
00162 84, 85, 86, 90, 98.

In line 00160, the condition nameIS-OCCUPIED-CODE is declared. This name can serve
as a form of condition, which is true whenever the fieldCOND-OCCUPIED holds one of the
VALUES 07, 15,...,90, 98. We expanded all the literals.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 191

Literal expansion is specified inFig. 11. Eq. (22) inFig. 11 covers literals inMOVE
statements. Eqs. (23) and (24) inFig. 11cover literals in comparisons. For brevity, we omit
some rules that are needed to deal with more complex forms of conditions, e.g., abbreviated
combined relation conditions. The actual expansion of literals is defined in Eqs. (25)–(27)
in Fig. 11. Literals of length two are taken apart, and a padding zero is added.

6.6. Table expansion

When a data field is subscripted by an affected field, then the table that hosts the
subscripted field has to be expanded. Such a table normally holds 99 entries before
expansion, andnewmaxentries after expansion. For illustrative purposes, we continue with
newmax= 299. The following fragment involves a table declaration, some table accesses,
and the code which uncovered the corresponding index field to be a product code during
propagation:

00235 01 TAB-PROG.
00236 03 ELEM01 OCCURS 99 INDEXED BY IND1.
00237 05 MINIMUM PIC 999V99.
00238 05 COMP-CODE PIC 99.
. . .
00589 MOVE MINIMUM IN LINK-P3233-P TO MINIMUM
00590 IN TAB-PROG (IND1).
00591 MOVE COMP-CODE IN LINK-P3233-P TO COMP-CODE
00592 IN TAB-PROG (IND1).
. . .
00787 SET IND1 TO PRODCODE IN WG-MAND-NUM.

Only in the last line, many lines away from the table access, we see from theSET statement
that IND1 is connected with aPRODCODE. The transformed part of the above fragment
appears as follows:

00235 01 TAB-PROG.
00236 03 ELEM01 OCCURS 299 INDEXED BY IND1.
00237 05 MINIMUM PIC 999V99.
00238 05 COMP-CODE PIC 99.

We omit the rewrite rules for table expansion, but we will discuss some irregular cases that
we encountered.

Variations related to programming skills. By a systematic analysis of tables we found
that there were not just tables with 99 entries but also tables with 100 entries that were
subscripted by product codes. The tables with such an extra entry indicated the use of
a defensive style, which is not uncommon in actual Cobol programs. The defense is
concerned with code that does not check for the index field to be different from the
error code 100. To avoid run-time errors, programmers add an extra entry. In expanding
these tables with 100 entries, we would need to preserve the status of an extra entry as
well.

Variations related to dead code. In addition to tables that were subscripted by product
codes, we were also interested in other tables that involved a field for product codes. We
recall our earlier discussion that these tables might require expansion as well. Here is a
particularly suspicious example:

192 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

000431 01 TAB-CONTR.
000432 03 PRODCODE-EL OCCURS 30.
000433 05 PRODCODE PIC X(02).
000434 05 YEAR-ULTIMO PIC X(02).
000435 05 CONTR-EL OCCURS 19.
000436 07 VALDATE-YYDDD PIC S9(07) COMP-3.
000437 07 CONTR-PERC PIC S99V999 COMP-3.
000438 07 IND-COMP PIC X(01).
000439 05 IND-EXPIRED PIC X(01).
000440 05 FILLER PIC X(05).

Notice thePRODCODE field. Also notice that the table has only 30 entries. We examined
how this table was used. The table is not indexed by any data item of product-code type of
usage, but we found the following loop encoded withGO TO logic.

001889 0170.
001890 PERFORM 90-RENT-COMP.
001891 ADD 1 TO SUB-TAB-1.
001892 READ FILE04 INTO PRODCODE-EL (SUB-TAB-1)
001893 AT END COMPUTE CONTR-IN = SUB-TAB-1 - 1
001894 GO TO 0199.
001895 GO TO 0170.

Apparently, this table is filled by retrieving all records from a file calledFILE04. There is
no evidence that 30 would have been a sufficient number of entries even prior to expansion.
During a meeting, a domain expert proposed that this code might be dead. We were also
told that the number 30 used to be the original upper limit for product codes when the
system was first designed in the 1970s before the upper limit was later extended to 99
product codes. The above table must have been forgotten in this earlier modification effort,
which was carried out manually. Since the code happened to be dead already at that time,
no program error was ever detected. As a result of the meeting, the customer decided to
deal with the eradication of such dead code.

As a side note, such an iterative history of updating is nothing uncommon. For instance,
in the view of date expansion: some systems built in 1970 used 1 digit for the year, and were
updated in 1980 to deal with 2 digits, were updated to deal with leap years, were updated
to deal with the year 2000, were updated to deal with the leap year exception in 2000,
were updated to deal with 54 weeks (the year 2000 had 54 weeks), were updated with four
digits, are going to be updated in case windowing was used as a Y2K solution, and so on.

Irrelevant tables. There were also tables withOCCURS 99 or 100 in the project that were
not expanded because99 or 100 did not seem to refer to the number of product codes in
these cases. This claim was approved by inspections of comments and naming conventions.
The following table is an example of a case where table expansion was not needed.

00187 01 CI-TABLE.
00188 03 CI-ENTRY OCCURS 99.
00189 05 ENTRY-CI.
00190 07 CI-REG PIC 99.
00191 07 CI-PROV PIC 99.
00192 05 PART1 PIC X(26).
00193 05 PART2 PIC X(26).

Consulting the domain experts, we learned that the name conventionCI points to other
data than product codes, namely to a certain kind of customer information.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 193

6.7. Specific changes that remained

The transformations of the previous subsections are relatively generic in the sense
that they lend themselves to general modification rules. There are some remaining, rather
specific changes, which we will explain in an informal manner. The spots were detected
using our tools for code exploration, but the changes were performed manually. We stress
that even these changes were recorded in patch scripts, which were generated by thediff
tool, so that we could repeat the changes or adapt the changes. Since we were expecting to
make the same changes several times, this is much more cost effective than doing this by
hand without recording the changes.

FILLER contraction in group fields. Picture-string expansion for fields that reside in
group fields offers the following complication. If the group field happens to serve as an
input/output buffer, or for similar purposes, we might have to preserve the overall length
of the group field if possible. That is, we must not exceed the line length of a printer, or a
screen. Similarly, we have to avoid data files having to be recreated with a different length.
This issue can be addressed by taking advantage of theFILLERs that are often part of group
fields for buffers and records.9 In fact,FILLERs are used by Cobol programmers both for
formatting, and to anticipate data expansion. We measured in some systems that 8% of the
physical lines of code consisted ofFILLERs. Consequently, one can attempt to compensate
for an expanded item by reducing the size of a siblingFILLER.

The following group fieldTABLE-ENTRY contains aPRODCODE field. The group field is
80 characters long, and it used as a line buffer, which is indeed expected to be precisely of
this length. The variousFILLERs are used to optimally format the information to be shown
on the screen or to be sent to a line-printer.

00225 03 TABLE-ENTRY.
00226 05 FILLER PIC X(17).
00227 05 PRODCODE PIC 99.
00228 05 FILLER PIC X.
00229 05 CODE-NOT PIC X.
00230 05 MINIMUM PIC 999V99.
00231 05 FILLER PIC X(6).
00232 05 COMP-CODE PIC 99.
00233 05 FILLER PIC X(46).

To retain the length of 80 characters after the expansion of thePRODCODE field, we reduce
theFILLER beforePRODCODE by one (in fact, anyFILLER would do):

00225 03 TABLE-ENTRY.
00226 05 FILLER PIC X(16).
00227 05 PRODCODE PIC 999.
00228 05 FILLER PIC X.
00229 05 CODE-NOT PIC X.
00230 05 MINIMUM PIC 999V99.
00231 05 FILLER PIC X(6).
00232 05 COM-CODE PIC 99.
00233 05 FILLER PIC X(46).

9 Cobol terminology: AFILLER declaration takes precisely the form of an ordinary data declaration, except that
the keywordFILLER is used in the data declaration instead of a data name. This results in dummy (or anonymous)
parts of group fields that can only be initialised and not filled withMOVE statements.

194 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

In this particular example, one could argue that the length of 80 is not exhausted anyway
because of the longFILLER at the end of the group field. So even if the length of the
group field goes up to 81 after expansion, there will be still 45 unused characters at the tail.
In general, such a liberal approach might cause harm, for instance, when such fields are
used in subprogram calls, or in file records. The receiving subprogram, e.g., for line-wise
printing might insist on 80 character long buffers as for the declaration in theLINKAGE
SECTION. Obviously, then a change in the length in one client of the subprogram can have
disastrous effects sinceCALL andLINKAGE SECTION will not fit with each other. Cobol
compilers do not even necessarily emit warnings about such a mismatch leading to run-
time errors. Hence, in general, we preserved all invariants of the code, including the length
of buffers, like the one above.

Updating comments and strings. By simple text search forPRODCODE and other
patterns we found that there were also comments and alphanumeric literals that contained
PRODCODE. These occurrences often required adaptations. For instance, in some programs,
we foundDISPLAY paragraphs like the following:

00615 0191.
00616 DISPLAY ’*********************************’.
00617 DISPLAY ’** PRODCODE TABLE GREATER THAN 99’.
00618 DISPLAY ’*********************************’.
00619 CALL ’STOP-4711’.

Clearly, the error message is connected to product codes. The message will be outdated
after expansion. The new range overflow is at 299 rather than 99. Thus, we manually
updated theDISPLAY paragraph:

00615 0191.
00616 DISPLAY ’**********************************’.
00617 DISPLAY ’** PRODCODE TABLE GREATER THAN 299’.
00618 DISPLAY ’**********************************’.
00619 CALL ’STOP-4711’.

Note that we even added an asterisk “*” in lines 00616 and00618. We also found affected
comments such as the following which prefixed a table declaration indexed by product
codes:

006000** ELEMENT OCCURS 99 -> PER PRODCODE

The comment was converted as follows.

006000** ELEMENT OCCURS 299 -> PER PRODCODE

One can argue that keeping comments up to date is not worth the effort since they do
not affect functional behaviour. There are good reasons why comments should be updated
as well. Maintenance programmers do study the comments and if they are confused by
inconsistent documentation it will take much more time to do their work properly. The
average maintenance programmer is not aware of the entire change history of a system.
Hence, he or she cannot easily resolve the inconsistencies when faced with outdated
comments. Also when maintenance teams learn that the comments are outdated in some
cases, they may assume this to be the case for all comments, including recent comments
by their colleagues. This can lead to a considerable loss of productivity.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 195

Strange idioms. The following fragment required a mixture of several modes of expansion.
That is, picture-string expansion, literal expansion, and table expansion were relevant at the
same time. The fragment hard-codes all possible product codes:

00167 01 PRODCODES.
00168 03 FILLER PIC X(40)
00169 VALUE ’0102030405060708091011121314151617181920’.
00170 03 FILLER PIC X(40)
00171 VALUE ’2122232425262728293031323334353637383940’.
00172 03 FILLER PIC X(40)
00173 VALUE ’4142434445464748495051525354555657585960’.
00174 03 FILLER PIC X(40)
00175 VALUE ’6162636465666768697071727374757677787980’.
00176 03 FILLER PIC X(38)
00177 VALUE ’81828384858687888990919293949596979899’.
00178 01 PRODCODE-TABLE REDEFINES PRODCODES.
00179 03 PRODCODE OCCURS 99 PIC X(02).

That is, a hard-wired list of all possible product codes is declared usingFILLERs for blocks
of 20 product codes, and the list is redefined to be accessible as a Cobol table with 99
entries. We had to update this declaration to preserve functional behaviour. Eradication of
subtoptimal idioms like the one at hand was not an issue in this architectural modification
project. So we had to come up with a transformation that upgraded the list of product codes
as follows:

00167 01 PRODCODES.
00000 03 FILLER PIC X(48)
00000 VALUE ’001002003004005006007008009010011012013014015016’.
00000 03 FILLER PIC X(48)
00000 VALUE ’017018019020021022023024025026027028029030031032’.
00000 03 FILLER PIC X(48)
00000 VALUE ’033034035036037038039040041042043044045046047048’.
00000 03 FILLER PIC X(48)
00000 VALUE ’049050051052053054055056057058059060061062063064’.
00000 03 FILLER PIC X(48)
00000 VALUE ’065066067068069070071072073074075076077078079080’.
00000 03 FILLER PIC X(48)
00000 VALUE ’081082083084085086087088089090091092093094095096’.
00000 03 FILLER PIC X(48)
00000 VALUE ’097098099100101102103104105106107108109110111112’.
00000 03 FILLER PIC X(48)
00000 VALUE ’113114115116117118119120121122123124125126127128’.
00000 03 FILLER PIC X(48)
00000 VALUE ’129130131132133134135136137138139140141142143144’.
00000 03 FILLER PIC X(48)
00000 VALUE ’145146147148149150151152153154155156157158159160’.
00000 03 FILLER PIC X(48)
00000 VALUE ’161162163164165166167168169170171172173174175176’.
00000 03 FILLER PIC X(48)
00000 VALUE ’177178179180181182183184185186187188189190191192’.
00000 03 FILLER PIC X(48)
00000 VALUE ’193194195196197198199200201202203204205206207208’.
00000 03 FILLER PIC X(48)
00000 VALUE ’209210211212213214215216217218219220221222223224’.
00000 03 FILLER PIC X(48)
00000 VALUE ’225226227228229230231232233234235236237238239240’.
00000 03 FILLER PIC X(48)
00000 VALUE ’241242243244245246247248249250251252253254255256’.
00000 03 FILLER PIC X(48)

196 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

00000 VALUE ’257258259260261262263264265266267268269270271272’.
00000 03 FILLER PIC X(48)
00000 VALUE ’273274275276277278279280281282283284285286287288’.
00000 03 FILLER PIC X(33)
00000 VALUE ’289290291292293294295296297298299’.
00178 01 PRODCODE-TABLE REDEFINES PRODCODES.
00179 03 PRODCODE OCCURS 299 PIC X(03).

Note that the number of product codes covered by eachFILLER differs from 20 in the
original code to 16 in the adapted code. This deviation is implied by the maximum line
length in Cobol. An alternative solution is to use so-called continuation lines, where the
alphanumeric literal is then distributed over multiple lines by using the special continuation
syntax for Cobol with the dash sign (i.e., “-”) in the seventh column.

6.8. Documentation of the changes

Recall that the PRODCODEcontract required a detailed documentation of all changes.
We addressed this requirement during the design of the solution as follows. We assumed
that all changes would be documented by means of source-code annotations including the
category of change. One specific way to accomplish this goal was to label each affected
line of code by a short conversion code (or marking) using the comment margin starting in
column 72 of Cobol files. The annotation starts with a common prefix, namely “PCEXP”
(for Product Code EXPansion). Then, one more character is appended to characterise the
rule that was applied, and yet another character encoded how the rule was applied. In
Fig. 12, we list all codes to be used for annotation. We also illustrate that this discipline of
annotation can then be used easily to extract all affected lines in a program. Similarly, we
obtained the management summary fromSection 5, which lists all changes per category.

Documentation of unchanged patterns. Annotations can also be used to document code
fragments that were considered but were not changed, complete with the justification. We
do this to alert others to suspicious patterns that are likely to trigger false positives. For
instance, when we explored table expansion, we also encountered a table that did not need
expansion because it was not at all concerned with product codes (cf.Section 6.6). This
sort of non-change can be documented as follows:

00187 01 CI-TABLE.
* NO EXPANSION WAS PERFORMED. PCEXPOT
* THIS TABLE DEALS WITH CUSTOMER INFORMATION. PCEXPOT

00188 03 CI-ENTRY OCCURS 99. PCEXPON

TheT in PCEXPOT stands for (text) comments. TheN in PCEXPON stands for “negative” (i.e.,
no change). The marking of the new comment lines ensures that the added comments are
not confused with the primary documentation. These comments help to make explicit that
the problem was spotted, not missed, that it once seemed to be a problem, but it is in fact
not. In particular when others inspect or test an updated system, this type of documentation
turns out to be useful, since it significantly aids in reviewing the completeness of the
solution. It is common practice that testers at the customer site will inspect the code, and try
to check whether cases were missed. Now they can see when they stumble into suspicious
but unchanged parts of the system that we have seen the code, but that no change was
necessary. The lines with text comments explain why no change was necessary.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 197

Fig. 12. The modified programs are annotated usingPCEXP?? margins. All the possible codes are listed in part
(a) of the figure. One can grep for the affected lines as illustrated in part (b) of the figure.

7. Implementation of tools

The described approach to architectural modifications naturally employs tools of the
following kind:

• While simple means of code exploration can be based on tools likegrep, more advanced
tools for program analysis will be ultimately required. These tools involve grammar
knowledge to a certain degree, they employ non-trivial algorithms, heuristics, and data
structures to compute their results.

• The part of the modification project that allows for generic adaptations can be
implemented in terms of automated program transformations. The development of the
transformation tools can often be organised as a continuation of earlier efforts on tool
support for code exploration and program analysis.

• Manual changes require scripting to record them such that they could be replayed.
(In our case, we useded scripts obtained by the-e option of the Unix tooldiff.)
Such scripting turns even manual changes into a basic form of automated program
transformations.

198 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

Fig. 13. Excerpt from theperl script for code exploration and program analysis.

• While this was not relevant for the PRODCODEproject, we have elsewhere encountered
the need to develop interactive components that help in walking through affected
code locations, approving guesses made by the implemented heuristics, and making
selections among possible transformation options.

In principle, tools of the above kind could be developed for use at either the client
site, or the service provider’s site, or both. We recall that all tools in the PRODCODE

project were developed for service purposes. We will now briefly describe the lightweight
implementation of the most prominent tools for analysis and transformation that were
used in the PRODCODE project. Afterwards, we will discuss general technology issues
and options.

7.1. Aperl-based implementation

In the PRODCODE project, we implemented the required analysis and transformation
functionality, as specified in the previous section, in about 1 KLOC ofperl code. The
languageperl [95,96] is perfectly suited to implement lexical tools for analysis and
transformation due to its capabilities for regular expression matching, file handling, and
others. We will now discuss noteworthy aspects of theperl-based implementation. The
purpose of this discussion is not to generally promote the use ofperl for architectural
modifications, but rather to illustrate the characteristics, benefits and limitations of a
lightweight approach. Technology options other thanperl appeared to be more expensive
or more risky for use in the PRODCODEproject at that time.

Analysis functionality. In Fig. 13, a core fragment of theperl script for analysis is
shown. The seed set and the list of all affected patterns is produced by this fragment. The
script operates on a number of data structures and uses auxiliary functions to deliver the
required functionality. It is worth mentioning that this script was initiated during problem
analysis, and was later completed and matured to be useful to provide input for the ultimate
transformation.

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 199

Fig. 14. Excerpt from theperl script for transformation.

We explain the fragment in the figure. In line 1, the$current_line of input is
checked whether it matches a$prodcode_pattern. Recall the conventionsPRODCODE,
PRDCODE, or PC. If the match succeeds, weextend_the_seed_set in line 2. This
function records the$file_name and the $line_number of the $current_line
where the$prodcode_pattern is found. Depending on the location of the matched
$prodcode_pattern, the counter for the relevant division or section is incremented. If
the $prodcode_pattern in the $current_line was found in a$declaration (say,
in the DATA DIVISION), then it is either in theLINKAGE or in theWORKING STORAGE
$section. In line 4 we increment the corresponding counter in$matrix by using the type
of occurrence as an index for the correspondingcolumn. If the $prodcode_pattern did
not match with a line of$declarationcode, the match is consequently in thePROCEDURE
DIVISION. The various statement categories are handled by theelsif in lines 5–15.
Consider the case where the$current_line contains a$prodcode_pattern and aMOVE
or aSET statement (lines 5–8). By using the brackets in the pattern(MOVE| SET) in line 5,
the result of the match, i.e.,MOVE vs.SET is saved in the predefined variable$1. In line 6, we
count this match by incrementing the$matrix according to the verb in the rightcolumn.
Then in line 7, wepropagate the new variable(s). The functionpropagateextends the set
of affected fields. The arguments ofpropagateare listed in lines 7 and 8. These arguments
consist of the$file_name, the$line_number, the$current_line, the matched verb
(stored in the regexp variable$1), plus some line-noise to indicate Cobol syntax that should
be skipped in order to arrive at a new Cobol verb.

The cases forIF statements and others are handled in a similar way in lines 9–12. The
closingelse in line 13 deals with the case where no verb could be determined in the
$current_line. This implies that we were in the middle of a multi-line statement started
with $previous_verb one or more lines ago. In that case, we update the counter using
the$previous_verb in line 14. Storing the current verb (if any) in$previous_verb is
accomplished in line 17–19.

Although theperl approach is a lexical one, some grammar knowledge is encoded in
the implementation. For instance, the list of keywords for recognising the beginning of
statements in line 17 inFig. 13is directly based on the Cobol grammar.

Transformation functionality. Let us also examine a core fragment of the transformation
functionality. The excerpt inFig. 14 illustrates the line-by-line treatment during

200 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

picture-string expansion. The full implementation of the transformation functionality
contains a similar part treating table expansion and literal expansion.

The line-wise process of picture-string expansion relies on data structures that we reuse
from the analysis functionality. In line 1, we check if an$affected variable has been
declared in the line at hand. If this is the case, picture-string expansion is attempted.
A number of sub-phrases of the corresponding declaration are looked up in lines 2–6,
namely the$data_name itself, the starting$picture_position of the picture mask in
the$current_line, the$old_picture string, and the$left_part and$right_part
before and after the picture string. In line 7, the$new_picture string is computed with
the functionmap_string. It takes the$old_picture string, the old length (which is 2)
and the new length (that will be 3) and returns the$new_picture string. Picture-string
expansion is completed by the construction of the$new_line in several steps. In lines
8–9, the$difference between the old and new length of the picture mask is determined
and the$right_part is truncated accordingly. This$difference is normally−1, or
0 when a headingB (for blank) in a picture string can be used to compensate for the
additional digit. In line 10, theold_line including the margins is turned into a comment
line by concatenating various items, namely the$left_margin (columns 1–6), the
comment marking “*” (column 7), the core of the$current_line, the$right_margin
(columns > 72), and a return(\n). In line 11, the$new_line of the resulting Cobol
program is constructed, which is completed by margins and the annotationPCEXPPA in
line 12. We recall that the codePCEXPPA indicates a picture-string expansion; seeFig. 12.

7.2. Technology issues

We will now discuss technology issues of implementing functionality for source-code
analysis and transformation as required in architectural modification projects. Reflecting
on such issues is crucial to determine feasibility of projects and to estimate their costs.
Here is an overview of some prime issues:

• Context-free vs. lexical tools. Grammar-based or context-free technology allows the re-
engineer to express analyses and transformations directly in terms of the syntactical
patterns of the language at hand. By contrast, the discussedperl-based implementation
adopts a lexical approach because it basically operates at the level of regular expressions
that model sequences of tokens or characters.

• Comfort of pattern notation. Users of grammar-based technology can be faced with
different notations for encoding syntactical patterns [75]. One option is to directly
employ concrete syntactical notation. Another option is to use some term format or
tree format or object model. Another dimension of distinction is whether the pattern
language comprises all constructs or only a sublanguage (or an abstract syntax), as the
result of the normalisation.

• Support for pretty printing. Some technologies come readily equipped with a pretty
printer for the relevant language; others do not. Not every transformation technology
strictly requires a pretty printer to produce readable output. Pretty printing can
be pervasive, that is, the result is completely rendered from scratch regardless of
the original indentation. Alternatively, pretty printing can be conservative, that is,
unchanged parts of the input are not pretty printed [39].

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 201

• Syntax retention. Transformations should ideally preserve all comments of the input.
There are further requirements related to comments. Some modification projects require
transforming the comments themselves, or adding comments for documentation. Recall
that we encountered these two additional issues in the PRODCODEproject. Preservation
of comments is just one aspect of syntax retention. We often need to preserve
indentation and other layout, too.

• Domain-specific support. Pattern matching and building with regard to a language syn-
tax is the simplest kind of domain-specific support for analysis and transformation func-
tionality. Other means of domain-specific support include source-code annotation [48,
77], generic traversal [11,12,58], efficient intermediate representations [13], and suites
for disciplined meta-programming.

• Reusable infrastructure. The ultimate technology comes readily packaged with reusable
infrastructure for parsing, pretty printing, preprocessing, data-flow and control-flow
analysis, and others. The development, enhancement, and customisation of such
reusable components is an important factor for the eventual provision of a product line
for architectural modifications.

• Industrial strength. We do not attempt a definition of industrial strength here, but we
observe that industrial modification projects on business-critical systems tend to require
the following technology attributes:
◦ Scalability and robustness: The technology must be fit for portfolios in the millions

LOC range, and for more complex transformation problems.
◦ Reconfigurability and tolerance: Adopting the technology to actual parameters like

the specific language cocktail at hand must be reasonably simple.

We will now discuss some of the more complex issues in depth. Other issues will be
covered later when we consider concrete technology options.

Simplicity of the lexical approach. There are various, widely known tools that allow
for the implementation of lexical tools, e.g.,rexx, lex, perl, awk, andsed. The lexical
approach is not only conceptually simple, but it is also the difference between failure and
success in many cases. There are usually no technical preconditions to embark on the
lexical approach. In particular, there is no need for a parser, or a pretty printer. The lexical
approach naturally preserves the layout of modified software (cf. syntax retention). Lexical
tools can easily operate on source code that involves embedded language constructs or
preprocessing constructs. The lexical approach is not just suited for tools for analysis
and transformation, but also for special-purpose preprocessors and postprocessors that
are needed in many projects. Also, the presentation of newly inserted code (including
comments) can be controlled very accurately. Lexical tools are easily deployed at the client
site if needed since they usually do not rely on any sophisticated technology.

Limitations of the lexical approach. A problem of lexical tools is the imprecise and
unpredictable borderline where these tools stop being effective. Also lexical tools can
easily lead to severely damaged converted systems as discussed in [12, Sec. 8.1]. The
more complex the code patterns get, the more non-proportional effort has to be spent on
recognising and transforming them. For instance, a proper control-flow analysis for Cobol
requires the recognition of the nested statement structure, which includes various specific

202 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

phrases per statement, and several rules about the meaning of delimiters. This analysis is
cumbersome to implement using regular expressions. Another problem is that lexical tools
normally tend to reuse grammar knowledge rather poorly, and that they operate at a low
level of abstraction. This makes maintenance of these tools more difficult.

Rapid parser development enables context-free tools. Tools that are aware of a
language’s syntax are, in principle, better suited for the implementation of functionality
that involves non-trivial patterns. Unfortunately, such tools are also more expensive
to implement. Industrial application of a grammar-based approach requires additional
investments like development of parsers for the languages at hand. Even if a parser is
available, it is often necessary to tweak it on a per-project basis. Just this tweaking can be
more expensive than using a lexical tool and manual work. Language cocktails as they
are used in deployed systems, e.g., Cobol+ Embedded SQL+ CICS transactions+
preprocessing, challenge any parsing technology. New technology to rapidly implement
parsers has the potential to solve the problem of these expensive up-front investments. We
are conducting research in this context [14,46,55,56]. To this end, we combine methods
for grammar recovery, grammar deployment, and others. Parser development will also be
further simplified by improved parsing technology, e.g., by offering convenient idioms for
parser tweaking.

Mix of lexical and context-free tools. Context-free and lexical tools can be used together
in a synergistic manner. In such a combination, context-free tools are used for precise
analyses as opposed to transformations. This allows us to refrain from investing in pretty
printing, layout preservation, and others. Based on the analyses, which include precise
data (like exact row and column information), lexical tools are useful to execute the actual
modifications. Finally, context-free tools can be used again to approve lexically based
modifications, for example, to check that the resulting programs can still be parsed, or that
certain postconditions are met. Lexical tools can also be used in other ways to complement
context-free tools or to compensate for their weaknesses. Namely, lexical tools can be
used to handle preprocessing prior to context-free parsing, and postprocessing to merge the
output of a transformation with the original layout, or to resolve layout or documentation
problems at a lexical level.

Tolerant parsers. Another combination of the lexical and the context-free approach is to
make parsers more tolerant, or less dependent on details of the context-free syntax. This
principle underlies fuzzy parsing [47], island grammars [21,66], and tolerant grammars
which comprise island and skeleton grammars [46]. These approaches focus on the
context-free patterns of interest, while the rest of the input is skipped in a rather lexical
style. Tolerant parser development can also be seen as one vital option for rapid parser
development, which was identified as the bottleneck of context-free tools above. Tolerant
parsers share a problem with lexical tools, i.e., there is a potential of false positives or
false negatives. Therefore, we have introducedskeleton grammars[46]: these grammars
are deduced from a full-blown base-line grammar such that their overall structure and the
constructs of interest are inherited.

Reusable infrastructure. Architectural modification projects face various challenges:
complex cocktails of languages and platforms, imprecise and incomplete requirements

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 203

for changes, fixed pricing, handling of offloading, testing, and others. For such reasons
it is important to establish a suitable methodological basis. When one is faced with
more complex modifications, the methodological basis needs to be complemented by a
technological one. Otherwise the time-line for a precise problem analysis can become
unattractive, and the implementation of modification tools involves unaffordable costs
and risks. A technological basis comprises a reusable infrastructure for the analysis and
transformation of source code; see also [76,82]. Here is a list of components with chances
for reuse including elements of methodology in some cases:

• Preprocessors. COPY books (Cobol) and include files (C/C++) as well as macros need
to be expanded, comment columns (Cobol) need to be removed or scaffolded [48,77].
Extra preprocessing can account for a normalisation to eliminate syntactical variation.
Preprocessing is challenged by requirements for reversibility (during postprocessing).

• Postprocessors. The effects of preprocessing are reversed.
• Parsers. The up-front investment is about recovery and development of base-line

grammars. These grammars then need to be deployed for the parser technology of
choice. We also need processes to rapidly recover or customise grammars and parsers
for new dialects and new embedded languages.

• Pretty printers. Given a grammar of a language, an initial pretty printer can be
generated. A proper investment is about the development of a customised pretty printer.
The pretty print rules should also be reusable for conservative pretty printing of just
those patterns that are affected by problem-specific transformations.

• Name resolvers. All use sites of identifiers are readily connected to declaration sites.
Additional properties can be provided such as the number of use sites, or the storage
space for any field including group fields in Cobol.

• Data-flow analysers. These components serve standard inquiries such as the uses that
are reachable from a definition. Other analysers deal with type-of-usage analysis as
in the PRODCODE project. Further analysers compute data for the implementation of
problem-specific refactoring and slicing tools.

• Control-flow analysers. These components help in performing general-purpose and
problem-specific control-flow restructuring as well as dead-code detection. These
analysers can also be used in projects for wrapping legacy components, for extracting
business rules, and for replacing transaction management and others.

• Low-level tooling. This concerns plug-in technology to extend editors by facilities
for structured editing and interactive transformations. It also concerns infrastructure
for building and testing modification tools. Furthermore, it concerns technology for
component-based modification tools.

There is a tension between implementing ad hoc solutions and investing into reusable
components. Consider, for example, name resolution. To develop a reusable component for
full name resolution just for the PRODCODEproject is economically not justified. This is
based on the size of the project and the relatively small budget for the modification project.
On the other hand, for projects in the multi-million LOC range, investment into building
a reusable component for name resolution is likely to pay off. There is also a tension
between precise components vs. leaving room for heuristics. For instance, type-of-usage
analysis amounts to a precise algorithm for some part, but the attack of pollution problems

204 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

naturally involves heuristics. For instance, in the PRODCODE project, we had to uncover
buffer-like fields on the basis of fuzzy criteria for extra-large types. This implies that
reusable components should be sufficiently parameterised, and that the accommodation
of heuristics should be convenient.

7.3. Technology options

There are various technologies of potential use for architectural modifications: parsing
generators, transformation environments, meta-programming frameworks, program
slicers, and all kinds of generic language technology [10]. We can also categorise in
terms of industrial strength versus home grown systems, or in terms of lightweight or
sophisticated technology, and combinations of all these. In addition to reusing existing
technology, one often ends up implementing ad hoc solutions, at least for parts of
the problem. Listing, categorising, and assessing all technology options and specific
technologies is beyond the scope of this paper, but we discuss a few illustrative experiences
with some technology options.

The PRODCODE benchmark. We will now discuss a few technology options while using
the PRODCODE problem as a basis for assessment. In fact, the PRODCODE problem has
actually served as a kind of internal benchmark not just for us, but also for close colleagues.
The PRODCODEproject is suitable for such a comparative assessment:

• it is a real-world case that is of reasonable size,
• the specification of the entire solution is well documented,
• the original system and the converted one were available as a reference.

The three options that follow take a context-free approach to solving the problem,
as opposed to our lexical implementation. The first option is the ASF+ SDF
Meta-Environment. The second option is Haskell-based transformation technology. The
third option is strategic term rewriting with Stratego.

ASF + SDF Meta-Environment. The ASF+ SDF Meta-Environment [15,44] bundles
generic language technology. Most notably, it provides a couple of formalisms for
executable specifications: SDF (Syntax Definition Formalism) and ASF (Algebraic
Specification Formalism). SDF is a rich syntax formalism which is supported by a
Generalised LR parser generator. ASF can be viewed as a typed programming language
for conditional term rewriting using concrete syntax in the rules. Recall that we used
ASF + SDF rewrite rules for the development of the specification inSection 6. In the
actual project, we developed this specification back to back with the lexical tools for
code exploration, analysis, and modification. The specification only served for a concise
presentation of the solution, and it was not meant as an actual implementation. This status
was implied by the following technology issues. Firstly, at that time we did not have a
Cobol front-end that was immediately fit for parsing the PRODCODEcode. Because of the
size and the time-line of the PRODCODEproject, we had only a few days to complete the
problem analysis. This issue was sufficient to trigger the deployment of lexical tools. Also,
some side conditions would have been more complicated with the version of the ASF+SDF
Meta-Environment that was available at that time. This concerns layout preservation and

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 205

Fig. 15. Picture-string expansion in Haskell (simplified). The top-level functionpic99To999 converts a given
Cobol program while being parameterised in the names of affected fields. The picture-string expansion is encoded
as nestedfold (say, traversal) over the program. The first traversal (seealg1) stops at the level of data-field
declarations. The second traversal (seealg2) stops at thePIC clause, and replaces the picture string. The
traversals are obtained by refining the identity map (cf.idmap) to handle specific patternsf Data desc and
f Pic clause.

documentation of changes. The present status of the ASF+ SDF Meta-Environment and
our infrastructure has improved considerably. Firstly, we have recovered several grammars,
e.g., the IBM VS Cobol II grammar [54], and we improved the process to deploy
parsers [45,49]. Secondly, a simple form of layout preservation is transparently supported
by the ASF+ SDF Meta-Environment [9]. There is also work underway to improve the
reconfigurability of pretty printing. Thirdly, the ASF+ SDF Meta-Environment provides
meanwhile very convenient support for generic traversal, which makes it easy to rewrite
complex parse trees [11,12]. For a newer case study, which demonstrates the current
infrastructure, we refer to [91]. In that paper, the ASF+ SDF Meta-Environment is
employed in a complicated Cobol case study in whichGO TO statements were removed,
and the control-flow was improved in several millions LOC Cobol of different dialects.

Haskell-based language processing. Functional programming languages like SML or
Haskell are quite suitable for implementing functionality for analysis and transformation.
Firstly, the concept of algebraic data types together with term matching and building
is a good fit for the typed manipulation of program representations. Secondly, the
available abstraction mechanisms facilitate concise and reusable implementations of
complex problems. This is illustrated with generic refactorings in [53]. The PRODCODE

project served as a running example for developing an architecture for Haskell-based
transformation systems in [50]. The paper clarifies that by integrating external components
such as industrial-strength parsers and adding support for generic traversal, functional
programming becomes a viable platform for re-engineering; see also [57]. Further
experiences with using functional programming for processing deployed systems are
reported by others in [24]—that time being based on SML and being concerned with
the Y2K problem. InFig. 15, we show the Haskell implementation of the picture-string
expansion. This encoding relies on the traversal generator Tabaluga [50]. One might argue
that pattern matching and construction is not very readable. This is implied by the use
of prefix terms as opposed to concrete syntactical notation. The requirement for layout
preservation was met by operating on an algebraic data type for parse trees with extra

206 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

positions for layout information. These positions are elided inFig. 15. As in the case with
the ASF+ SDF Meta-Environment, documentation of changes had to be left to a separate
postprocessor because the line-wise and column-sensitive style of documentation is not
easily accomplished at the level of parse trees.

Stratego. Stratego [94] is a language supporting strategic rewriting where one can
define concrete rewrite rules, normalisation strategies (such as innermost), and traversal
strategies (such as top-down and bottom-up traversals). Stratego is integrated with the
powerful parsing technology of the ASF+ SDF Meta-Environment. In [97], analysis
and transformation functionality for the PRODCODE project was reconstructed with
Stratego using our specification (as sketched inSection 6) as input. The problem of
layout preservation was attacked in Stratego so-called overlays [93]. This feature supports
term access using alternative signatures; in this case, the alternative signature hides
positions for layout. The original contribution of Stratego is the liberty to easily compose
different traversal schemes. This liberty is not immediately needed for straightforward
modifications, where a small number of fixed traversal strategies appear to be sufficient.
Free-wheeling traversal schemes are eventually of use when implementing advanced and
parametric functionality for analysis and transformation; see [11,53,58] for a discussion.

An open-ended list of options. We adopt the following criteria. Firstly, we only consider
systems that are not tied to a specific source language. Language-specific systems, e.g.,
transformation frameworks for fixed object languages are nevertheless useful for specific
projects, e.g., Siber Systems’ CobolTransformer [80]. Furthermore, we only consider
systems that cover both parsing and transformation as opposed to merely parser generators,
or attribute-grammar systems, which are less convenient for transformation problems.
Finally, we focus on industrial-strength systems using a pragmatic definition: the system
must have been used in several industrial modification projects with a range of different
parameters carried out by the system developers, or preferably also by a licensee of
the system. The following systems meet all these criteria: DMS [79], RainCode [71],
Refine [51], TXL [20]. Front-ends for a number of typical languages for business-critical
software are available for these systems. All the systems at least support manipulation of
source-code representations—normally a rule-based language akin to ASF+ SDF.

This ends our discussion of the PRODCODE project. This discussion comprised the
analysis of the problem, the project economics, the design of the solution, and the
implementation of tools.

8. Concluding remarks

In this paper, we have elaborately discussed the issue of deployed systems hitting their
architectural borders. The malleability of such systems then needs to be revitalised by
architectural modification projects.

We have clarified that architectural modification projects are important: deployed
systems are normally business critical; enabling their change is vital to preserve the
associated assets. We have argued that the need for architectural modifications is a reality
of software evolution. This is because there are always new forms of software asbestos that
unintentionally invade software. We have discussed the project drivers of such modification

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 207

efforts, which need to be understood to successfully complete modification projects. To this
end, we have elaborately discussed one specific project in full detail. We have indicated
that this type of project, when done manually, is a high-risk and high-cost effort. We
have shown how the development of a precise problem specification helps in the course
of software modification projects. To this end, source-code exploration is a vital method.
We have discussed cost estimation and contracting. We have illustrated that the technical
solution of a modification project is typically designed by means of different kinds of rules
and code samples. We have discussed tool implementation and service delivery.

To summarise, we have provided detailed insight in the nuts and bolts of architectural
modification efforts, and we have delivered a road-map for computer-aided life-cycle
enabling for software. Others can use our work or a variant thereof to conduct architectural
modification efforts for their own deployed software systems, when malleability of these
systems is not in alignment with business needs. The success of a large-scale modification
effort is dependent on a systematic problem analysis, on a high degree of automation, and
on the choice of the appropriate technology, but also on getting the system owner involved
in the right way such that managed and automated modification can replace hand-crafted
maintenance.

Acknowledgements

This research has been partially sponsored by the Dutch Ministry of Economic
Affairs via contract SENTER-TSIT3018CALCE: Computer-Aided Life Cycle Enabling of
Software Assets. We are grateful for the very detailed and constructive comments that we
received from the three anonymous referees of the “Science of Computer Programming”
journal. We are also grateful for the opportunity to discuss a real-world project that we
carried out for an anonymous customer.

References

[1] E. Arranga, I. Archbell, J. Bradley, P. Coker, R. Langer, C. Townsend, M. Weathley, In Cobol’s defense,
IEEE Software 17 (2) (2000) 70–72, 75.

[2] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 2nd edition, Addison-Wesley, 2003
(1st edition appeared in 1998).

[3] P.G. Bassett, Framing Software Reuse, Yourdon Press, Prentice-Hall, 1996.
[4] I. Baxter, M. Mehlich, Preprocessor conditional removal by simple partial evaluation, in: P. Aiken, E. Burd,

R. Koschke (Eds.), Proceedings; Working Conference on Reverse Engineering, WCRE, IEEE Computer
Society, 2001, pp. 291–300.

[5] L.A. Belady, M.M. Lehman, A model of large program development, IBM Systems Journal 15 (3) (1976)
225–252.

[6] B. Boehm, Software Engineering Economics, Prentice-Hall, 1981.
[7] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, R. Selby, Cost models for future life cycle

processes: COCOMO 2.0, Annals of Software Engineering 1 (1995) 57–94.
[8] J. Bosch, J. van Gurp, Explicit modelling of architecture design decisions, in: Slides Dagstuhl seminar 03061

Software Architecture: Recovery and Modelling, February, 2003.
[9] M.G.J. van den Brand, J.J. Vinju, Rewriting with layout, in: N. Derschowitz, C. Kirchner (Eds.), Proceedings

of the First International Workshop on Rule-Based Programming, September, 2000.
[10] M.G.J. van den Brand, P. Klint, C. Verhoef, Re-engineering needs generic programming language

technology, ACM SIGPLAN Notices 32 (2) (1997) 54–61.

208 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

[11] M.G.J. van den Brand, P. Klint, J.J. Vinju, Term rewriting with traversal functions, ACM Transactions on
Software Engineering and Methodology 12 (2) (2003).

[12] M.G.J. van den Brand, M.P.A. Sellink, C. Verhoef, Generation of components for software renovation
factories from context-free grammars, Science of Computer Programming 36 (2–3) (2000) 209–266.

[13] M.G.J. van den Brand, H.A. de Jong, P. Klint, P.A. Olivier, Efficient annotated terms, Software—Practice
and Experience 30 (2000) 259–291.

[14] M.G.J. van den Brand, A.S. Klusener, L. Moonen, J.J. Vinju, Generalized parsing and term rewriting:
Semantics driven disambiguation, in: B.R. Bryant, J. Saraiva (Eds.), Proceedings of the Third Workshop
on Language Descriptions, Tools and Applications, LDTA’2003, Electronic Notes in Theoretical Computer
Science, vol. 82, 2003.

[15] M.G.J. van den Brand, J. Heering, H. de Jong, M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P. Olivier, J.
Scheerder, J.J. Vinju, E. Visser, J. Visser, The ASF+ SDF meta-environment: a component-based language
development environment, in: Compiler Construction 2001 (CC 2001), LNCS, Springer, 2001.

[16] P.J. Brown, Macroprocessors and Techniques for Portable Software, John Wiley and Sons, 1974.
[17] G.D. Brown, Cool compiler directing statements in the new standard. CobolReport.com, June, 2000,

http://www.cobolreport.com/columnists/gary/06122000.htm.
[18] G.D. Brown, Typing data in the new COBOL standard. CobolReport.com, February, 2001,

http://cobolreport.com/columnists/gary/02262001.htm.
[19] Y. Chae, S. Rogers, Successful COBOL Upgrades: Highlights and Programming Techniques, John Wiley

and Sons, 1999.
[20] J.R. Cordy, C.D. Halpern-Hamu, E. Promislow, TXL: A rapid prototyping system for programming

language dialects, Computer Languages 16 (1) (1991) 97–107.
[21] A. van Deursen, T. Kuipers, Building documentation generators, in: H. Yang, L. White (Eds.), Proceedings;

IEEE International Conference on Software Maintenance, ICSM, IEEE Computer Society Press, 1999,
pp. 40–49.

[22] A. van Deursen, L. Moonen, Type inference for COBOL systems, in: I. Baxter, A. Quilici, C. Verhoef (Eds.),
Proceedings; Working Conference on Reverse Engineering, WCRE, IEEE Computer Society Press, 1998,
pp. 220–230.

[23] J. Dueñas, W. Lopes de Oliveira, J. de la Puente, Architecture recovery for software evolution, in: P. Nesi,
F. Lehner (Eds.), Proceedings: 2nd Euromicro Conference on Software Maintenance and Reengineering,
IEEE Computer Society Press, 1998, pp. 113–120.

[24] P.H. Eidorff, F. Henglein, C. Mossin, H. Niss, M.H. Sørensen, M. Tofte, AnnoDomini: from type theory to
Year 2000 conversion tool, in: ACM99 [70], pp. 1–14.

[25] D. Faust, C. Verhoef, Software product line migration and deployment, Software: Practice & Experience 33
(2003) 933–955.

[26] J.M. Favre, The CPP paradox, in: Proceedings of the 9th European Workshop on Software Maintenance,
DURHAM’95, 1995.

[27] J.M. Favre, Preprocessors from an abstract point of view, in: S.A. Bohner, A. Cimitile (Eds.),
Proceedings; IEEE International Conference on Software Maintenance, ICSM, IEEE Computer Society
Press, Washington, 1996, pp. 329–339.

[28] G. Florijn, C. Baars, Experiences with architecture (in Dutch: Ervaringen met architectuur), May, 2003,
CIBI–CERC seminar, Utrecht, The Netherlands,
http://www.cibit.nl/site.nsf/p/Nieuws-Seminars-Architectuur-13mei - Ev%ent’Ervaringenmet Architectuur.

[29] M. Fowler, When to make a type, IEEE Software (2003) 12–13.
[30] M. Fowler, Who needs an architect? IEEE Software (2003) 11–13.
[31] M. Fowler, Platform independent malapropism, September, 2003, M. Fowler’s Bliki,

http://www.martinfowler.com/bliki/PlatformIndependentMalapropism.html.
[32] B. Hall, Year 2000 tools and services, in: Symposium/ITxpo 96, The IT Revolution Continues: Managing

Diversity in the 21st Century, GartnerGroup, 1996.
[33] D.R. Harris, H.B. Reubenstein, A.S. Yeh, Reverse engineering to the architectural level, in: D. Perry (Ed.),

Proceedings of the 17th Proc. International Conference on Software Engineering, IEEE Computer Society
Press, 1995.

[34] Information technology—Programming languages, their environments and system interfaces—
Programming language COBOL, Standard, ISO/IEC FCD 1989:2002.

http://www.cobolreport.com/columnists/gary/06122000.htm
http://cobolreport.com/columnists/gary/02262001.htm
http://www.cibit.nl/site.nsf/p/Nieuws-Seminars-Architectuur-13_mei_-_Ev%ent_'Ervaringen_met_Architectuur_
http://www.martinfowler.com/bliki/PlatformIndependentMalapropism.html

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 209

[35] C. Jones, Applied Software Measurement: Assuring Productivity and Quality, 2nd edition, McGraw-Hill,
1996.

[36] C. Jones, The Year 2000 Software Problem—Quantifying the Costs and Assessing the Consequences,
Addison-Wesley, 1998.

[37] N. Jones, Year 2000 market overview, Technical Report, GartnerGroup, Stamford, CT, USA, 1998.
[38] C. Jones, Software Assessments, Benchmarks, and Best Practices, Addison-Wesley, 2000.
[39] M. de Jonge, Pretty-printing for software reengineering, in: G. Antoniol, I. Baxter (Eds.), Proceedings;

IEEE International Conference on Software Maintenance, ICSM, IEEE Computer Society Press, 2002,
pp. 550–559.

[40] T.W. Keller, Change costing in a maintenance environment, in: S.A. Bohner, A. Cimitile (Eds.),
Proceedings; IEEE International Conference on Software Maintenance, ICSM, IEEE Computer Society,
1996 (In lecture notes accompanying the keynote address).

[41] B.W. Kernighan, D.M. Ritchie, The C Programming Language, Prentice-Hall, 1978.
[42] W.M. Klein, OldBOL to NewBOL: A COBOL Migration Tutorial for IBM, Merant Publishing, 1998.
[43] A. Kleppe, J. Warmer, W. Bast, MDA Explained: The Model Driven Architecture: Practice and Promise,

Addison Wesley, 2003, p. 192.
[44] P. Klint, A meta-environment for generating programming environments, ACM Transactions on Software

Engineering and Methodology 2 (2) (1993) 176–201.
[45] P. Klint, R. Lämmel, C. Verhoef, 2003. Towards an engineering discipline for grammarware,

http://www.cs.vu.nl/grammarware/(submitted for publication).
[46] A.S. Klusener, R. L¨ammel, Deriving tolerant grammars from a base-line grammar, in: S. Lawrence Pfleeger,

C. Verhoef (Eds.), Proceedings; IEEE International Conference on Software Maintenance, ICSM, IEEE
Computer Society, 2003, pp. 179–188.

[47] R. Koppler, A systematic approach to fuzzy parsing, Software Practice and Experience 27 (6) (1997)
637–649.

[48] J. Kort, R. Lämmel, Parse-tree annotations meet re-engineering concerns, in: Proc. Source Code Analysis
and Manipulation, SCAM’03, IEEE Computer Society Press, 2003, pp. 161–172.

[49] J. Kort, R. Lämmel, C. Verhoef, The grammar deployment kit, in: M.G.J. van den Brand, R. L¨ammel (Eds.),
Proc. Language Descriptions, Tools, and Applications, LDTA’02, ENTCS, vol. 65, Elsevier Science, 2002,
p. 7.

[50] J. Kort, R. Lämmel, J. Visser, Functional transformation systems, in: 9th International Workshop on
Functional and Logic Programming, Benicassim, Spain, July 2000, Technical University of Valencia,
Publication 2000/2039, Valencia, UPV University Press, 2000 (September).

[51] G. Kotik, L. Markosian, Application of REFINE language tools to software quality assurance, in: Proc. of
the 9th Knowledge-Based Software Engineering Conference, KBSE’94, Monterey, CA, 1994, p. 4.

[52] R. Lämmel, Object-oriented COBOL: concepts & implementation, in: Jon Wessler (Ed.), COBOL
Unleashed, Macmillan Computer Publishing, 1998, p. 44.

[53] R. Lämmel, Towards generic refactoring, in: Proc. ACM SIGPLAN Workshop on Rule-based Programming,
ACM Press, 2002, pp. 15–28.

[54] R. Lämmel, C. Verhoef, VS COBOL II grammar Version 1.0.3, 1999,
http://www.cs.vu.nl/grammars/browsable/vs-cobol-ii/.

[55] R. Lämmel, C. Verhoef, Cracking the 500-language problem, IEEE Software (2001) 78–88.
[56] R. Lämmel, C. Verhoef, Semi-automatic grammar recovery, Software—Practice & Experience 31 (15)

(2001) 1395–1438.
[57] R. Lämmel, J. Visser, A Strafunski application letter, in: V. Dahl, P. Wadler (Eds.), Proc. of Practical Aspects

of Declarative Programming, PADL’03, LNCS, vol. 2562, Springer-Verlag, 2003, pp. 357–375.
[58] R. Lämmel, E. Visser, J. Visser, 2004, The essence of strategic programming, Draft,

http://www.cwi.nl/∼ralf/.
[59] M.M. Lehman, Laws of program evolution—rules and tools for programming management, in: Proceedings

of the Infotech State of the Art Conference, Why Software Projects Fail, Pergammon Press, 1978,
pp. 11/1–11/25.

[60] M.M. Lehman, Laws of software evolution revisited, in: C. Montangero (Ed.), Software Process
Technology, EWSPT 96, LMCS, vol. 1149, Springer-Verlag, Nancy, France, 1996, pp. 108–124.

http://www.cs.vu.nl/grammarware/
http://www.cs.vu.nl/grammars/browsable/vs-cobol-ii/
http://www.cwi.nl/~ralf/

210 A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211

[61] P. Livadas, D. Small, Understanding code containing preprocessor constructs, in: Third International
Workshop on Program Comprehension, IEEE Computer Society Press, 1994, pp. 89–97.

[62] M.W. Maier, E. Rechtin, The Art of Systems Architecting, 2nd edition, CRC Press, 2000.
[63] B. Manachem, Software quality, producing practical and consistent software, Technical Report,

GartnerGroup, Stamford, CT, USA, 1997.
[64] S. McConnell, Code Complete, Microsoft Press, 1993.
[65] S. McConnell, Rapid Development, Microsoft Press, 1996.
[66] L. Moonen, Generating robust parsers using island grammars, in: P. Aiken, E. Burd, R. Koschke (Eds.),

Proceedings; Working Conference on Reverse Engineering, WCRE, IEEE Computer Society Press, 2001,
pp. 13–22.

[67] OMG Model Driven Architecture, 2003.http://www.omg.org/mda/.
[68] R. van Ommering, Principle software architect, Philips Research Eindhoven, the Netherlands, May, 2001

(personal communication).
[69] Ovum Ltd, Report on the Status of Programming Languages in Europe, Ovum Report, London, 1997.
[70] Proceedings of the 26th ACM SIGPLAN-SIGACT on Principles of programming languages, POPL’99,

January 20–22, 1999, San Antonio, TX, ACM SIGPLAN Notices, ACM Press, New York, USA, 1999.
[71] Rain Code Company, RainCode Engine, 2004.http://www.raincode.com/engine.html.
[72] G. Ramalingam, J. Field, F. Tip, Aggregate structure identification and its application to program analysis,

in: ACM99 [70], pp. 119–132.
[73] A. Robbins, UNIX in a Nutshell: System V Edition, 3rd edition, O’Reilly & Associates Inc., 1999.
[74] D. Schricker, Data pointers, CobolReport.com, 2000,http://cobolreport.com/columnists/don/08142000.htm.
[75] M.P.A. Sellink, C. Verhoef, Native patterns, in: M. Blaha, A. Quilici, C. Verhoef (Eds.), Proceedings;

Working Conference on Reverse Engineering, WCRE, IEEE Computer Society Press, 1998, pp. 89–103.
[76] M.P.A. Sellink, C. Verhoef, An architecture for automated software maintenance, in: D. Smith, S.G. Woods

(Eds.), Proceedings of the Seventh International Workshop on Program Comprehension, IEEE Computer
Society Press, 1999, pp. 38–48.

[77] M.P.A. Sellink, C. Verhoef, Scaffolding for software renovation, in: J. Ebert, C. Verhoef (Eds.), Proc.
Conference on Software Maintenance and Reengineering, CSMR’00, IEEE Computer Society Press, 2000,
pp. 161–172.

[78] M.P.A. Sellink, H.M. Sneed, C. Verhoef, Restructuring of COBOL/CICS legacy systems, in: P. Nesi,
C. Verhoef (Eds.), Proceedings of the Third European Conference on Maintenance and Reengineering,
IEEE Computer Society Press, 1999, pp. 72–82.

[79] Semantic Designs Incorporated, The DMS Software Reengineering Toolkit, 2004,
http://www.semdesigns.com/Products/DMS/DMSToolkit.html.

[80] Siber Systems Inc., CobolTransformer—Peek Under the Hood: Technical White Paper, 1997,
http://www.siber.com/sct/tech-paper.html.

[81] Siber Systems Inc., MF, IBM, I-Cobol To Fujitsu Cobol Converters, 2004,
http://www.siber.com/sct/tools/2fsc.html.

[82] H.M. Sneed, Architecture and functions of a commercial software reengineering workbench, in: P. Nesi,
F. Lehner (Eds.), Proc. 2nd Euromicro Conference on Software Maintenance and Reengineering, IEEE
Computer Society Press, 1998, pp. 2–10.

[83] H.M. Sneed, Objektorientierte Softwaremigration, Addison-Wesley, 1998 (in German).
[84] H.M. Sneed, Risks involved in reengineering projects, in: F. Balmas, M. Blaha, S. Rugaber (Eds.),

Proceedings; Working Conference on Reverse Engineering, WCRE, IEEE Computer Society Press, 1999,
pp. 204–211.

[85] Software Engineering Institute, Carnegie Mellon University, How Do You Define Software Architecture?
2004,http://www.sei.cmu.edu/architecture/definitions.html.

[86] S. Some, T. Lethbridge, Parsing minimization when extracting information from code in the presence of
conditional compilation, in: Sixth International Workshop on Program Comprehension, IEEE Computer
Society Press, 1998, pp. 118–125.

[87] H. Spencer, G. Collyer, #ifdef considered harmful, or portability experience with C news, in: USENIX
Conference, 1992.

[88] T. Spitta, F. Werner, Die Wiederverwendung von Daten in SAP R/3, Information Management & Consulting
(IM) 15 (2000) 51–56 (in German).

http://www.omg.org/mda/
http://www.raincode.com/engine.html
http://cobolreport.com/columnists/don/08142000.htm
http://www.semdesigns.com/Products/DMS/DMSToolkit.html
http://www.siber.com/sct/tech-paper.html
http://www.siber.com/sct/tools/2fsc.html
http://www.sei.cmu.edu/architecture/definitions.html

A.S. Klusener et al. / Science of Computer Programming 54 (2005) 143–211 211

[89] A.A. Terekhov, Recovery and improvement of a software architecture: a case study, February, 2003, Slides
Dagstuhl seminar 03061 Software Architecture: Recovery and Modelling.

[90] A.A. Terekhov, C. Verhoef, The realities of language conversions, IEEE Software 17 (6) (2000) 111–124.
[91] N.P. Veerman, Revitalizing modifiability of legacy assets, Journal of Software Maintenance and Evolution

(Special Issue on CSMR 2003) 16 (4–5) (2004) 219–254.
[92] C. Verhoef, Quantitative IT portfolio management, Science of Computer Programming 45 (1) (2002) 1–96.
[93] E. Visser, Strategic pattern matching, in: P. Narendran, M. Rusinowitch (Eds.), Rewriting Techniques and

Applications, RTA’99, Trento, Italy, July, 1999, LNCS, vol. 1631, Springer-Verlag, 1999, pp. 30–44.
[94] E. Visser, Z.-A. Benaissa, A. Tolmach, Building program optimizers with rewriting strategies,

in: International Conference on Functional Programming, ICFP’98, Baltimore, Maryland, September 1998,
ACM SIGPLAN, 1998, pp. 13–26.

[95] L. Wall, R.L. Schwartz, Programming Perl, O’Reilly & Associates Inc., 1991.
[96] L. Wall, T. Christiansen, R.L. Schwartz, Programming Perl, 2nd edition, O’Reilly & Associates Inc., 1996.
[97] H. Westra, CobolX: transformations for improving COBOL programs, in: Proc. Second Stratego User’s

Day, 2001, Technical Report, Utrecht University.
[98] R. Widmer, COBOL Migration Planning, Edge Information Group, 1998.

	Architectural modifications to deployed software
	Introduction
	A real-world modification example
	Characteristics of a suitable project
	Introduction to the PRODCODE project
	Technical challenges
	Project drivers

	Software asbestos
	In Cobol's defense
	Universal inevitability of asbestos
	The future of contaminated systems
	A definition of software architecture

	Analysis of modification problems
	The process for problem analysis
	The initial problem statement
	Identification of undue assumptions
	Identification of usage patterns
	Encountered subtleties
	Dissolved complications
	Convergence of analysis

	Project economics
	Cost estimation and contract signature
	Management summary
	The cost and risk dimensions

	Design of the solution
	The top-level specification
	Identification of affected fields
	Picture-string expansion
	Maximum expansion
	Literal expansion
	Table expansion
	Specific changes that remained
	Documentation of the changes

	Implementation of tools
	A perl-based implementation
	Technology issues
	Technology options

	Concluding remarks
	Acknowledgements
	References

