Two-sided cells in type B (asymptotic case)

Cédric Bonnafé
Laboratoire de Mathématique de Besançon (CNRS, UMR 6623), Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France
Received 6 June 2005
Available online 2 August 2006
Communicated by Michel Broué

Abstract

We compute two-sided cells of Weyl groups of type B for the "asymptotic" choice of parameters. We also obtain some partial results concerning Lusztig's conjectures in this particular case. © 2006 Elsevier Inc. All rights reserved.

Keywords: Weyl group; Kazhdan-Lusztig; Unequal parameters; Lusztig's conjectures

Let W_{n} be a Weyl group of type B_{n}. The present paper is a continuation of the work done by L. Iancu and the author [3] concerning Kazhdan-Lusztig theory of W_{n} for the asymptotic choice of parameters [3, §6]. To each element $w \in W_{n}$ is associated a pair of standard bi-tableaux $(P(w), Q(w))$ (see [18] or [3, §3]): this can be viewed as a Robinson-Schensted type correspondence. Our main result [3, Theorem 7.7] was the complete determination of the left cells: two elements w and w^{\prime} are in the same left cell if and only if $Q(w)=Q\left(w^{\prime}\right)$. For the corresponding result for the symmetric group, see [12] and [1]. We have also computed the character afforded by a left cell representation [3, Proposition 7.11] (this character is irreducible).

In this paper, we are concerned with the computation of the two-sided cells. Let us state the result here. If $w \in W_{n}$, write $Q(w)=\left(Q^{+}(w), Q^{-}(w)\right)$ and denote by $\lambda^{+}(w)$ and $\lambda^{-}(w)$ the shape of $Q^{+}(w)$ and $Q^{-}(w)$, respectively. Note that $\left(\lambda^{+}(w), \lambda^{-}(w)\right)$ is a bipartition of n.

Theorem. (See 3.9.) For the choice of parameters as in [3, §6], two elements w and w^{\prime} are in the same two-sided cell if and only if $\left(\lambda^{+}(w), \lambda^{-}(w)\right)=\left(\lambda^{+}\left(w^{\prime}\right), \lambda^{-}\left(w^{\prime}\right)\right)$.

[^0]Lusztig [16, Chapter 14] has proposed fifteen conjectures on Kazhdan-Lusztig theory of Hecke algebras with unequal parameters. In the asymptotic case, Geck and Iancu [9] use some of our results, namely some informations on the preorder $\leqslant \mathcal{L R}$ (see Theorem 3.5 and Proposition 4.2), to compute the function a and to prove Lusztig's conjectures P_{i}, for $i \in$ $\{1,2,3,4,5,6,7,8,11,12,13,14\}$. On the other hand, Geck [8] has shown that Lusztig's conjectures P_{9} and P_{10} hold. More precisely, he proved that the Kazhdan-Lusztig basis is cellular (in the sense of [11]). He also proved a slightly weaker version of P_{15} (but his version is sufficient for constructing the homomorphism from the Hecke algebra to the asymptotic algebra J).

The present paper is organized as follows. In Section 1, we study some consequences of Lusztig's conjectures on the multiplication by $T_{w_{0}}$, where w_{0} is the longest element of a finite Weyl group. From Section 2 to the end of the paper, we assume that the Weyl group is of type B_{n} and that the choice of parameters is done as in [3, §6]. In Section 2, we establish some preliminary results concerning the Kazhdan-Lusztig basis. In Section 3, we prove the above theorem by introducing a new basis of the Hecke algebra: this was inspired by the work of Geck on the induction of Kazhdan-Lusztig cells [7]. Section 4 contains some results related to Lusztig's conjectures. In Section 5, we determine which specializations of the parameters preserve the Kazhdan-Lusztig basis.

1. Generalities

1.1. Notation

We slightly modify the notation used in [3, §5]. Let (W, S) be a Coxeter group with $|S|<\infty$. We denote by $\ell: W \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ the length function relative to S. If W is finite, w_{0} denotes its longest element. Let \leqslant denote the Bruhat ordering on W. If $I \subset S$, we denote by W_{I} the standard parabolic subgroup of W generated by I.

Let Γ be a totally ordered abelian group which will be denoted additively. The order on Γ will be denoted by \leqslant. If $\gamma_{0} \in \Gamma$, we set

$$
\begin{gathered}
\Gamma_{<\gamma_{0}}=\left\{\gamma \in \Gamma \mid \gamma<\gamma_{0}\right\}, \quad \Gamma_{\leqslant \gamma_{0}}=\left\{\gamma \in \Gamma \mid \gamma \leqslant \gamma_{0}\right\}, \\
\Gamma_{>\gamma_{0}}=\left\{\gamma \in \Gamma \mid \gamma>\gamma_{0}\right\} \quad \text { and } \quad \Gamma_{\geqslant \gamma_{0}}=\left\{\gamma \in \Gamma \mid \gamma \geqslant \gamma_{0}\right\} .
\end{gathered}
$$

Let A be the group algebra of Γ over \mathbb{Z}. It will be denoted exponentially: as a \mathbb{Z}-module, it is free with basis $\left(v^{\gamma}\right)_{\gamma \in \Gamma}$ and the multiplication rule is given by $v^{\gamma} v^{\gamma^{\prime}}=v^{\gamma+\gamma^{\prime}}$ for all $\gamma, \gamma^{\prime} \in \Gamma$. If $a \in A$, we denote by a_{γ} the coefficient of a on v^{γ}, so that $a=\sum_{\gamma \in \Gamma} a_{\gamma} v^{\gamma}$. If $a \neq 0$, we define the degree and the valuation of a (which we denote respectively by $\operatorname{deg} a$ and val a) as the elements of Γ equal to

$$
\operatorname{deg} a=\max \left\{\gamma \mid a_{\gamma} \neq 0\right\}
$$

and

$$
\operatorname{val} a=\min \left\{\gamma \mid a_{\gamma} \neq 0\right\}
$$

By convention, we set $\operatorname{deg} 0=-\infty$ and val $0=+\infty$. So deg: $A \rightarrow \Gamma \cup\{-\infty\}$ and val: $A \rightarrow$ $\Gamma \cup\{+\infty\}$ satisfy $\operatorname{deg} a b=\operatorname{deg} a+\operatorname{deg} b$ and $\operatorname{val} a b=\operatorname{val} a+\operatorname{val} b$ for all $a, b \in A$. We denote
by $A \rightarrow A, a \mapsto \bar{a}$ the automorphism of A induced by the automorphism of Γ sending γ to $-\gamma$. Note that $\operatorname{deg} a=-\operatorname{val} \bar{a}$. If $\gamma_{0} \in \Gamma$, we set

$$
\begin{aligned}
& A_{<\gamma_{0}}=\bigoplus_{\gamma<\gamma_{0}} \mathbb{Z} v^{\gamma}, \quad A_{\leqslant \gamma_{0}}=\bigoplus_{\gamma \leqslant \gamma_{0}} \mathbb{Z} v^{\gamma}, \\
& A_{>\gamma_{0}}=\bigoplus_{\gamma>\gamma_{0}} \mathbb{Z} v^{\gamma} \quad \text { and } \quad A_{\geqslant \gamma_{0}}=\bigoplus_{\gamma \geqslant \gamma_{0}} \mathbb{Z} v^{\gamma} .
\end{aligned}
$$

We fix a weight function $L: W \rightarrow \Gamma$, that is a function satisfying $L\left(w w^{\prime}\right)=L(w)+L\left(w^{\prime}\right)$ whenever $\ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)$. We also assume that $L(s)>0$ for every $s \in S$. We denote by $\mathcal{H}=\mathcal{H}(W, S, L)$ the Hecke algebra of W associated to the weight function L. It is the associative A-algebra with A-basis $\left(T_{w}\right)_{w \in W}$ indexed by W and whose multiplication is determined by the following two conditions:

$$
\begin{array}{ll}
\text { (a) } T_{w} T_{w^{\prime}}=T_{w w^{\prime}}, & \text { if } \ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right), \\
\text { (b) } T_{s}^{2}=1+\left(v^{L(s)}-v^{-L(s)}\right) T_{s}, & \text { if } s \in S .
\end{array}
$$

It is easily seen from the above relations that $\left(T_{s}\right)_{s \in S}$ generates the A-algebra \mathcal{H} and that T_{w} is invertible for every $w \in W$. If $h=\sum_{w \in W} a_{w} T_{w} \in \mathcal{H}$, we set $\bar{h}=\sum_{w \in W} \bar{a}_{w} T_{w^{-1}}^{-1}$. Then the map $\mathcal{H} \rightarrow \mathcal{H}, h \mapsto \bar{h}$ is a semi-linear involutive automorphism of \mathcal{H}. If $I \subset S$, we denote by $\mathcal{H}\left(W_{I}\right)$ the sub- A-algebra of \mathcal{H} generated by $\left(T_{s}\right)_{s \in I}$.

Let $w \in W$. By [16, Theorem 5.2], there exists a unique element $C_{w} \in \mathcal{H}$ such that
(a) $C_{w}=\bar{C}_{w}$,
(b) $\quad C_{w} \in T_{w}+\left(\bigoplus_{y \in W} A_{<0} T_{y}\right)$.

Write $C_{w}=\sum_{y \in W} p_{y, w}^{*} T_{y}$ with $p_{y, w}^{*} \in A$. Then [16, 5.3]

$$
\begin{aligned}
& p_{w, w}^{*}=1, \\
& p_{y, w}^{*}=0, \quad \text { if } y \nless w .
\end{aligned}
$$

In particular, $\left(C_{w}\right)_{w \in W}$ is an A-basis of \mathcal{H} : it is called the Kazhdan-Lusztig basis of \mathcal{H}. Write now $p_{y, w}=v^{L(w)-L(y)} p_{y, w}^{*}$. Then

$$
p_{y, w} \in A \geqslant 0
$$

and the coefficient of $p_{y, w}$ on v^{0} is equal to 1 (see [16, Proposition 5.4(a)]).
We define the relations $\leqslant_{\mathcal{L}}, \leqslant_{\mathcal{R}}, \leqslant_{\mathcal{L} \mathcal{R}}, \sim_{\mathcal{L}}, \sim_{\mathcal{R}}$ and $\sim_{\mathcal{L R}}$ as in [16, §8].

1.2. The function \mathbf{a}

Let $x, y \in W$. Write

$$
C_{x} C_{y}=\sum_{z \in W} h_{x, y, z} C_{z},
$$

where $h_{x, y, z} \in A$ for $z \in W$. Of course, we have

$$
\begin{equation*}
\overline{h_{x, y, z}}=h_{x, y, z} . \tag{1.1}
\end{equation*}
$$

The following lemma is well known [16, Lemma 10.4(c) and formulas 13.1(a) and (b)].
Lemma 1.2. Let x, y and z be three elements of W. Then

$$
\operatorname{deg} h_{x, y, z} \leqslant \min (L(x), L(y))
$$

Conjecture $\boldsymbol{P}_{\mathbf{0}}$. (Lusztig) There exists $N \in \Gamma$ such that $\operatorname{deg} h_{x, y, z} \leqslant N$ for all x, y and z in W.
If W is finite, then W satisfies obviously P_{0}. If W is an affine Weyl group, then it also satisfies $P_{0}[15,7.2]$. From now on, we assume that W satisfies P_{0}, so that the next definition is valid. If $z \in W$, we set

$$
\mathbf{a}(z)=\max _{x, y \in W} \operatorname{deg} h_{x, y, z}
$$

Since $h_{1, z, z}=1$, we have $\mathbf{a}(z) \in \Gamma \geqslant 0$. If necessary, we will write $\mathbf{a}_{W}(z)$ for $\mathbf{a}(z)$. We denote by $\gamma_{x, y, z^{-1}} \in \mathbb{Z}$ the coefficient of $v^{\mathbf{a}(z)}$ in $h_{x, y, z}$. The next proposition shows how the function \mathbf{a} can be calculated by using different bases.

Proposition 1.3. Let $\left(X_{w}\right)_{w \in W}$ and $\left(Y_{w}\right)_{w \in W}$ be two families of elements of \mathcal{H} such that, for every $w \in W, X_{w}-T_{w}$ and $Y_{w}-T_{w}$ belong to $\bigoplus_{y<w} A_{<0} T_{y}$. For all x and y in W, write

$$
X_{x} Y_{y}=\sum_{z \in W} \xi_{x, y, z} C_{z}
$$

Then, if $x, y, z \in W$, we have:
(a) $\operatorname{deg} \xi_{x, y, z} \leqslant \min \{L(x), L(y)\}$.
(b) $\xi_{x, y, z} \in \gamma_{x, y, z^{-1}} v^{\mathbf{a}(z)}+A_{<\mathbf{a}(z)}$.

In particular,

$$
\mathbf{a}(z)=\max _{x, y \in W} \operatorname{deg} \xi_{x, y, z}
$$

Proof. Clear.

1.3. Lusztig's conjectures

Let $\tau: \mathcal{H} \rightarrow A$ be the A-linear map such that $\tau\left(T_{w}\right)=\delta_{1, w}$ if $w \in W$. It is the canonical symmetrizing form on \mathcal{H} (recall that $\left.\tau\left(T_{x} T_{y}\right)=\delta_{x y, 1}\right)$. If $z \in W$, let

$$
\Delta(z)=-\operatorname{deg} p_{1, z}^{*}=-\operatorname{deg} \tau\left(C_{z}\right) .
$$

Let n_{z} be the coefficient of $p_{1, z}^{*}$ on $v^{-\Delta(z)}$. Finally, let

$$
\mathcal{D}=\{z \in W \mid \mathbf{a}(z)=\Delta(z)\}
$$

Conjectures. (Lusztig) With the above notation, we have:
P_{1}. If $z \in W$, then $\mathbf{a}(z) \leqslant \Delta(z)$.
P_{2}. If $d \in \mathcal{D}$ and if $x, y \in W$ satisfy $\gamma_{x, y, d} \neq 0$, then $x=y^{-1}$.
P_{3}. If $y \in W$, then there exists a unique $d \in \mathcal{D}$ such that $\gamma_{y^{-1}, y, d} \neq 0$.
P_{4}. If $z^{\prime} \leqslant \mathcal{L R} z$, then $\mathbf{a}(z) \leqslant \mathbf{a}\left(z^{\prime}\right)$. Therefore, if $z \sim_{\mathcal{L R}} z^{\prime}$, then $\mathbf{a}(z)=\mathbf{a}\left(z^{\prime}\right)$.
P_{5}. If $d \in \mathcal{D}$ and $y \in W$ satisfy $\gamma_{y^{-1}, y, d} \neq 0$, then $\gamma_{y^{-1}, y, d}=n_{d}= \pm 1$.
P_{6}. If $d \in \mathcal{D}$, then $d^{2}=1$.
P_{7}. If $x, y, z \in W$, then $\gamma_{x, y, z}=\gamma_{y, z, x}$.
P8. If $x, y, z \in W$ satisfy $\gamma_{x, y, z} \neq 0$, then $x \sim_{\mathcal{L}} y^{-1}, y \sim_{\mathcal{L}} z^{-1}$ and $z \sim_{\mathcal{L}} x^{-1}$.
P9. If $z^{\prime} \leqslant_{\mathcal{L}} z$ and $\mathbf{a}\left(z^{\prime}\right)=\mathbf{a}(z)$, then $z^{\prime} \sim_{\mathcal{L}} z$.
P_{10}. If $z^{\prime} \leqslant \mathcal{R} z$ and $\mathbf{a}\left(z^{\prime}\right)=\mathbf{a}(z)$, then $z^{\prime} \sim_{\mathcal{R}} z$.
P_{11}. If $z^{\prime} \leqslant \mathcal{L R} z$ and $\mathbf{a}\left(z^{\prime}\right)=\mathbf{a}(z)$, then $z^{\prime} \sim_{\mathcal{L R}} z$.
P_{12}. If $I \subset S$ and $z \in W_{I}$, then $\mathbf{a}_{W_{I}}(z)=\mathbf{a}_{W}(z)$.
P_{13}. Every left cell \mathcal{C} of W contains a unique element $d \in \mathcal{D}$. If $y \in \mathcal{C}$, then $\gamma_{y^{-1}, y, d} \neq 0$.
P_{14}. If $z \in W$, then $z \sim_{\mathcal{L R}} z^{-1}$.
P_{15}. If $x, x^{\prime}, y, w \in W$ are such that $\mathbf{a}(y)=\mathbf{a}(w)$, then

$$
\sum_{y^{\prime} \in W} h_{w, x^{\prime}, y^{\prime}} \otimes_{\mathbb{Z}} h_{x, y^{\prime}, y}=\sum_{y^{\prime} \in W} h_{y^{\prime}, x^{\prime}, y} \otimes_{\mathbb{Z}} h_{x, w, y^{\prime}}
$$

in $A \otimes_{\mathbb{Z}} A$.
Lusztig has shown that these conjectures hold if W is a finite or affine Weyl group and $L=\ell$ [16, §15], if W is dihedral and L is any weight function [16, §17] and if (W, L) is quasi-split [16, §16].

1.4. Lusztig's conjectures and multiplication by $T_{w_{0}}$

We assume in this subsection that W is finite. We are interested here in certain properties of the multiplication by $T_{w_{0}}^{n}$ for $n \in \mathbb{Z}$. Some of them are partially known [14, Lemma 1.11 and Remark 1.12]. If $y \in W$ and $n \in \mathbb{Z}$, we set

$$
T_{w_{0}}^{n} C_{y}=\sum_{x \in W} \lambda_{x, y}^{(n)} C_{x}
$$

Note that $\lambda_{x, y}^{(n)}=0$ if $x \nless \mathcal{L} y$.
Proposition 1.4. Assume that W is finite and satisfies Lusztig's conjectures P_{1}, P_{4} and P_{8}. Let $n \in \mathbb{Z}$ and let x and y be two elements of W such that $x \leqslant_{\mathcal{L}} y$. Then:
(a) If $n \geqslant 0$, then $\operatorname{deg} \lambda_{x, y}^{(n)} \leqslant n\left(\mathbf{a}(x)-\mathbf{a}\left(w_{0} x\right)\right)$. If moreover $x<\mathcal{L} y$, then $\operatorname{deg} \lambda_{x, y}^{(n)}<n(\mathbf{a}(x)-$ $\left.\mathbf{a}\left(w_{0} x\right)\right)$.
(b) If $n \leqslant 0$, then $\operatorname{deg} \lambda_{x, y}^{(n)} \leqslant n\left(\mathbf{a}(y)-\mathbf{a}\left(w_{0} y\right)\right)$. If moreover $x<_{\mathcal{L}} y$, then $\operatorname{deg} \lambda_{x, y}^{(n)}<n(\mathbf{a}(y)-$ $\mathbf{a}\left(w_{0} y\right)$).
(c) If n is even and if $x \sim_{\mathcal{L}} y$, then $\lambda_{x, y}^{(n)}=\delta_{x, y} v^{n\left(\mathbf{a}(x)-\mathbf{a}\left(w_{0} x\right)\right)}$.

Proof. If $n=0$, then (a), (b) and (c) are easily checked. Let us now prove (a) and (b). By [16, Proposition 11.4],

$$
T_{w_{0}}=\sum_{u \in W}(-1)^{\ell\left(w_{0} u\right)} p_{1, w_{0} u}^{*} C_{u}
$$

Consequently,

$$
\lambda_{x, y}^{(1)}=\sum_{\substack{u \in W \\ x \leqslant \mathcal{R} u}}(-1)^{\ell\left(w_{0} u\right)} p_{1, w_{0} u}^{*} h_{u, y, x}
$$

But, by P_{1}, we have $\operatorname{deg} p_{1, w_{0} u}^{*} \leqslant-\mathbf{a}\left(w_{0} u\right)$. If moreover $x \leqslant \mathcal{R} u$, then $w_{0} u \leqslant \mathcal{R} w_{0} x$ and so $-\mathbf{a}\left(w_{0} x\right) \geqslant-\mathbf{a}\left(w_{0} u\right)$ by P_{4}. Therefore,

$$
\operatorname{deg} \lambda_{x, y}^{(1)} \leqslant \mathbf{a}(x)-\mathbf{a}\left(w_{0} x\right)
$$

On the other hand, if $\operatorname{deg} \lambda_{x, y}^{(1)}=\mathbf{a}(x)-\mathbf{a}\left(w_{0} x\right)$, then there exists $u \in W$ such that $x \leqslant \mathcal{R} u$ and $\operatorname{deg} h_{u, y, x}=\mathbf{a}(x)$. So, by P_{8}, we get that $x \sim_{\mathcal{L}} y$. This shows (a) for $n=1$.

Now, let $v: \mathcal{H} \rightarrow \mathcal{H}$ denote the A-linear map such that $\nu\left(C_{w}\right)=v^{\mathbf{a}\left(w_{0} w\right)-\mathbf{a}(w)} C_{w}$ for all $w \in W$ and let $\mu: \mathcal{H} \rightarrow \mathcal{H}, h \mapsto T_{w_{0}} h$. Then, if $w \in W$, we have

$$
v \mu\left(C_{y}\right)=\sum_{u \leqslant \kappa y} v^{\mathbf{a}\left(w_{0} u\right)-\mathbf{a}(u)} \lambda_{u, y}^{(1)} C_{u}
$$

So, by the previous discussion, we have $v^{\mathbf{a}\left(w_{0} u\right)-\mathbf{a}(u)} \lambda_{u, y}^{(1)} \in A_{\leqslant 0}$. Moreover, if $u<_{\mathcal{L}} y$, then $v^{\mathbf{a}\left(w_{0} u\right)-\mathbf{a}(u)} \lambda_{u, y}^{(1)} \in A_{<0}$. On the other hand, $\operatorname{det} \mu= \pm 1$ and $\operatorname{det} \nu=1$. Therefore, if we write

$$
\mu^{-1} v^{-1}\left(C_{y}\right)=\sum_{u \leqslant \mathcal{L} y} \beta_{u, y} C_{u}
$$

then $\beta_{u, y} \in A_{\leqslant 0}$ and, if $u<_{\mathcal{L}} y$, then $\beta_{u, y} \in A_{<0}$. Finally,

$$
\begin{aligned}
T_{w_{0}}^{-1} C_{y} & =\mu^{-1}\left(C_{y}\right) \\
& =\mu^{-1} v^{-1} v\left(C_{y}\right) \\
& =v^{\mathbf{a}\left(w_{0} y\right)-\mathbf{a}(y)} \mu^{-1} v^{-1}\left(C_{y}\right) \\
& =\sum_{u \leqslant \mathcal{L} y} v^{\mathbf{a}\left(w_{0} y\right)-\mathbf{a}(y)} \beta_{u, y} C_{u} .
\end{aligned}
$$

In other words, $\lambda_{x, y}^{(-1)}=v^{\mathbf{a}\left(w_{0} y\right)-\mathbf{a}(y)} \beta_{x, y}$. This shows that (b) holds if $n=-1$. An elementary induction argument using P_{4} shows that (a) and (b) hold in full generality.

Let us now prove (c). Let K be the field of fraction of A. Let C be a left cell of W and let $c \in C$. We set

$$
\mathcal{H} \leqslant \mathcal{L}^{C}=\bigoplus_{w \leqslant \mathcal{L}^{c}} A C_{w} \quad \text { and } \quad \mathcal{H}^{<\mathcal{L}^{C}}=\bigoplus_{w<\mathcal{L}^{c}} A C_{w}
$$

Then $\mathcal{H} \leqslant \mathcal{L}^{C}$ and $\mathcal{H}^{<\mathcal{L} C}$ are left ideals of \mathcal{H}. The algebra $K \mathcal{H}=K \otimes_{A} \mathcal{H}$ being semi-simple, there exists a left ideal I_{C} of $K \mathcal{H}$ such that $K \mathcal{H} \leqslant \mathcal{L} C=K \mathcal{H}^{<}{ }_{\mathcal{L}} C \oplus I_{C}$.

We need to prove that, for all $h \in I_{C}$,

$$
T_{w_{0}}^{n} h=v^{n\left(\mathbf{a}(c)-\mathbf{a}\left(w_{0} c\right)\right)} h
$$

For this, we may, and we will, assume that $n>0$. Let $V_{1}^{C}, V_{2}^{C}, \ldots, V_{n_{C}}^{C}$ be irreducible sub$K \mathcal{H} \otimes_{A} K$-modules of I_{C} such that

$$
I_{C}=V_{1}^{C} \oplus \cdots \oplus V_{n C}^{C}
$$

Let $j \in\left\{1,2, \ldots, n_{C}\right\}$. Since $T_{w_{0}}^{n}$ is central and invertible in \mathcal{H}, there exists $\varepsilon \in\{1,-1\}$ and $i_{j}^{C} \in \Gamma$ such that

$$
T_{w_{0}}^{n} h=\varepsilon v^{i_{j}^{C}} h
$$

for every $h \in V_{j}^{C}$. By specializing $v^{\gamma} \mapsto 1$, we get that $\varepsilon=1$. Moreover, by (a) and (b), $i_{j}^{C} \leqslant$ $n\left(\mathbf{a}(c)-\mathbf{a}\left(w_{0} c\right)\right)$. On the other hand, since $\operatorname{det} \mu= \pm 1$, we have $\operatorname{det} \mu^{n}=1$. But $\operatorname{det} \mu^{n}=v^{r}$, where

$$
\begin{aligned}
r & =\sum_{C \in \mathcal{L C}(W)} \sum_{j=1}^{n_{C}} i_{j}^{C} \operatorname{dim} V_{j}^{C} \\
& \leqslant n \sum_{C \in \mathcal{L C}(W)}\left(\mathbf{a}(C)-\mathbf{a}\left(w_{0} C\right)\right) \sum_{j=1}^{n_{C}} \operatorname{dim} V_{j}^{C} \\
& =n \sum_{C \in \mathcal{L C}(W)}\left(\mathbf{a}(C)-\mathbf{a}\left(w_{0} C\right)\right)|C| \\
& =n \sum_{w \in W}\left(\mathbf{a}(w)-\mathbf{a}\left(w_{0} w\right)\right) \\
& =0 .
\end{aligned}
$$

Here, $\mathcal{L C}(W)$ denotes the set of left cells in W and, if $C \in \mathcal{L C}(W), \mathbf{a}(C)$ denotes the value of a on C (according to P_{4}). The fact that $r=0$ forces the equality $i_{j}^{C}=n\left(\mathbf{a}(C)-\mathbf{a}\left(w_{0} C\right)\right)$ for every left cell C and every $j \in\left\{1,2, \ldots, n_{C}\right\}$.

Remark 1.5. Assume here that w_{0} is central in W and keep the notation of the proof of Proposition 1.4(c). Let $j \in\left\{1,2, \ldots, n_{C}\right\}$. Then there exists $\varepsilon_{j}(C) \in\{1,-1\}$ et $e_{j}(C) \in \Gamma$ such that $T_{w_{0}} h=\varepsilon_{j}(C) v^{e_{j}(C)} h$ for every $h \in V_{j}^{C}$.

Question. Let $j, j^{\prime} \in\left\{1,2, \ldots, n_{C}\right\}$. Does $\varepsilon_{j}(C)=\varepsilon_{j^{\prime}}(C)$?
A positive answer to this question would allow to generalize Proposition 1.4(c) to the case where w_{0}^{n} is central.

Corollary 1.6. Assume that W is finite and satisfies Lusztig's conjectures $P_{1}, P_{2}, P_{4}, P_{8}, P_{9}$ and P_{13}. Let $w \in W$ and let $n \in \mathbb{N}$. Then $\operatorname{deg} \tau\left(T_{w_{0}}^{-n} C_{w}\right) \leqslant-\mathbf{a}(w)+n\left(\mathbf{a}\left(w_{0} w\right)-\mathbf{a}(w)\right)$. Moreover, $\operatorname{deg} \tau\left(T_{w_{0}}^{-n} C_{w}\right)=-\mathbf{a}(w)+n\left(\mathbf{a}\left(w_{0} w\right)-\mathbf{a}(w)\right)$ if and only if $w_{0}^{n} w^{-1} \in \mathcal{D}$.

Proof. Assume first that n is even. In particular, $w_{0}^{n}=1$. By Proposition 1.4, we have

$$
\tau\left(T_{w_{0}}^{-n} C_{w}\right)=v^{n\left(\mathbf{a}\left(w_{0} w\right)-\mathbf{a}(w)\right)} \tau\left(C_{w}\right)+\sum_{x<\mathcal{L} w} \lambda_{x, w}^{(-n)} \tau\left(C_{x}\right)
$$

But, if $x<_{\mathcal{L}} w$, then $\operatorname{deg} \tau\left(C_{x}\right)=-\Delta(x) \leqslant-\mathbf{a}(x) \leqslant-\mathbf{a}(w)$ by P_{1} and P_{4}. So, by Proposition 1.4(b), we have that $\operatorname{deg} \lambda_{x, w}^{(-n)} \tau\left(C_{x}\right)<-\mathbf{a}(w)+n\left(\mathbf{a}\left(w_{0} w\right)-\mathbf{a}(w)\right)$. Moreover, again by P_{1}, we have $\operatorname{deg} \tau\left(C_{w}\right)=-\Delta(w) \leqslant-\mathbf{a}(w)$. This shows that $\operatorname{deg} \tau\left(T_{w_{0}}^{-n} C_{w}\right) \leqslant-\mathbf{a}(w)+$ $n\left(\mathbf{a}\left(w_{0} w\right)-\mathbf{a}(w)\right)$ and that equality holds if and only if $\Delta(w)=\mathbf{a}(w)$, that is, if and only if $w \in \mathcal{D}$, as desired.

Assume now that $n=2 k+1$ for some natural number k. Recall that, by [16, Proposition 11.4], $T_{w_{0}}=\sum_{u \in W}(-1)^{\ell\left(w_{0} u\right)} p_{1, w_{0} u}^{*} C_{u}$. Therefore,

$$
\begin{aligned}
T_{w_{0}}^{-n} C_{w} & =\sum_{u \in W}(-1)^{\ell\left(w_{0} u\right)} p_{1, w_{0} u}^{*} T_{w_{0}}^{-n-1} C_{u} C_{w} \\
& =\sum_{\substack{u, x \in W \\
x \leqslant \mathcal{L} w \text { and } x \leqslant \mathcal{R} u}}(-1)^{\ell\left(w_{0} u\right)} p_{1, w_{0} u}^{*} h_{u, w, x} T_{w_{0}}^{-n-1} C_{x} .
\end{aligned}
$$

This implies that

$$
\tau\left(T_{w_{0}}^{-n} C_{w}\right)=\sum_{\substack{u, x \in W \\ x \leqslant \mathcal{L} w \text { and } x \leqslant \mathcal{R} u}}(-1)^{\ell\left(w_{0} u\right)} p_{1, w_{0} u}^{*} h_{u, w, x} \tau\left(T_{w_{0}}^{-n-1} C_{x}\right),
$$

so

$$
\operatorname{deg} \tau\left(T_{w_{0}}^{-n} C_{w}\right) \leqslant \max _{\substack{u, x \in W \\ x \leqslant \mathcal{L} w \text { and } x \leqslant \mathcal{R} u}} \operatorname{deg}\left(p_{1, w_{0} u}^{*} h_{u, w, x} \tau\left(T_{w_{0}}^{-n-1} C_{x}\right)\right)
$$

Let u and x be two elements of W such that $x \leqslant_{\mathcal{L}} w$ and $x \leqslant_{\mathcal{R}} u$. Since $n+1$ is even and by the previous discussion, we have

$$
\operatorname{deg} \tau\left(T_{w_{0}}^{-n-1} C_{x}\right) \leqslant-\mathbf{a}(x)+(n+1)\left(\mathbf{a}\left(w_{0} x\right)-\mathbf{a}(x)\right)
$$

By P_{1} and $P_{4}, \operatorname{deg} p_{1, w_{0} u}^{*} \leqslant-\mathbf{a}\left(w_{0} u\right) \leqslant-\mathbf{a}\left(w_{0} x\right)$. Moreover, $\operatorname{deg} h_{u, w, x} \leqslant \mathbf{a}(x)$. Consequently,

$$
\begin{aligned}
\operatorname{deg}\left(p_{1, w_{0} u}^{*} h_{u, w, x} \tau\left(T_{w_{0}}^{-n-1} C_{x}\right)\right) & \leqslant-\mathbf{a}(x)+n\left(\mathbf{a}\left(w_{0} x\right)-\mathbf{a}(x)\right) \\
& \leqslant-\mathbf{a}(w)+n\left(\mathbf{a}\left(w_{0} w\right)-\mathbf{a}(w)\right)
\end{aligned}
$$

Moreover, equality holds if and only if $w_{0} u \in \mathcal{D}, \operatorname{deg} h_{u, w, x}=\mathbf{a}(x)=\mathbf{a}(w)$ and $x \in \mathcal{D}$.
We first deduce that

$$
\operatorname{deg} \tau\left(T_{w_{0}}^{-n} C_{w}\right) \leqslant-\mathbf{a}(w)+n\left(\mathbf{a}\left(w_{0} w\right)-\mathbf{a}(w)\right)
$$

which is the first assertion of the proposition.
Assume now that $\operatorname{deg} \tau\left(T_{w_{0}}^{-n} C_{w}\right)=-\mathbf{a}(w)+n\left(\mathbf{a}\left(w_{0} w\right)-\mathbf{a}(w)\right)$. Then there exists u and x in W such that $x \leqslant_{\mathcal{L}} w, x \leqslant_{\mathcal{R}} u, w_{0} u \in \mathcal{D}, \operatorname{deg} h_{u, w, x}=\mathbf{a}(x)=\mathbf{a}(w)$ and $x \in \mathcal{D}$. Since $\operatorname{deg} h_{u, w, x}=\mathbf{a}(x)$ and $x \in \mathcal{D}$, we deduce from P_{2} that $w=u^{-1}$, which shows that $w_{0} w^{-1} \in \mathcal{D}$.

Conversely, assume that $w_{0} w^{-1} \in \mathcal{D}$. To show that $\operatorname{deg} \tau\left(T_{w_{0}}^{-n} C_{w}\right)=-\mathbf{a}(w)+n\left(\mathbf{a}\left(w_{0} w\right)-\right.$ $\mathbf{a}(w)$), it is sufficient to show that there is a unique pair (u, x) of elements of W such that $x \leqslant_{\mathcal{L}} w$, $x \leqslant \mathcal{R} u, w_{0} u \in \mathcal{D}$, $\operatorname{deg} h_{u, w, x}=\mathbf{a}(x)=\mathbf{a}(w)$ and $x \in \mathcal{D}$. The existence follows from P_{13} (take $u=w^{-1}$ and x be the unique element of \mathcal{D} belonging to the left cell containing w). Let us now show unicity. Let (u, x) be such a pair. Since $\operatorname{deg} h_{u, w, x}=\mathbf{a}(x)$ and $x \in \mathcal{D}$, we deduce from P_{2} that $u=w^{-1}$. Moreover, since $\mathbf{a}(x)=\mathbf{a}(w)$ and $x \leqslant_{\mathcal{L}} w$, we have $x \sim_{\mathcal{L}} w$ by P_{9}. But, by P_{13}, x is the unique element of \mathcal{D} belonging to the left cell containing w.

2. Preliminaries on type B (asymptotic case)

From now on, we are working under the following hypothesis.
Hypothesis and notation. We assume now that $W=W_{n}$ is of type $B_{n}, n \geqslant 1$. We write $S=S_{n}=$ $\left\{t, s_{1}, \ldots, s_{n-1}\right\}$ as in [3, §2.1]: the Dynkin diagram of W_{n} is given by

We also assume that $\Gamma=\mathbb{Z}^{2}$ and that Γ is ordered lexicographically:

$$
(a, b) \leqslant\left(a^{\prime}, b^{\prime}\right) \quad \Longleftrightarrow \quad a<a^{\prime} \quad \text { or } \quad\left(a=a^{\prime} \text { and } b \leqslant b^{\prime}\right)
$$

We set $V=v^{(1,0)}$ and $v=v^{(0,1)}$ so that $A=\mathbb{Z}\left[V, V^{-1}, v, v^{-1}\right]$ is the Laurent polynomial ring in two algebraically independent indeterminates V and v. If $w \in W_{n}$, we denote by $\ell_{t}(w)$ the number of occurrences of t in a reduced expression of w. We set $\ell_{s}(w)=\ell(w)-\ell_{t}(w)$. Then ℓ_{s} and ℓ_{t} are weight functions and we assume that $L=L_{n}: W_{n} \rightarrow \Gamma, w \mapsto\left(\ell_{t}(w), \ell_{s}(w)\right)$. So $\mathcal{H}=\mathcal{H}_{n}=\mathcal{H}\left(W_{n}, S_{n}, L_{n}\right)$. We denote by \mathfrak{S}_{n} the subgroup of W generated by $\left\{s_{1}, \ldots, s_{n-1}\right\}$: it is isomorphic to the symmetric group of degree n.

We now recall some notation from [3, §2.1 and 4.1]. Let $r_{1}=t_{1}=t$ and, if $1 \leqslant i \leqslant$ $n-1$, let $r_{i+1}=s_{i} r_{i}$ and $t_{i+1}=s_{i} t_{i} s_{i}$. If $0 \leqslant l \leqslant n$, let $a_{l}=r_{1} r_{2} \cdots r_{l}$. We denote by \mathfrak{S}_{l}, $W_{l}, \mathfrak{S}_{l, n-l}, W_{l, n-l}$ the standard parabolic subgroups of W_{n} generated by $\left\{s_{1}, s_{2}, \ldots, s_{l-1}\right\}$,
$\left\{t, s_{1}, s_{2}, \ldots, s_{l-1}\right\}, S_{n} \backslash\left\{t, s_{l}\right\}$ and $S_{n} \backslash\left\{s_{l}\right\}$, respectively. The longest element of \mathfrak{S}_{l} is denoted by σ_{l}. Let

$$
Y_{l, n-l}=\left\{a \in \mathfrak{S}_{n} \mid \forall \sigma \in \mathfrak{S}_{l, n-l}, \ell(a \sigma) \geqslant \ell(\sigma)\right\}
$$

If $w \in W_{n}$ is such that $\ell_{t}(w)=l$, then $[3, \S 4.6]$ there exist unique $a_{w}, b_{w} \in Y_{l, n-l}, \sigma_{w} \in \mathfrak{S}_{l, n-l}$ such that $w=a_{w} a_{l} \sigma_{w} b_{w}^{-1}$. Recall that $\ell(w)=\ell\left(a_{w}\right)+\ell\left(a_{l}\right)+\ell\left(\sigma_{w}\right)+\ell\left(b_{w}\right)$.

2.1. Some submodules of \mathcal{H}

If l is a natural number such that $0 \leqslant l \leqslant n$, we set

$$
\begin{array}{cc}
\mathcal{T}_{l}=\bigoplus_{\substack{w \in W_{n} \\
\ell_{t}(w)=l}} A T_{w}, \quad \mathcal{I}_{\leqslant l}=\bigoplus_{\substack{w \in W_{n} \\
\ell_{t}(w) \leqslant l}} A T_{w}, \quad \mathcal{T}_{\geqslant l}=\bigoplus_{\substack{w \in W_{n} \\
\ell_{t}(w) \geqslant l}} A T_{w}, \\
\mathcal{C}_{l}=\bigoplus_{\substack{w \in W_{n} \\
\ell_{t}(w)=l}} A C_{w}, \quad \mathcal{C}_{\leqslant l}=\bigoplus_{\substack{w \in W_{n} \\
\ell_{t}(w) \leqslant l}} A C_{w} \quad \text { and } \quad \mathcal{C} \geqslant l=\bigoplus_{\substack{w \in W_{n} \\
\ell_{t}(w) \geqslant l}} A C_{w} .
\end{array}
$$

Let $\Pi_{?}^{T}: \mathcal{H}_{n} \rightarrow \mathcal{T}_{?}$ and $\Pi_{?}^{C}: \mathcal{H}_{n} \rightarrow \mathcal{C}$? be the natural projections (for $? \in\{l, \leqslant l, \geqslant l\}$).
Proposition 2.1. Let l be a natural number such that $0 \leqslant l \leqslant n$. Then:
(a) \mathcal{T}_{l} and \mathcal{C}_{l} are sub- $\mathcal{H}\left(\mathfrak{S}_{n}\right)$-modules- $\mathcal{H}\left(\mathfrak{S}_{n}\right)$ of \mathcal{H}_{n}. The maps Π_{l}^{T} and Π_{l}^{C} are morphisms of $\mathcal{H}\left(\mathfrak{S}_{n}\right)$-modules- $\mathcal{H}\left(\mathfrak{S}_{n}\right)$.
(b) $\mathcal{T}_{\leqslant l}=\mathcal{C}_{\leqslant l}$.
(c) $\mathcal{C} \geqslant l$ is a two-sided ideal of \mathcal{H}_{n}.

Proof. (a) follows from [3, Theorem 6.3(b)]. (b) is clear. (c) follows from [3, Corollary 6.7].
The next proposition is a useful characterization of the elements of the two-sided ideal \mathcal{C}_{n}.
Proposition 2.2. Let $h \in \mathcal{H}_{n}$. The following are equivalent:
(1) $h \in \mathcal{C}_{n}$.
(2) $\forall x \in \mathcal{H}_{n},\left(T_{t}-V\right) x h=0$.
(3) $\forall x \in \mathcal{H}\left(\mathfrak{S}_{n}\right),\left(T_{t}-V\right) x h=0$.

Proof. If $\ell_{t}(w)=n$, then $t w<w$ so $\left(T_{t}-V\right) C_{w}=0$ by [16, Theorem 6.6(b)]. Since \mathcal{C}_{n} is a two-sided ideal of \mathcal{H}_{n} (see Proposition 2.1(c)), we get that (1) implies (2). It is also obvious that (2) implies (3). It remains to show that (3) implies (1).

Let $I=\left\{h \in \mathcal{H}_{n} \mid \forall x \in \mathcal{H}\left(\mathfrak{S}_{n}\right),\left(T_{t}-V\right) x h=0\right\}$. Then I is clearly a sub- $\mathcal{H}\left(\mathfrak{S}_{n}\right)$-mod-ule- \mathcal{H}_{n} of \mathcal{H}_{n}. We need to show that $I \subset \mathcal{C}_{n}$. In other words, since $\mathcal{C}_{n} \subset I$, we need to show that $I \cap \mathcal{C}_{\leqslant n-1}=0$. Let $I^{\prime}=I \cap \mathcal{C}_{\leqslant n-1}=I \cap \mathcal{T}_{\leqslant n-1}$ (see Proposition 2.1(b)). Let $X=\left\{w \in W_{n} \mid \tau\left(I^{\prime} T_{w^{-1}}\right) \neq 0\right\}$. Showing that $I^{\prime}=0$ is equivalent to showing that $X=\emptyset$.

Assume $X \neq \emptyset$. Let w be an element of X of maximal length and let h be an element of I^{\prime} such that $\tau\left(h T_{w^{-1}}\right) \neq 0$. Since $h \in \mathcal{T}_{\leqslant n-1}$, we have $\ell_{t}(w) \leqslant n-1$. Moreover, $T_{t} h=V h$, so
$\tau\left(T_{t} h T_{w^{-1}}\right)=\tau\left(h T_{w^{-1}} T_{t}\right) \neq 0$. By the maximality of $\ell(w)$, we get that $t w<w$. So, there exists $s \in S_{n}$ such that $s w>w$ and $s \neq t$. Then

$$
\begin{aligned}
\tau\left(T_{s} h T_{(s w)^{-1}}\right) & =\tau\left(h T_{(s w)^{-1}} T_{s}\right) \\
& =\tau\left(h T_{w^{-1}}\right)+\left(v-v^{-1}\right) \tau\left(h T_{(s w)^{-1}}\right) \\
& \neq 0,
\end{aligned}
$$

the last inequality following from the maximality of $\ell(w)$ (which implies that $\tau\left(h T_{(s w)^{-1}}\right)=0$). But $T_{s} h \in I^{\prime}$ and so $s w \in X$. This contradicts the maximality of $\ell(w)$.

2.2. Some results on the Kazhdan-Lusztig basis

In this subsection, we study the elements of the Kazhdan-Lusztig basis of the form $C_{a_{l} \sigma}$ where $0 \leqslant l \leqslant n$ and $\sigma \in \mathfrak{S}_{n}$.

Proposition 2.3. Let $\sigma \in \mathfrak{S}_{n}$ and let $0 \leqslant l \leqslant n$. Then $C_{a_{l}} C_{\sigma}=C_{a_{l} \sigma}$ and $C_{\sigma} C_{a_{l}}=C_{\sigma a_{l}}$.
Proof. Let $C=C_{a_{l}} C_{\sigma}$. Then $\bar{C}=C$ and

$$
C-T_{a_{l} \sigma}=\sum_{w<a_{l} \sigma} \lambda_{w} T_{w}
$$

with $\lambda_{w} \in A$ for $w<a_{l} \sigma$. To show that $C=C_{a_{l} \sigma}$, it is sufficient to show that $\lambda_{w} \in A_{<0}$.
But, $C_{a_{l}}=T_{a_{l}}+\sum_{x<a_{l}} V^{\ell_{t}(x)-l} \beta_{x} T_{x}$ with $\beta_{x} \in \mathbb{Z}\left[v, v^{-1}\right]$ (see [3, Theorem 6.3(a)]). Hence,

$$
C=T_{a_{l} \sigma}+\sum_{\tau<\sigma} p_{\tau, \sigma}^{*} T_{a_{l} \tau}+\sum_{x<a_{l}} V^{\ell_{t}(x)-l} \beta_{x} T_{x} C_{\sigma} .
$$

But, if $x<a_{l}$, then $\ell_{t}(x)<l$. This shows that $\lambda_{w} \in A_{<0}$ for every $w<a_{l} \sigma$. This shows the first equality. The second one is obtained by a symmetric argument.

Proposition 2.3 shows that it can be useful to compute in different ways the elements $C_{a_{l}}$ to be able to relate the Kazhdan-Lusztig basis of \mathcal{H}_{n} to the Kazhdan-Lusztig basis of $\mathcal{H}\left(\mathfrak{S}_{n}\right)$. Following the work of Dipper, James and Murphy [4], Ariki and Koike [2] and Graham and Lehrer [11, §5], we set

$$
\begin{aligned}
P_{l} & =\left(T_{t_{1}}+V^{-1}\right)\left(T_{t_{2}}+V^{-1}\right) \cdots\left(T_{t_{l}}+V^{-1}\right) \\
& =\sum_{0 \leqslant k \leqslant l} V^{k-l}\left(\sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant l} T_{t_{i_{1}} \ldots t_{i_{k}}}\right) .
\end{aligned}
$$

Lemma 2.4. P_{n} is central in \mathcal{H}_{n}.
Proof. First, P_{n} commutes with T_{t} (indeed, $t t_{i}=t_{i} t>t_{i}$ for $1 \leqslant i \leqslant n$). By [2, Lemma 3.3], P_{n} commutes with $T_{s_{i}}$ for $1 \leqslant i \leqslant n-1$. Since the notation and conventions are somewhat different, we recall here a brief proof. First, if $j \notin\{i, i+1\}, s_{i} t_{j}=t_{j} s_{i}>t_{j}$ so $T_{s_{i}}$ commutes
with $T_{t_{j}}$. Therefore, it is sufficient to show that $T_{s_{i}}$ commutes with $\left(T_{t_{i}}+V^{-1}\right)\left(T_{t_{i+1}}+V^{-1}\right)$. This follows from a straightforward computation using the fact that $s_{i} t_{i}>t_{i}$, that $t_{i+1} s_{i}<t_{i+1}$ and that $s_{i} t_{i}=t_{i+1} s_{i}$.

Proposition 2.5. If $0 \leqslant l \leqslant n$, then $C_{a_{l}}=P_{l} T_{\sigma_{l}}^{-1}=T_{\sigma_{l}}^{-1} P_{l}$.
Proof. The computation may be performed in the subalgebra of \mathcal{H}_{n} generated by $\left\{T_{t}, T_{s_{1}}\right.$, $\left.\ldots, T_{S_{l-1}}\right\}$ so we may, and we will, assume that $l=n$. First, we have $T_{t} P_{n}=V P_{n}$. Since P_{n} is central in \mathcal{H}_{n}, it follows from the characterization of \mathcal{C}_{n} given by Proposition 2.2 that $P_{n} \in \mathcal{C}_{n}$.

Now, let $h=C_{a_{n}}-P_{n} T_{\sigma_{n}}^{-1}$. Then, by Proposition 2.1(a), we have $h \in \mathcal{C}_{n}$. Moreover, it is easily checked that $h \in \mathcal{T}_{\leqslant n-1}=\mathcal{C}_{\leqslant n-1}$. So $h=0$.

Corollary 2.6. If $0 \leqslant l \leqslant n$ and $\sigma \in \mathfrak{S}_{n}$, then $\Pi_{0}^{T}\left(C_{a_{l} \sigma}\right)=V^{-l} T_{\sigma_{l}}^{-1} C_{\sigma}$. In particular, $\tau\left(C_{a_{l} \sigma}\right)=$ $V^{-l} \tau\left(T_{\sigma_{l}}^{-1} C_{\sigma}\right)$.

Proof. Since Π_{0}^{T} is a morphism of right $\mathcal{H}\left(\mathfrak{S}_{n}\right)$-modules (see Proposition 2.1(a)) and since $C_{a_{l} \sigma}=P_{l} T_{\sigma_{l}}^{-1} C_{\sigma}$ (see Propositions 2.3 and 2.5), we have $\Pi_{0}^{T}\left(C_{a_{l} \sigma}\right)=\Pi_{0}^{T}\left(P_{l}\right) T_{\sigma_{l}}^{-1} C_{\sigma}$. But, $\Pi_{0}^{T}\left(P_{l}\right)=V^{-l}$. This completes the proof of the corollary.

3. Two-sided cells

The aim of this section is to show that, if x and y are two elements of W such that $\ell_{t}(x)=$ $\ell_{t}(y)=l$, then $x \leqslant_{\mathcal{L} \mathcal{R}} y$ if and only if $\sigma_{x} \leqslant_{\mathcal{L} \mathcal{R}}^{\mathfrak{S}_{l, n-l}} \sigma_{y}$ (see Theorem 3.5). Here, $\leqslant_{\mathcal{L} \mathcal{R}}^{\mathfrak{S}_{l, n-l}}$ is the preorder $\leqslant \mathcal{L R}$ defined inside the parabolic subgroup $\mathfrak{S}_{l, n-l}$. For this, we adapt an argument of Geck [7] who was considering the preorder $\leqslant \mathcal{L}$.

We start by defining an order relation \preccurlyeq on W. Let x and y be two elements of W. Then $x \prec y$ if the following conditions are fulfilled:
(1) $\ell_{t}(x)=\ell_{t}(y)$,
(2) $x \leqslant y$,
(3) $a_{x}<a_{y}$ or $b_{x}<b_{y}$,
(4) $\sigma_{x} \leqslant_{\mathcal{L} \mathcal{R}}^{\mathfrak{S}_{l, n-l}} \sigma_{y}$.

We write $x \preccurlyeq y$ if $x \prec y$ or $x=y$. If $y \in W_{n}$, we set

$$
\Gamma_{y}=T_{a_{y}} C_{a_{\ell_{t}(y)}} C_{\sigma_{y}} T_{b_{y}^{-1}}
$$

Lemma 3.1. Let $y \in W$. Then $\Gamma_{y} \in T_{y}+\bigoplus_{x<y} A_{<0} T_{x}$.
Proof. First, Γ_{y} is a linear combination of elements of the form $T_{a_{y}} T_{z} T_{b_{y}^{-1}}$ with $z \leqslant a_{\ell_{t}(y)} \sigma_{y}$, so it is a linear combination of elements of the form T_{x} with $x \leqslant y$.

Let $l=\ell_{t}(y)$ and $\sigma=\sigma_{y}$. We have

$$
\Gamma_{y}=T_{a_{y}} T_{a_{l}} T_{\sigma} T_{b_{y}^{-1}}+\left(\sum_{\tau<\sigma} p_{\tau, \sigma}^{*} T_{a_{y}} T_{a_{l}} T_{\tau} T_{b_{y}^{-1}}\right)+\left(\sum_{a<a_{l}, \tau \leqslant \sigma} p_{a, a_{l}}^{*} p_{\tau, \sigma}^{*} T_{a_{y}} T_{a} T_{\tau} T_{b_{y}^{-1}}\right)
$$

If $\tau<\sigma$, then $T_{a_{y}} T_{a_{l}} T_{\tau} T_{b_{y}^{-1}}=T_{a_{y} a_{l} \tau b_{y^{-1}}}$ by [3, §4.6]. On the other hand, if $a<a_{l}$, then $\ell_{t}(a)<l$ so $T_{a_{y}} T_{a} T_{\tau} T_{b_{y}^{-1}}$ is a linear combination, with coefficients in $\mathbb{Z}\left[v, v^{-1}\right]$ of elements T_{w} with $\ell_{t}(w)=\ell_{t}(a)<l$ (because a_{y}, τ and b_{y}^{-1} are elements of \mathfrak{S}_{n}). Since $V^{l-\ell_{t}(a)} p_{a, a_{l}}^{*} \in \mathbb{Z}\left[v, v^{-1}\right]$ by [3, Theorem 6.3(a)], this proves the lemma.

Lemma 3.2. If $y \in W_{n}$, then

$$
\bar{\Gamma}_{y}=\Gamma_{y}+\sum_{x<y} \rho_{x, y} \Gamma_{x},
$$

where the $\rho_{x, y}$'s belong to $\mathbb{Z}\left[v, v^{-1}\right]$.
Proof. Let $l=\ell_{t}(y)$. Then

$$
T_{a_{y}^{-1}}^{-1}=T_{a_{y}}+\sum_{\substack{a \in Y_{l, n-l} \\ x \in \mathfrak{S l l n - l}^{a x<a_{y}}}} R_{a x, a_{y}} T_{a} T_{x}
$$

Moreover, if $a \in Y_{l, n-l}$ and $x \in \mathfrak{S}_{l, n-l}$ are such that $a x<a_{y}$, then $a<a_{y}$ (see [16, Lemma 9.10(f)]). Thus,

$$
\bar{\Gamma}_{y}=\Gamma_{y}+\sum_{\substack{a, b \in Y_{l, n-l} \\ x, x^{\prime} \in \mathfrak{S}_{l, n-l} \\ a x<a_{y} \text { or } b x^{\prime}<b_{y}}} R_{a x, a_{y}} R_{b x^{\prime}, b_{y}} T_{a}\left(T_{x} C_{a_{l} \sigma_{y}} T_{x^{\prime-1}}\right) T_{b^{-1}} .
$$

The result now follows from Lemma 3.1.
Corollary 3.3. If $x \preccurlyeq y$, then $\sum_{x \preccurlyeq z \preccurlyeq y} \bar{\rho}_{x, z} \rho_{z, y}=\delta_{x, y}$.
Proof. This follows immediately from Lemma 3.2 and from the fact that $\mathcal{H} \rightarrow \mathcal{H}, h \mapsto \bar{h}$ is an involution.

Corollary 3.4. If $w \in W$, then

$$
C_{w}=\Gamma_{w}+\sum_{y<w} \pi_{y, w}^{*} \Gamma_{y},
$$

where $\pi_{y, w}^{*} \in v^{-1} \mathbb{Z}\left[v^{-1}\right] \subset A_{<0}$ if $y \prec w$.
Proof. By Corollary 3.3, there exists a unique family $\left(\pi_{y, w}^{*}\right)_{y<w}$ of elements of $v^{-1} \mathbb{Z}\left[v^{-1}\right]$ such that $\Gamma_{w}+\sum_{y<w} \pi_{y, w}^{*} \Gamma_{y}$ is stable under the involution $h \mapsto \bar{h}$ of \mathcal{H}_{n} (see [6, p. 214]: this contains a general setting for including the arguments in [13, Proposition 2] or in [7, Proposition 3.3]).

But, by Lemma 3.1, we have

$$
\Gamma_{w}+\sum_{y<w} \pi_{y, w}^{*} \Gamma_{y} \in T_{w}+\left(\bigoplus_{y<w} A_{<0} T_{y}\right)
$$

So $C_{w}=\Gamma_{w}+\sum_{y<w} \pi_{y, w}^{*} \Gamma_{y}$.

We are now ready to prove the main theorem of this section.

Theorem 3.5. Let x and y be two elements of W such that $\ell_{t}(x)=\ell_{t}(y)=l$. Then $x \leqslant_{\mathcal{L R}} y$ if and only if $\sigma_{x} \leqslant_{\mathcal{L} \mathcal{R}}^{\mathfrak{S}_{l, n-l}} \sigma_{y}$.

Proof. Assume first that $\sigma_{x} \leqslant \mathcal{L R}_{\mathcal{S}, n-l} \sigma_{y}$. Decompose $\sigma_{x}=\left(\sigma_{x}^{\prime}, \sigma_{x}^{\prime \prime}\right)$ with $\sigma_{x}^{\prime} \in \mathfrak{S}_{l}$ and $\sigma_{x}^{\prime \prime} \in \mathfrak{S}_{n-l}$. Then $\sigma_{x}^{\prime} \leqslant \leqslant_{\mathcal{L} \mathcal{R}}^{\mathfrak{S}_{l}} \sigma_{y}^{\prime}$ so $\sigma_{l} \sigma_{y}^{\prime} \leqslant \leqslant_{\mathcal{L} \mathcal{R}}^{\mathfrak{S}_{l}} \sigma_{l} \sigma_{x}^{\prime}$ so $w_{l} \sigma_{l} \sigma_{x}^{\prime} \leqslant_{\mathcal{L} \mathcal{R}}^{W_{l}} w_{l} \sigma_{l} \sigma_{y}^{\prime}$. In other words, $a_{l} \sigma_{x}^{\prime} \leqslant{ }_{\mathcal{L} \mathcal{R}}^{W_{l}} a_{l} \sigma_{y}^{\prime}$. Therefore, $a_{l} \sigma_{x} \leqslant \mathcal{L R} a_{l} \sigma_{y}$. But, by [3, Theorem 7.7], we have $x \sim_{\mathcal{L R}} a_{l} \sigma_{x}$ and $y \sim_{\mathcal{L R}} a_{l} \sigma_{y}$. So $x \leqslant \mathcal{L R} y$.

To show the converse statement, it is sufficient to show that

$$
I=\left(\bigoplus_{\substack{u \in W_{n} \\ \ell_{t}(u)=l \text { and } \sigma_{u} \leqslant \mathcal{L}, \overrightarrow{\mathcal{R}}}} A C_{u}\right) \oplus \mathcal{C}_{\sigma_{y}} \geqslant l+1
$$

is a two-sided ideal. But, by Corollary 3.4, we have

$$
I=\left(\bigoplus_{\substack{u \in W_{n} \\ \ell_{t}(u)=l \text { and } \sigma_{u} \leqslant \mathcal{L}, \mathcal{R}-l \\ \mathfrak{S}_{y}}} A \Gamma_{u}\right) \oplus \mathcal{C}_{\geqslant l+1} .
$$

By symmetry, we only need to prove that I is a left ideal. Let $h \in \mathcal{H}_{n}$ and let $u \in W_{n}$ such that $\ell_{t}(u)=l$ and $\sigma_{u} \leqslant \mathbb{L} \mathcal{R}_{\mathfrak{S}_{l, n-l}} \sigma_{y}$. We want to prove that $h \Gamma_{u} \in I$. For simplification, let $a=a_{u}$, $b=b_{u}, \sigma=\sigma_{u}$. Let

$$
X_{l}=\left\{x \in W_{n} \mid \forall w \in W_{l, n-l}, \ell(x w) \geqslant \ell(w)\right\} .
$$

Then, by [7, Proposition 3.3] and [3, Lemma 7.3 and Corollary 7.4],

$$
T_{a} C_{a_{l} \sigma} \in \bigoplus_{\substack{x \in X_{l} \\ \tau \leqslant \mathfrak{S}_{l, n-l}}} A C_{x a_{l} \tau}
$$

Let I^{\prime} be the right-hand side of the previous formula. By [7, Corollary 3.4], I^{\prime} is a left ideal. Therefore, $h T_{a} C_{a_{l} \sigma} \in I^{\prime}$. On the other hand,

$$
I^{\prime} \subset\left(\bigoplus_{\substack{x \in Y_{l, n-l} \\ \tau \leqslant \mathcal{E}_{l, n-l}}} A C_{x a_{l} \tau}\right) \oplus \mathcal{C} \geqslant l+1
$$

Now, by Corollary 3.4, we have

$$
I^{\prime} \subset\left(\bigoplus_{\substack{x \in Y_{l, n-l} \\ \tau \leqslant \mathcal{J}_{\mathcal{L}}, n-l}} A T_{x} C_{a_{l} \tau}\right) \oplus \mathcal{C}_{\geqslant l+1}
$$

Therefore, $h \Gamma_{u} \in I^{\prime} T_{b^{-1}} \subset I$, as desired.
Corollary 3.6. Let x and y be two elements of W_{n}. Then $x \sim_{\mathcal{L R}} y$ if and only if $\ell_{t}(x)=$ $\ell_{t}(y)(=l)$ and $\sigma_{x} \sim \sim_{\mathcal{L} \mathcal{R}}^{\mathfrak{S}_{l n-l}} \sigma_{y}$.

Remark 3.7. We associate to each element $w \in W_{n}$ a pair $(P(w), Q(w)$) of standard bi-tableaux as in [3, §3]. Let $l=\ell_{t}(w)$. Write $Q(w)=\left(Q^{+}(w), Q^{-}(w)\right)$ and denote by $\lambda^{?}(w)$ the shape of $Q^{?}(w)$ for $? \in\{+,-\}$. The map $w \mapsto(P(w), Q(w))$ is a generalization of the RobinsonSchensted correspondence (see [18, Theorem 3.3] or [3, Theorem 3.3]). Then $\lambda^{+}(w)$ is a partition of $n-l$ and $\lambda^{-}(w)$ is a partition of l, so that $\lambda(w)=\left(\lambda^{+}(w), \lambda^{-}(w)\right)$ is a bipartition of n. If we write $\sigma_{w}=\sigma_{w}^{-} \times \sigma_{w}^{+}$with $\sigma_{w}^{-} \in \mathfrak{S}_{l}$ and $\sigma_{w}^{+} \in \mathfrak{S}_{n-l}$, note that $\lambda^{+}(w)$ is the shape of the standard tableau associated to σ_{w}^{+}by the classical Robinson-Schensted correspondence while $\lambda^{-}(w)^{*}$ (the partition conjugate to $\lambda^{-}(w)$) is the shape of the standard tableau associated to σ_{w}^{-}. Let \leqslant denote the dominance order on partitions: if $\alpha=\left(\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots\right)$ and $\beta=\left(\beta_{1} \geqslant \beta_{2} \geqslant \cdots\right)$ are two partitions of the same natural number, we write $\alpha \preccurlyeq \beta$ if

$$
\sum_{j=1}^{i} \alpha_{j} \leqslant \sum_{j=1}^{i} \beta_{j}
$$

for every $i \geqslant 1$. Now, let x and y be two elements of W_{n}. If $\ell_{t}(x)=\ell_{t}(y)$, then Theorem 3.5 is equivalent to:

$$
\begin{equation*}
x \leqslant \mathcal{L R} y \quad \text { if and only if } \quad \lambda^{+}(x) \leqslant \lambda^{+}(y) \text { and } \lambda^{-}(y) \leqslant \lambda^{-}(x) . \tag{3.8}
\end{equation*}
$$

This follows from [17, 3.2] and [5, 2.13.1] (see also [10, Exercise 5.6]). Then, for general x and y, Corollary 3.6 is equivalent to:

$$
\begin{equation*}
x \sim_{\mathcal{L R}} y \quad \text { if and only if } \quad \lambda(x)=\lambda(y) . \tag{3.9}
\end{equation*}
$$

4. Around Lusztig's conjectures

In this section, we prove some results which are related to Lusztig's conjectures. If $\sigma \in \mathfrak{S}_{n}$, we denote by $\mathbf{a}_{\mathfrak{S}}(\sigma)$ the function a evaluated on σ but computed in \mathfrak{S}_{n}. It is given by the following formula. Let $\lambda=\left(\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots\right)$ be the shape of the left cell of σ. Then

$$
\mathbf{a}_{\mathfrak{S}}(\sigma)=\sum_{i \geqslant 1}(i-1) \lambda_{i}
$$

We denote by \mathbf{a}_{λ} the right-hand side of the previous formula. If $z \in W$, we set

$$
\boldsymbol{\alpha}(z)=\left(\ell_{t}(z), 2 \mathbf{a}_{\mathfrak{S}}\left(\sigma_{z}\right)-\mathbf{a}_{\mathfrak{S}}\left(\sigma_{\ell_{t}(z)} \sigma_{z}\right)\right) \in \mathbb{N}^{2}
$$

In terms of partitions (using the notation introduced in Remark 3.7), we have

$$
\boldsymbol{\alpha}(z)=\left(\left|\lambda^{-}(z)\right|, \mathbf{a}_{\lambda^{+}(z)}+2 \mathbf{a}_{\lambda^{-}(z)^{*}}-\mathbf{a}_{\lambda^{-}(z)}\right)
$$

We now study some properties of the function $\boldsymbol{\alpha}$.
Remark 4.1. Geck and Iancu [9] have proved, using the result of this section (and especially Proposition 4.2), that $\mathbf{a}=\boldsymbol{\alpha}$. They have deduced, using the notion of orthogonal representations, that Lusztig's conjectures P_{i} hold for $i=\{1,2,3,4,5,6,7,8,11,12,13,14\}$. After that, Geck [8] proved P_{9} and P_{10}.

The first proposition shows that $\boldsymbol{\alpha}$ is decreasing with respect to $\leqslant \mathcal{L R}$ (compare with Lusztig's conjecture P_{4}).

Proposition 4.2. Let z and z^{\prime} be two elements of W. Then:
(a) If $z \leqslant \mathcal{L R} z^{\prime}$, then $\boldsymbol{\alpha}\left(z^{\prime}\right) \leqslant \boldsymbol{\alpha}(z)$.
(b) If $z \leqslant \mathcal{L R} z^{\prime}$ and $\boldsymbol{\alpha}(z)=\boldsymbol{\alpha}\left(z^{\prime}\right)$ then $z \sim_{\mathcal{L R}} z^{\prime}$.

Proof. Since $z \leqslant \mathcal{L R} z^{\prime}$, we have $\ell_{t}(z) \geqslant \ell_{z}\left(z^{\prime}\right)$ by [3, Corollary 6.7]. Therefore, if $\ell_{t}(z)>\ell_{t}\left(z^{\prime}\right)$, then $\boldsymbol{\alpha}(z)>\boldsymbol{\alpha}\left(z^{\prime}\right)$ and $z \varkappa_{\mathcal{L R}} z^{\prime}$. This proves (a) and (b) in this case.

So, assume that $\ell_{t}(z)=\ell_{t}\left(z^{\prime}\right)=l$. Then, by Theorem 3.5, we have $\sigma_{z} \leqslant_{\mathcal{L} \mathcal{R}}^{\mathfrak{S}_{l, n-l}} \sigma_{z^{\prime}}$. Write $\sigma_{z}=(\sigma, \tau)$ and $\sigma_{z^{\prime}}=\left(\sigma^{\prime}, \tau^{\prime}\right)$ where $\sigma, \sigma^{\prime} \in \mathfrak{S}_{l}$ and $\tau, \tau^{\prime} \in \mathfrak{S}_{n-l}$. Then

$$
\boldsymbol{\alpha}(z)=\left(l, 2 \mathbf{a}_{\mathfrak{S}}(\sigma)-\mathbf{a}_{\mathfrak{S}}\left(\sigma_{l} \sigma\right)+\mathbf{a}_{\mathfrak{S}}(\tau)\right)
$$

and

$$
\boldsymbol{\alpha}\left(z^{\prime}\right)=\left(l, 2 \mathbf{a}_{\mathfrak{S}}\left(\sigma^{\prime}\right)-\mathbf{a}_{\mathfrak{S}}\left(\sigma_{l} \sigma^{\prime}\right)+\mathbf{a}_{\mathfrak{S}}\left(\tau^{\prime}\right)\right)
$$

But $\sigma \leqslant \leqslant_{\mathcal{L} \mathcal{R}}^{\mathfrak{S}_{l}} \sigma^{\prime}$ and $\tau \leqslant \leqslant_{\mathcal{L} \mathcal{R}}^{\mathfrak{S}_{l, n-l}} \tau^{\prime}$. Moreover, $\sigma_{l} \sigma^{\prime} \leqslant{ }_{\mathcal{L} \mathcal{R}}^{\mathfrak{S}_{l}} \sigma_{l} \tau^{\prime}$. Therefore, since Lusztig's conjecture P_{4} holds in the symmetric groups, we obtain (a).

If moreover $\boldsymbol{\alpha}(z)=\boldsymbol{\alpha}\left(z^{\prime}\right)$, then $\mathbf{a}_{\mathfrak{S}_{l}}(\sigma)=\mathbf{a}_{\mathfrak{S}_{l}}\left(\sigma^{\prime}\right)$ so $\sigma \sim_{\mathcal{L R}} \sigma^{\prime}$ by property P_{11} for the symmetric group. Similarly, $\tau \sim_{\mathcal{L R}} \tau^{\prime}$ so $\sigma_{z} \sim_{\mathcal{L R}} \sigma_{z^{\prime}}$. So, by Corollary 3.6, $z \sim_{\mathcal{L R}} z^{\prime}$.

The next proposition relates the functions $\boldsymbol{\alpha}$ and Δ.
Proposition 4.3. Let $z \in W$. Then $\boldsymbol{\alpha}(z) \leqslant \Delta(z)$. Moreover, $\boldsymbol{\alpha}(z)=\Delta(z)$ if and only if $z^{2}=1$.
Proof. Let us start with two results concerning the degree of $\tau\left(\Gamma_{z}\right)$ for $z \in W_{n}$:
Lemma 4.4. Let $z \in W_{n}$. Then

$$
\tau\left(\Gamma_{z}\right)= \begin{cases}0, & \text { if } a_{z} \neq b_{z} \\ V^{-\ell_{t}(z)} \tau\left(T_{\sigma_{\ell_{t}(z)}}^{-1} C_{\sigma_{z}}\right), & \text { if } a_{z}=b_{z}\end{cases}
$$

Proof of Lemma 4.4. Write $l=\ell_{t}(z)$. Then, $\tau\left(\Gamma_{z}\right)=\tau\left(\Pi_{0}^{T}\left(\Gamma_{z}\right)\right)$. So, by Proposition 2.1(a) and Corollary 2.6, we have $\tau\left(\Gamma_{z}\right)=V^{-l} \tau\left(T_{a_{z}} T_{\sigma_{l}}^{-1} C_{\sigma_{z}} T_{b_{z}^{-1}}\right)$. Therefore, $V^{l} \tau\left(\Gamma_{z}\right)$ is equal to the coefficient of $T_{b_{z}}$ in $T_{a_{z}} T_{\sigma_{l}}^{-1} C_{\sigma_{z}}$. Write $T_{\sigma_{l}}^{-1} C_{\sigma_{z}}=\sum_{x \in \mathfrak{S}_{l, n-l}} \beta_{x} T_{x}$. Then $T_{a_{z}} T_{\sigma_{l}}^{-1} C_{\sigma_{z}}=$ $\sum_{x \in \mathfrak{S}_{l, n-l}} \beta_{x} T_{a_{z} x}$. Thus, if $a_{z} \neq b_{z}$, then $b_{z} \notin a_{z} \mathfrak{S}_{l, n-l}$ so $\tau\left(\Gamma_{z}\right)=0$. If $a_{z}=b_{z}$, then $\tau\left(\Gamma_{z}\right)=$ $V^{-l} \beta_{1}=V^{-l} \tau\left(T_{\sigma_{l}}^{-1} C_{\sigma_{z}}\right)$.

Corollary 4.5. Let $z \in W_{n}$. Then:
(a) $\operatorname{deg} \tau\left(\Gamma_{z}\right) \leqslant-\boldsymbol{\alpha}(z)$.
(b) $\operatorname{deg} \tau\left(\Gamma_{z}\right)=-\boldsymbol{\alpha}(z)$ if and only if z is an involution.

Proof of Corollary 4.5. This follows from Lemma 4.4 and Corollary 1.6 (recall that Lusztig's conjectures $\left(P_{i}\right)_{1 \leqslant i \leqslant 15}$ hold in the symmetric group).

Let us now come back to the computation of $\Delta(z)$. By Corollary 3.4, we have

$$
\tau\left(C_{z}\right)=\tau\left(\Gamma_{z}\right)+\sum_{y<z} \pi_{y, z}^{*} \tau\left(\Gamma_{y}\right)
$$

But, if $y \prec z$, then $\boldsymbol{\alpha}(z) \leqslant \boldsymbol{\alpha}(y)$ (see Proposition 4.2(a)). Therefore, by Corollary 4.5(a), we have $\operatorname{deg} \pi_{y, z}^{*} \tau\left(\Gamma_{y}\right)<-\boldsymbol{\alpha}(z)$. So $\operatorname{deg} \tau\left(C_{z}\right) \leqslant-\boldsymbol{\alpha}(z)$ and $\operatorname{deg} \tau\left(C_{z}\right)=-\boldsymbol{\alpha}(z)$ if and only if $\operatorname{deg} \tau\left(\Gamma_{z}\right)=-\boldsymbol{\alpha}(z)$ that is, if and only if z is an involution (see Corollary 4.5(b)).

5. Specialization

We fix now a totally ordered abelian group Γ° and a weight function $L^{\circ}: W_{n} \rightarrow \Gamma^{\circ}$ such that $L^{\circ}(s)>0$ for every $s \in S_{n}$. Let $A^{\circ}=\mathbb{Z}\left[\Gamma^{\circ}\right]$ be denoted exponentially and let $\mathcal{H}_{n}^{\circ}=$ $\mathcal{H}\left(W_{n}, S_{n}, L^{\circ}\right)$. Let $\left(T_{w}^{\circ}\right)_{w \in W_{n}}$ denote the usual A°-basis of \mathcal{H}_{n}° and let $\left(C_{w}^{\circ}\right)_{w \in W_{n}}$ denote the Kazhdan-Lusztig basis of \mathcal{H}_{n}°.

Let $b=L^{\circ}(t)$ and $a=L^{\circ}\left(s_{1}\right)=\cdots=L^{\circ}\left(s_{n-1}\right)$. Let $\theta_{\Gamma}: \Gamma \rightarrow \Gamma^{\circ},(r, s) \mapsto a r+b s$. It is a morphism of groups which induces a morphism of \mathbb{Z}-algebras $\theta_{A}: A \rightarrow A^{\circ}$ such that $\theta_{A}(V)=v^{b}$ and $\theta_{A}(v)=v^{a}$. If \mathcal{H}_{n}° is viewed as an A-algebra through θ_{A}, then there is a unique morphism of A-algebras $\theta_{\mathcal{H}}: \mathcal{H}_{n} \rightarrow \mathcal{H}_{n}^{\circ}$ such that $\theta_{\mathcal{H}}\left(T_{w}\right)=T_{w}^{\circ}$ for every $w \in W_{n}$. The main result of this section is the following:

Proposition 5.1. If $b>(n-1) a$, then $\theta_{\mathcal{H}}\left(C_{w}\right)=C_{w}^{\circ}$ for every $w \in W_{n}$.
Proof. Assume that $b>(n-1) a$. Since $\overline{\theta_{\mathcal{H}}\left(C_{w}\right)}=\theta_{\mathcal{H}}\left(C_{w}\right)$, it is sufficient to show that $\theta_{\mathcal{H}}\left(C_{w}\right) \in T_{w}^{\circ}+\left(\bigoplus_{y<w} A_{<0}^{\circ} T_{y}^{\circ}\right)$. Since $\theta_{A}\left(\pi_{y, w}^{*}\right) \in A_{<0}^{\circ}$ for every $y<w$, it is sufficient to show that $\theta_{\mathcal{H}}\left(\Gamma_{w}\right) \in T_{w}^{\circ}+\left(\bigoplus_{y<w} A_{<0}^{\circ} T_{y}^{\circ}\right)$. For simplification, we set $l=\ell_{t}(w), a=a_{w}, b=b_{w}$ and $\sigma=\sigma_{w}$. We set $\Gamma_{w}^{\prime}=T_{a} C_{a_{l}} T_{\sigma} T_{b^{-1}}$. Then $\Gamma_{w}=\sum_{\tau \leqslant \sigma} p_{\tau, \sigma}^{*} \Gamma_{a a_{l} \tau b^{-1}}^{\prime}$, with $p_{\tau, \sigma}^{*} \in v^{-1} \mathbb{Z}\left[v^{-1}\right]$ if $\tau<\sigma$ and $p_{\sigma, \sigma}^{*}=1$. So it is sufficient to show that $\theta_{\mathcal{H}}\left(\Gamma_{w}^{\prime}\right) \in T_{w}^{\circ}+\left(\bigoplus_{y<w} A_{<0}^{\circ} T_{y}^{\circ}\right)$. By Proposition 2.5, we have

$$
\begin{aligned}
\Gamma_{w}^{\prime} & =T_{a} P_{l} T_{\sigma_{l}}^{-1} T_{\sigma} T_{b^{-1}} \\
& =\sum_{k=0}^{l} V^{k-l}\left(\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant l} T_{a} T_{t_{i_{1}} t_{2} \ldots t_{i}} T_{\sigma_{l}}^{-1} T_{\sigma b^{-1}}\right) \\
& =\sum_{k=0}^{l} V^{k-l}\left(\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant l} T_{a \alpha\left(i_{1}, \ldots, i_{k}\right)} T_{a_{k}} T_{\beta\left(i_{1}, \ldots, i_{k}\right)} T_{\sigma_{l}}^{-1} T_{\sigma b^{-1}}\right),
\end{aligned}
$$

where $t_{i_{1}} \ldots t_{i_{k}}=\alpha\left(i_{1}, \ldots, i_{k}\right) a_{k} \beta\left(i_{1}, \ldots, i_{k}\right)$ with $\alpha\left(i_{1}, \ldots, i_{k}\right) \in Y_{k, n-k} \cap \mathfrak{S}_{l}$ and $\beta\left(i_{1}, \ldots\right.$, $\left.i_{k}\right) \in \mathfrak{S}_{l}$. Note that $\alpha\left(i_{1}, \ldots, i_{k}\right) a_{k}=r_{i_{1}} \ldots r_{i_{k}}$ (recall that r_{i} is defined as in [3, §4.1]) so that $\ell\left(\beta\left(i_{1}, \ldots, i_{k}\right)\right)=\left(i_{1}-1\right)+\cdots+\left(i_{k}-1\right)$. Now, let $\gamma\left(i_{1}, \ldots, i_{k}\right)=\sigma_{l} \beta\left(i_{1}, \ldots, i_{k}\right)^{-1}$. Then

$$
\Gamma_{w}^{\prime}=T_{w}+\sum_{k=0}^{l-1} V^{k-l}\left(\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant l} T_{a \alpha\left(i_{1}, \ldots, i_{k}\right)} T_{a_{k}} T_{\gamma\left(i_{1}, \ldots, i_{k}\right)}^{-1} T_{\sigma b^{-1}}\right) .
$$

If $0 \leqslant k \leqslant l-1 \leqslant n-1$, we define

$$
Y_{k, l-k, n-l}=\left\{\sigma \in \mathfrak{S}_{n} \mid \forall i \in\{1,2, \ldots, n-1\} \backslash\{k, l\}, \sigma s_{i}>\sigma\right\}
$$

Then $Y_{k, l-k, n-l}=Y_{l, n-l}\left(Y_{k, n-k} \cap \mathfrak{S}_{l}\right)$. Therefore, $a \alpha\left(i_{1}, \ldots, i_{k}\right) \in Y_{k, l-k, n-l}$. But, $Y_{k, l-k, n-l}=$ $Y_{k, n-k}\left(Y_{l, n-l} \cap \mathfrak{S}_{k, n-k}\right)$. So we can write $a \alpha\left(i_{1}, \ldots, i_{k}\right)=\alpha_{i_{1}, \ldots, i_{k}} \alpha^{\prime}\left(i_{1}, \ldots, i_{k}\right)$ with $\alpha_{i_{1}, \ldots, i_{k}} \in$ $Y_{k, n-k}$ and $\alpha^{\prime}\left(i_{1}, \ldots, i_{k}\right) \in Y_{l, n-l} \cap \mathfrak{S}_{k, n-k}$. Then $\ell\left(\alpha^{\prime}\left(i_{1}, \ldots, i_{k}\right)\right) \leqslant(l-k)(n-l)$ (indeed, $Y_{l, n-l} \cap \mathfrak{S}_{k, n-k}$ may be identified with the set of minimal length coset representatives of $\left.\mathfrak{S}_{n-k} / \mathfrak{S}_{l-k, n-l}\right)$. Note also that a_{k} and $\alpha^{\prime}\left(i_{1}, \ldots, i_{k}\right)$ commute. So

$$
\Gamma_{w}^{\prime}=T_{w}+\sum_{k=0}^{l-1} V^{k-l}\left(\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant l} T_{\alpha_{i_{1}, \ldots, i_{k}} a_{k}} T_{\alpha^{\prime}\left(i_{1}, \ldots, i_{k}\right)} T_{\gamma\left(i_{1}, \ldots, i_{k}\right)}^{-1} T_{\sigma b^{-1}}\right)
$$

If we write $T_{u} T_{v}^{-1} T_{\sigma b^{-1}}=\sum_{\tau \in \mathfrak{S}_{n}} \eta_{u, v, \tau} T_{\tau}$ with $\eta_{u, v, \tau} \in \mathbb{Z}\left[v, v^{-1}\right]$, then, by [16, Lemma 10.4(c)], we have deg $\eta_{u, v, \tau} \leqslant \ell(u)+\ell(v)$. Moreover,

$$
\Gamma_{w}^{\prime}=T_{w}+\sum_{k=0}^{l-1} V^{k-l}\left(\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant l}\left(\sum_{\tau \in \mathfrak{S}_{n}} \eta_{\alpha^{\prime}\left(i_{1}, \ldots, i_{k}\right), \gamma\left(i_{1}, \ldots, i_{k}\right), \tau} T_{\alpha_{i_{1}, \ldots, i_{k}} a_{k} \tau}\right)\right) .
$$

So it is sufficient to show that, for every $k \in\{0,1, \ldots, l-1\}$ and every sequence $1 \leqslant i_{1}<\cdots<$ $i_{k} \leqslant l$, we have

$$
\begin{equation*}
(k-l) b+\left(\ell\left(\alpha^{\prime}\left(i_{1}, \ldots, i_{k}\right)\right)+\ell\left(\gamma\left(i_{1}, \ldots, i_{k}\right)\right)\right) a<0 . \tag{*}
\end{equation*}
$$

But, $\ell\left(\alpha^{\prime}\left(i_{1}, \ldots, i_{k}\right)\right) \leqslant(l-k)(n-l)$ and

$$
\begin{aligned}
\ell\left(\gamma\left(i_{1}, \ldots, i_{k}\right)\right) & =\ell\left(\sigma_{l}\right)-\ell\left(\beta\left(i_{1}, \ldots, i_{k}\right)\right) \\
& =\frac{l(l-1)}{2}-\left(i_{1}-1\right)-\cdots-\left(i_{k}-1\right) \\
& \leqslant \frac{l(l-1)}{2}-\frac{k(k-1)}{2} \\
& =\frac{1}{2}(l-k)(l+k-1)
\end{aligned}
$$

So, in order to prove $(*)$, it is sufficient to prove that

$$
\begin{equation*}
2(k-l) b+(l-k)(2(n-l)+(l+k-1)) a<0 . \tag{**}
\end{equation*}
$$

But,

$$
2(k-l) b+a(l-k)(2(n-l)+(l+k-1)) a=2(k-l)(b-(n-1) a)+(l-k)(k+1-l) a .
$$

Since $k-l<0, b-(n-1) a>0$ and $k+1-l \leqslant 0$, we get $(* *)$.
If x and y are two elements of W_{n}, we write

$$
C_{x}^{\circ} C_{y}^{\circ}=\sum_{z \in W_{n}} h_{x, y, z}^{\circ} C_{z}^{\circ}
$$

where $h_{x, y, z}^{\circ} \in A^{\circ}$. We denote by $\leqslant_{\mathcal{L}}^{\circ}, \leqslant_{\mathcal{R}}^{\circ}, \leqslant_{\mathcal{L} \mathcal{R}}^{\circ}$ the preorders $\leqslant_{\mathcal{L}}, \leqslant_{\mathcal{R}}$ and $\leqslant_{\mathcal{L} \mathcal{R}}$ defined in \mathcal{H}_{n}°. Similarly, we define $\sim_{\mathcal{L}}^{\circ}, \sim_{\mathcal{R}}^{\circ}$ and $\sim_{\mathcal{L} \mathcal{R}}^{\circ}$.

Corollary 5.2. Assume that $b>(n-1)$ a. Let x, y and z be elements of W_{n} and let $? \in$ $\{\mathcal{L}, \mathcal{R}, \mathcal{L} \mathcal{R}\}$. Then:
(a) $h_{x, y, z}^{\circ}=\theta_{A}\left(h_{x, y, z}\right)$.
(b) If $x \leqslant ?$
(c) $x \sim_{?}^{0} y$ if and only if $x \sim_{?} y$.

Proof. (a) follows from Proposition 5.1. (b) follows from (a). (c) follows from (b) and from the counting argument in the proof of [3, Theorem 7.7].

Let $\tau^{\circ}: \mathcal{H}_{n}^{\circ} \rightarrow A^{\circ}$ denote the canonical symmetrizing form. If $z \in W_{n}$, we set

$$
\begin{gathered}
\mathbf{a}^{\circ}(z)=\max _{x, y \in W_{n}} \operatorname{deg} h_{x, y, z}^{\circ} \\
\Delta^{\circ}(z)=-\operatorname{deg} \tau^{\circ}\left(C_{z}^{\circ}\right)
\end{gathered}
$$

and

$$
\boldsymbol{\alpha}^{\circ}(z)=\theta_{\Gamma}(\boldsymbol{\alpha}(z))
$$

By Corollary 5.2(b) and by the same argument as in the proof of Proposition 4.2, we have, for every $z, z^{\prime} \in W_{n}$ such that $\ell_{t}(z)=\ell_{t}\left(z^{\prime}\right)$ and $z \leqslant_{\mathcal{L} \mathcal{R}}^{\circ} z^{\prime}$,

$$
\begin{equation*}
\boldsymbol{\alpha}^{\circ}\left(z^{\prime}\right) \leqslant \boldsymbol{\alpha}^{\circ}\left(z^{\prime}\right) \tag{5.3}
\end{equation*}
$$

Remark. Using the result of this section, Geck and Iancu [9] proved that $\mathbf{a}^{\circ}=\boldsymbol{\alpha}^{\circ}$ whenever $b>(n-1) a$.

Proposition 5.4. Assume that $b>(n-1) a$. Let $z \in W_{n}$. Then:
(a) $\Delta^{\circ}(z)=\theta_{\Gamma}(\Delta(z)) \geqslant \boldsymbol{\alpha}^{\circ}(z)$.
(b) $\Delta^{\circ}(z)=\boldsymbol{\alpha}^{\circ}(z)$ if and only if $z^{2}=1$.

Proof. First, note that $\tau^{\circ} \circ \theta_{\mathcal{H}}=\theta_{\mathcal{H}} \circ \tau$. Moreover, by Proposition 5.1, we have $\theta_{\mathcal{H}}\left(C_{z}\right)=C_{z}^{\circ}$. Since $V^{\ell_{t}(z)} \tau\left(C_{z}\right) \in \mathbb{Z}\left[v, v^{-1}\right]$, we get that $\Delta^{\circ}(z)=\theta_{\Gamma}(\Delta(z))$. The other assertions follow easily.

We conclude this section by showing that the bound given by Proposition 5.1 is optimal.
Proposition 5.5. If $b \leqslant(n-1) a$, there exists $w \in W_{n}$ such that $\theta_{\mathcal{H}}\left(C_{w}\right) \neq C_{w}^{\circ}$.
Proof. Assume that $b \leqslant(n-1) a$. To prove the proposition, it is sufficient to show that there exists $w \in W_{n}$ such that $\theta_{\mathcal{H}}\left(C_{w}\right) \notin T_{w}^{\circ}+\bigoplus_{y<w} A_{<0}^{\circ} T_{y}^{\circ}$. Using Corollary 3.4, we see that it is sufficient to show that there exists $w \in W_{n}$ such that $\theta_{\mathcal{H}}\left(\Gamma_{w}\right) \notin T_{w}^{\circ}+\bigoplus_{y<w} A_{<0}^{\circ} T_{y}^{\circ}$. This follows from the next lemma:

Lemma 5.6. Let $w=s_{n-1} \cdots s_{2} s_{1} t \sigma_{n}$. Then $\theta_{\mathcal{H}}\left(\Gamma_{w}\right) \notin T_{w}^{\circ}+\bigoplus_{y<w} A_{<0}^{\circ} T_{y}^{\circ}$.
Proof. We have, by Proposition 2.3,

$$
\Gamma_{w}=T_{s_{n-1} \cdots s_{2} s_{1} t} C_{\sigma_{n}}+V^{-1} T_{s_{n-1} \cdots s_{2} s_{1}} C_{\sigma_{n}}
$$

But, $T_{s_{n-1} \cdots s_{2} s_{1}} C_{\sigma_{n}}=v^{n-1} C_{\sigma_{n}}$ (see [16, Theorem 6.6(b)]). Therefore, since $\theta_{\mathcal{H}}\left(C_{\sigma}\right)=C_{\sigma}^{\circ}$ for every $\sigma \in \mathfrak{S}_{n}$, we have

$$
\theta_{\mathcal{H}}\left(\Gamma_{w}\right)=\left(\sum_{\tau \in \mathfrak{S}_{n}} v^{\left(\ell(\tau)-\ell\left(\sigma_{n}\right)\right) a} T_{S_{n-1} \cdots s_{2} s_{1} t \tau}^{\circ}\right)+v^{-b+(n-1) a} C_{\sigma_{n}}^{\circ}
$$

(Recall that $C_{\sigma_{n}}=\sum_{\tau \in \mathfrak{S}_{n}} v^{\left(\ell(\tau)-\ell\left(\sigma_{n}\right)\right)} T_{\tau}$ by [16, Corollary 12.2].) So the coefficient of $\theta_{\mathcal{H}}\left(\Gamma_{w}\right)$ on $T_{\sigma_{n}}^{\circ}$ is equal to $v^{-b+(n-1) a}$, which does not belong to $A_{<0}^{\circ}$.

References

[1] S. Ariki, Robinson-Schensted correspondence and left cells, in: Combinatorial Methods in Representation Theory, Kyoto, 1998, in: Adv. Stud. Pure Math., vol. 28, Kinokuniya, Tokyo, 2000, pp. 1-20.
[2] S. Ariki, K. Koike, A Hecke algebra of $(Z / r Z)$ 乙 S_{n} and construction of its irreducible representations, Adv. Math. 106 (1992) 216-243.
[3] C. Bonnafé, L. Iancu, Left cells in type B_{n} with unequal parameters, Represent. Theory 7 (2003) 587-609.
[4] R. Dipper, G.D. James, G.E. Murphy, Hecke algebras of type B_{n} at roots of unity, Proc. London Math. Soc. 70 (1995) 505-528.
[5] J. Du, B. Parshall, L. Scott, Cells and q-Schur algebras, Transform. Groups 3 (1998) 33-49.
[6] F. Du Cloux, An abstract model for Bruhat intervals, European J. Combin. 21 (2000) 197-222.
[7] M. Geck, On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc. 35 (2003) 608-614.
[8] M. Geck, Relative Kazhdan-Lusztig cells, preprint, 2005, math.RT/0504216.
[9] M. Geck, L. Iancu, Lusztig's a-function in type B_{n} (asymptotic case), Nagoya Math. J. 182 (2006) 199-240.
[10] M. Geck, G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Math. Soc. Monogr. (N.S.), vol. 21, Oxford Univ. Press, 2000.
[11] J.J. Graham, G.I. Lehrer, Cellular algebras, Invent. Math. 123 (1996) 1-34.
[12] D.A. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979) 165184.
[13] G. Lusztig, Left cells in Weyl groups, in: R.L.R. Herb, J. Rosenberg (Eds.), Lie Group Representations I, in: Lecture Notes in Math., vol. 1024, Springer-Verlag, 1983, pp. 99-111.
[14] G. Lusztig, Unipotent characters of the symplectic and odd orthogonal groups over a finite field, Invent. Math. 64 (1981) 263-296.
[15] G. Lusztig, Cells in affine Weyl groups, in: Algebraic Groups and Related Topics, Kyoto/Nagoya, 1983, in: Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 255-287.
[16] G. Lusztig, Hecke Algebras with Unequal Parameters, CRM Monogr. Ser., vol. 18, Amer. Math. Soc., Providence, RI, 2003, 136 pp.
[17] G. Lusztig, N. Xi, Canonical left cells in affine Weyl groups, Adv. Math. 72 (1988) 284-288.
[18] S. Okada, Wreath products by the symmetric groups and product posets of Young's lattices, J. Combin. Theory Ser. A 55 (1990) 14-32.

[^0]: E-mail address: bonnafe@math.univ-fcomte.fr.

