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Abstract 

Assume that independent data Xl, . . ,X;,,, are observed sequentially in time, where 
k(n) < 00 is a finite horizon. Suppose also that there exists 0 E (0, 1) such that X7, . , Xyk(nJBI 
have distribution vi,” and XFkCn)B1+ 1, ,X&, have distribution v2,“. The distributions and the 
changepoint f3 are unknown. Our aim is to react as soon as possible after the change has taken 
place. We propose a nonparametric stopping rule which attains a given probability of “false 

alarm” on the one hand and, on the other hand, is less than or equal to k(n)0 + O(m) with 
probability one. 

Key words: Sequential detection of a changepoint; Weak convergence of two-parameter 
stochastic processes; Martingale maximal-inequalities 

0. Introduction and main results 

We consider a triangular array Xl, . . . , Xi,,,, k(n) E N, of independent random 

variables defined on a probability space (Q, JZZ, P), with values in a measurable space 

(X, g). Suppose there is a 8 E (0, 11, such that Xl, . . . ,X;kCn)B1 have distribution vl,” 

and X$(,,)B~+ 1, . . . , XW have distribution ~a,~ # v~,~. The distributions as well as the 

changepoint 0 are not known. Assume that the random variables Xl, i = 1, . , k(n), 

are observed sequentially. We are looking for a stopping rule satisfying: 

(a) the probability to stop before [k(n)01 (false alarm) should be controlled, 

(b) the procedure should react as soon as possible after the changepoint has occurred. 

In Bhattacharya and Frierson (1981) an example is given touching a typical 

problem of quality control: a machine produces items and as long as the production is 

correct, we do not want to interrupt the process. The machine is assumed to be 

adjusted at regular times. Within two successive adjustments we therefore take 

random samples. Denote by Xl the value of the ith random sample after the nth 

adjustment. Then our model describes the situation in a suitable manner. 
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Problems of fastest detection of the point where the stochastic mechanism of 

a random process changes have been extensively studied in literature. Many contribu- 

tions to that subject require a certain amount of prior informations on the underlying 

distributions, e.g. when using the so-called Shewhart (1931) control charts one must be 

sure that the observed data come from a normal population. In opposite to this and 

other parametric approaches Page’s (1954) cumulative sums (CUSUM) method is 

applicable in all cases where certain expectations have different signs. Lorden (1971) 

even proved optimality of the CUSUM procedure. However, the optimal method 

involves the densities of the data before the change and thereafter. But in practise 

typically such specific knowledge is not available and even some parametric assump- 

tions cannot be justified. In these situations of minimal prior information one must 

rely on nonparametric methods. For instance, Bhattacharya and Frierson (1981) 

initiated the use of sequential ranks for detecting small disorders in a random sample 

that comes from a continuous distribution. C&-g6 and Horvath (1987) introduced the 

weighted empirical distribution functions pertaining to these sequential ranks. Based 

on them they propose a sequential procedure for detecting a possible changepoint in 

a random sequence of continuous observations. There the probability of false alarm is 

fixed, whereas in the case of a change the process is stopped with probability one in 

a specified length of time. Recently, Brodskii and Darhovskii (1991) made a compara- 

tive analysis of several nonparametric methods embracing the CUSUM procedure of 

Page (1954), the Girshick-Rubin-Shiryaev algorithm (cf. Girshick and Rubin (1952), 

Shiryaev (1973)), the Shewhart (1931) method, the method of Darhovskii and Brodskii 

(1987) and the so-called exponential smoothing method. Here it should be mentioned 

that they replace the usual assumptions of independence by a weaker strong mixing 

condition. 

Recall our example at the beginning. If the sampling costs are low, we dispose of 

a large number k(n) of observations per row. Hence assume that k(n) + co, as 

n -+ co. Without loss of generality (w.1.o.g.) we may consider the case k(n) = II. We 

propose the following class of stopping times: 

r, r,,(c) = inf na I k _< n: ke3” 

if(...)#Q?landt,=n+lotherwise. 

Here, K: X x X -+ R is a @ @ .%Y-measurable mapping (kernel), that is bounded and 

antisymmetric. The quantity a E (O,e) is assumed to be known and c is a positive 

constant, which will be determined later. Concerning the quantity a, note that in our 

example, after each adjustment, it is realistic to assume that the production process is 

correct at least a certain number of time units. The motivation for the procedure is 

quite obvious: until time [na] we know that no change has taken plac’e. But after that 

time we start testing the hypothesis, whether our data come from the same distribu- 

tion or not. We use a test statistic of Ferger (1991). As long as the test does not reject 

the hypothesis, it is reasonable to go on sampling. In Theorem 2.2 below we determine 

the critical value c = C(N) such that the error of false alarm, for each 0 E [a, 11, does 
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not exceed a given value 0 < c1< 1 at least asymptotically, i.e. 

lim PJr,(c) I [no]) I u Vf3 E [a, 1). 
n-co 

As already been mentioned, we also want to stop as soon as possible after the 

change has taken place. As to this, we will show that (cf. Theorem 2.4) 

lim lPB(rn 5 nf3 + C,&) = 1 V6 E [a, 11, 
n-rm 

where Co is a positive constant. Finally, we will prove that (cf. Theorem 2.3) 

lim n- lEt(z,) 2 1 - a(1 - a). 
n+m 

This means, in case there is no change, we will in the mean stop the process actually 

very late. In chapter three a simulation study will be reported on in which our 

theoretical results will be made clear visually. 

Set 

[nul [[nultl 

C,(u, t):= [nu]-“‘2 c c K(K,Xj”) 
i=[[nu]tl+ 1 j= 1 

for (u, t) E [a, 1) x [CO, l] and put 

Then S, is a step function on [a, l] with jumps at the points u = kn-I, nu I k I n, 

and corresponding values S,( kn- ‘). Observe that 

= kM312 max 

lslsk-1 i=l+l j=l 

We see that 

1% s Cal = {S” exceeds the boundary c in [u,B]) 

so that the probability of false alarm is closely related to a boundary-crossing 

probability of S,. We shall first show that the l, as random elements in the space 

D( [ a, 0-j x [ 0, 11) converge in distribution. 
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1. An invariance principle for the stochastic processes <,, 

Introduce the stochastic process 

Z(4 t):= [?I U<,(u, t)I x:1 = [?I V”,d% t), a<u<e, O_<t_<l, 
I=1 I=1 

where 

Vn,d% t) = 
i 

Cnu]-3’2([nu] - [[nu]t])R”OX;, 1 5 1 I [[nu]t], 

- [ nu] - 3’2 [ [nu] t] R,p Xi’, [Cnu]t] < 1 I [nu] 

and 

R(Y) = 
s 

K(x> y)vl,n(dx). 

Now, as a first step, we show that the two processes t, and g,, are asymptotically 

stochastically equivalent. 

Lemma 1.1. If0 < a I 6, then 

Before proving Lemma 1.1, we provide two maximal inequalities. 

Lemma 1.2. Let Z,, . . . , Z, be iid. random variables with values in a measurable space 
(X, G?) and distribution v. Let H be a kernel satisfying: 

h(y) = J H(x, y)v (dx) = 0 for v-almost all y E X, (1.1) 

h”(x) = j H(x, y)v(dy) = 0 for v-almost all x E X, (1.2) 

c2= EH2(Z1,Z2)< co. (1.3) 

Then for all E > 0 

H(Zi, Zj) > E _< 202E-2n2. 

l+lrj<irk I 1 
Proof. Denote 

Uk.1 = 2 H(Zit Zj). 

I+lsj<isk 

Then 

max max 2 
l~k<nO~f~k I+l~j<i~k 

H(Zi,Z,)I>&]=$(~~W”S,>r’), 

where Sk=maxoslskU$l. Now, put Fk=b(Z1 ,..., zk), l<k<n and 

F-0 := {S,52). 
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Observe that using (1.1) we obtain 

E[Uk+r,llP-k] = U,‘,i VO < Is k. 

So, by Jensen’s inequality 

EC&+1 IFilk 2 ~[~;+~~l~-kl 2 ~2U’~+~,A~;kl = U,‘,, VO I 2 I k 

which implies that 

In other words, (S,, gk)O s k 5n is a sub-martingale. From Doob’s inequality 

(cf. Chow and Teicher (1978), Theorem 8, p. 2431) we infer that 

Use(l.2)toprovethat(U,,1,~~)I=.-1,..,owith~~=a(Z,+1, . . ..Z.)isamartingale 
(in reverse time). Hence (( U,,l(, YJI =“- 1, .,. ,. is a nonnegative submartingale. Thus 

Doob ensures 

E ( o syzlf_l I utt, 1 I2 
> 

i 4EI Un,O I2 = 4 1 EH'(Zi, Zj) < 2na2 
lsj<isn 

by (l.l)-(1.3). This proves the lemma. 0 

The following lemma has already been proved by Ferger (1994) Lemma 3.1. 

Lemma 1.3. Under the assumptions of Lemma 1.2, for all E > 0 

C H(Zi,Zj) >E I$cT~F-~II~. 
l<j<isI I 1 

Proof of Lemma 1.1. We have 

[nul Irnul~l 

5n(u, t) - rncu, t) = cnu1- 3’2 1 c [K(xy,xjn) - R,oX? + R,oX1], 
i=[[nu]fl+ 1 j= 1 

where MY) = JK(x, ~bl,, (dx). So, if we put H,(x, y) = K(x, y) - R,(y) + R,(x), 

we can conclude that 

Inul [[null1 

= sup sup [nu]-3’2 
ll<Ul@O<Z<l 

c 1 HiAX:, X;) 
i=[[nu]t]+ 1 j= 1 

= max max km312 
nasksnfl Oslsk 

i: i H,(X’, X:) 
i=l+l j=l 
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5 a-W2 ,-312 

Because of 

i i H,(X;,X;) = c H,(X1, X7) 
i=l+l j=l l<j<isk 

- 1 H,(X’, XY) 

lgj<i_<l 

we obtain with CO = u-3’2 that 

- c Hn(X’, X;) 
l+lsj<isk 

5 Con-312 max C 
1~~s’ Ij<i<k 

H,(X’, X;) 

+ Con-312 max max 1 H,(X, X;) 
lskrn OSl<k lrjcisl 

+ Con-3’2 max max 1 
1 <ksn OSlsk I+1 sj<isk 

H,(X1, X;) 

5 2Con-3’2 max c H,(X, XT) 
151Sn l<j<i<l 

+ Con-312 max max c 
lsksn OSlSk I+llj<isk 

K(X, X7) , 

since 

max max 
lsksn Oclsk 

c 
lsj<isl 

H,(X’, X7) = orn-i:, 
I I 

1 W-C, X7) . 
1 sj<irl 

Now, by Lemma 1.3, it follows that 

2Con-3’2 max C 
1 SlS#l 

H,(X;, XJ) > +E _< Cl~-2n-‘, 
Isjiirl 1 1 

where Cl is a constant not depending on n. Moreover, an application of Lemma 1.2 

yields 

P Con-312 max max 
C 

1 
l~kcn Octsk l+lsj<isk 

H,(Xf,Xj”) > $8 < C2E-‘n-‘, 
I I 

where C2 is a constant not depending on n. This proves the lemma. q 
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Lemma 1.4. The sequence of processes (&),, 1 is asymptotically C-tight, i.e. for all 

&>O 

(1.4) 

and 

[,(a, 0) is bounded in probability. (1.5) 

Proof. Since &(a, 0) = 0 VW E Q Vn 2 1, (1.5) is trivially fulfilled. It remains to show 

(1.4). Set 

uq=q6, O(q<Kl (wherew.l.o.g.6-‘EN) 

and 

U, = a + r6, 0 I r I [(6’- a)F’] and ~~~~~~~~~~~~~ = 8. 

Moreover, put 

s~s~~s~~~=u~-~+~~~-‘, O<k<m 

t=t,~ttlm,‘=Vq_l+16m-‘, O<t<m. 

Following Billingsley’s (1968) arguments on p. 56 in the one-dimensional case one 

can prove that it is enough to show: t/s,)?>0 30~6~ 1 such that 

Vl _<r I [(e-a)6-*] + 1 andV1 <q <X1 3no = no(r,q,6),m,, = mo(r,q,6)EN 
so that 

P 
[ 

SUP 
Ock,l~m 

I~~($‘!, t$ - &(zA-~, v,-~)[ >E _< 6’~ Vm 2 ma Vn 2 no. (1.6) 1 
Now, we fix r and q and note that 

IEn(S, t, - fn(K VII = ‘$I yIn,i(& t, - ‘5’ V*,i(k u, 
i=l i=l 

[nsl 

1 I 

InsI 

SZ iTI CVn,i(S, t, - Vn,i(% v)l + i=Iz+l yIn,i(% u) 

It follows, that the left-hand side of (1.6) is less than or equal to 

P 
I 1 

> 3& 

[W4 
+P c Vn,i(% VI > 38 . 

i = [nu] + 1 I I 

(1.7) 
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The first summand in (1.7) is less than or equal to 

+P 
I 1 ’ iE . (1.8) 

Notice that 

- [n~-J-~‘~([nu] - [[nu]v])}R,~X; 

Furthermore, one can show upon applying the Mean Value Theorem that 

I{~~.}IIc,n- _ 1’2b VO < k, 1 I m, if n 2 no(a), where Co is a constant. Thus the first 

summand in (1.8) is less than or equal to 

by an application of Hoeffding’s (1963) inequality. Similarly we obtain that the third 

summand in (1.8) is less than or equal to 

utilizing Levy’s inequality [cf. Billingsley (1968), p. 691 and then Hoeffding’s (1963) 

inequality. Since, 

= ([n~~]-~‘~([ns~] - [[nsk]tr] + [nu]-3’2[[n~]u]}R,~X~ 

and I{ ... >I I Czn- u2 V 0 < k I 4 m, the second summand of (1.8) is less than or _ , 
equal to 

bw‘l~tl 

C2n-“’ sup C R,,oXy >&E 
O~k,l~m i=[[nu]v]+l I 1 
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as a consequence of L&y’s and Hoeffding’s inequality, respectively. The second 

summand of (1.7) is less than or equal to 

upon arguing as above. The lemma is proved. 0 

Lemma 1.5. If K is a bounded, antisymmetric kernel and s2(n) = 

J[SK(x, ybdd_x)12v~,, (dy) converges to some quantity 02, then thefinite dimensional 

distributions of 5, converge to those of a centered Gaussian process < = (<(u, t): 

a < u 5 0, 0 < t 5 1 } with covariance function 

cov CC(u1, t1k 5(u2, t2)] = ~2(U1UJ1’2[U~tl(l - t1)(1 - t2) 

- (u2t2 - u,t1)t,(l - b) + (VI - %t2)tlt21. (1.9) 

wheneverul~u2,tl~t2andt2~uIu~1.1ft2>u1u~1 we obtain a similar expression. 

The proof of this lemma is a routine application of the CLT for triangular arrays in 

W’,p E N. Observe that for each fixed u E [a, 01, Cov(S(u, tl), ((u, tz)) = 02tI(l - t2). 

It follows that (Y ’ 5( u, t): 0 I t I 1 > is a Brownian Bridge for each fixed u. Now, the 

following theorem is a consequence of the Lemmata 1.1, 1.4 and 1.5 [cf. Neuhaus 

(1971)]. 

Theorem 1.6. Let (37, BI) be a measurable space. Assume that K is a bounded, antisym- 

metric kernel. Also, let s2(n) converge to some o2 as n + a3. Then 5, converges in 
distribution of 5, where 4 is a centered Gaussian process with a.s. continuous paths and 
covariance-function (1.9). 

2. The reacting procedure and its asymptotic properties 

Notice that, up to the (in general unknown) constant g2, the distribution of the limit 

process 5 does not depend on (v~,,),,, and K. For this reason we estimate 02. Put 

h(x,y,z) = K(x,z)K(y,z) 

and 

hs(x,y,z) =; 1 h(u,v,w), 
(U,~,W)EP3 

where P, is the set of all permutations of (x, y, z). Define 

C,’ = o,‘(a) = 
[na] -’ 

1 I) 3 c h,(Xy, X7, X;). 
15i<j<l5na 

Following the proof of Lemma 2.13 of Ferger (1991) we obtain the following Lemma. 
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Lemma 2.1. Let X be a separable metric space and let K be a bounded and continuous 

kernel. If vI,” converges weakly to some vl, then with probability one 

CT,” = a,‘(a) + CT’ = ~[jK(x,y)~~(dx)]~v~(dy) as n-+ CC. 

Now, by Lemma 2.1, Theorem 1.6 and a Cramer-Slutzky argument it follows that 

the processes [,, = a; ’ 5, converge in distribution to a process [, whose distribution is 

invariant with respect to the underlying distributions (v~,,),,~ and the kernel K. 

Therefore we consider the modified stopping rule 

na I k _< n: o;1k-3’2 . 

Theorem 2.2. Let X be a separable metric space, K a bounded, continuous and 

anti-symmetric kernel and c = c(a) the (1 - a)-quantile of 

SUP sup li(u, t)l. 
a~u<lo<t~l 

If VI,” converges weakly to some vl, then 

limP,(?,I[nB])Ia Va<O(l. 
“‘oO 

Proof. Similar as before we have 

From the Continuous Mapping Theorem we can conclude 

By the Corollary to Theorem 2 of Lifshits (1982) it follows that 

Recall that the distribution of supas” s I sup0 5fC 1 /[(u, t)/ does not depend on 

(VI.n)nsN and K, so we can estimate c via Monte-Carlo simulation. Moreover, since 

for each fixed u E [a, 11, where B” denotes a Brownian Bridge, we can conclude that 

c(a) 2 x( 1 - E) where x( 1 - a) is the (1 - a)-quantile of the Kolmogorov-Smirnov 
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distribution. It is not hard to see that C(U) = c(a, a) converges to x( 1 - a) as a tends to 

one. So, if a is close to one, c(a) is approximated by x( 1 - a). 

Next, we investigate 7, if no change has taken place, i.e if 13 equals 1. 

Theorem 2.3. Under the assumptions of Theorem 2.2 

lim E,(n-‘f,) 2 1 - a(1 -a). 
n4c.z 

Proof. We have 

(n+ 1)/n 1 (n+ 1)/n 

EI(n-‘7,) = 
s 

P,(?,>nx)dx=a+ PI(5,>nx)dx+ 
s J^ 

[IpI&, > nx)dx 

0 a 1 

1 

+a+(1 -a)(1 -a)= 1 -a(1 -a) asn + co. 0 

Theorem 2.4. Let D be a separable metric space, K E Cb(%-‘) antisymmetric and 

suppose that Vi,n converges weakly to Vi for i = 1,2. Moreover assume that 

1 = jJK(x,y)vl (dy)v,(dx) # 0. Then 

Proof. Set 1, = 2cd-‘a,,jAl-‘& and k, = n6 + 1,. Then 

Pd?, I k,) = PO 

21-P, ccn& I”./> lil-le n 1 since k n I n for n large enough 

= 1 - P,(I . . . [2+lAl) + 1 as n + co, 
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since ( ... ( + 0 with probability one. In fact, 

where 

l P2,n = T __ F 6x1 

nr-nl3+1 

Using Varadarajan’s (1958) arguments one shows that pi,n converges weakly to vi 

with probability one, i = 1,2. Now apply Theorem 3.2 of Billingsley (1968) and the 

Portmanteau theorem to get the desired result. 0 

Note that we sometimes actually can replace 0, by the quantity s(n), e.g., in the case 

!Z = R, K(x,y) = sign(x - y) and v~,~ continuous for all n E N, s2( n) = l/3. So, in this 

situation we have a deterministic upper bound for the number of observations we will 

take (with high probability) after the changepoint. Moreover, the upper bound reflects 

the fact that the closer the alternative is to the hypothesis (measured by A) the later we 

will stop. 

3. Simulations 

In a small sample simulation study we investigated our sequential procedure. Since 

we did not know the critical value c(m) = c( tx, a) explicitely, we had to approximate it 

by Monte-Carlo simulation. As pointed out in chapter two we can take w.1.o.g. 

?Z = (0,l) and vl,” the uniform distribution. For the kernel we chose 

K(x,y) = sign(x - y), so that s’(n) = 3. From our theory we know that 

For this reason we generated m E N independent variables distributed as S, and took 

the (1 - cc)-quantile of the empirical distribution function of these variables as an 

approximation of c. For m = 200 and n = 50 we obtained the values presented in 

Table 1. 

In our simulation study we fixed a = 0.2, tx = 0.1, n = 50 and 

K(x, y) = sign(x - y). We generated m = 100 independent variables t$), i = 1, . . ,m, 
distributed as r,, where Xl, . . . , Xr,,, had distribution vi and the remaining 

X;“,, + 1) . . . 7 X: had distribution v2. By the SLLN the arithmetic means m- ’ cy= 1 ~2’ 

and mA1~~=, l~,P),L,ol) are reasonable estimators for E@(r,) and p8(r, _< [ne]). If 

vi = U(0, 1) and v2 = U(d, 1 + d), 0 < d 5 1, ;I = 2d - d2. Tables 2 and 3 show the 

values for d = 0.3 (A = 0.51) and d = 0.4 (A = 0.64). If vi = exp(&), /zi > 0, i = 1,2, 

/z = (A, - &)/(A1 + 2,). Tables 4 and 5 show the values for Al = 1, J_, = 0.324503311 

(2 = 0.51!) and I1 = 1, & = 0.219512195 (A = 0.64!). 
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Table 1 

a 0.1 0.05 0.025 0.01 

0.1 1.422 1.489 1.581 1.730 
0.2 1.422 1.489 1.581 1.730 
0.3 1.422 1.489 1.581 1.730 
0.4 1.413 1.476 1.581 1.730 
0.5 1.408 1.473 1.581 1.730 
0.6 1.346 1.455 1.531 1.666 
0.7 1.299 1.405 1.508 1.615 
0.8 1.232 1.376 1.457 1.615 
0.9 1.156 1.303 1.417 1.616 
1.0 1.107 1.235 1.323 1.538 

Table 2 

CnQl 10 15 20 25 30 35 40 45 

ML) 33.55 34.15 36.00 38.81 42.88 42.25 47.50 47.38 

P&” I CW) 0 0.01 0.05 0.05 0.03 0.08 0.06 0.09 

Table 3 

CnQl 10 15 20 25 30 35 40 45 

&I(~“) 25.23 26.30 30.31 33.99 39.35 43.11 46.57 46.51 

Ptl(% 2 CnQl) 0 0.03 0.06 0.10 0.04 0.14 0.09 0.14 

Table 4 

C4 10 15 20 25 30 35 40 45 

k?(T”) 33.85 32.66 35.30 38.08 40.91 45.24 45.89 47.41 

PdL 5 rne11 0 0.02 0.01 0.04 0.09 0.07 0.12 0.09 

Table 5 

CnQl 10 15 20 25 30 35 40 45 

WJ 23.79 24.90 29.45 34.17 38.94 43.05 47.12 46.16 

P.¶(Tn I CW) 0 0.02 0.04 0.05 0.09 0.06 0.07 0.13 
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